Ref. No.: Ex/ET/T/312/2019

B.E. in Electronics and Tele-Communication Engineering, Third Year First Semester Examination, 2019

CONTROL ENGINEERING

Time: 3 Hours Full Marks:100

Answer any FOUR questions.

1. a) Draw the state diagram for the following differential equation:

$$D^3c(t) + 3Dc(t) + 2c(t) = r(t)$$
,

where D denotes time-derivative, r(t) is the input of the plant and c(t) is the response of the plant at time t. [6]

- b) Explain state-controllability and observability with the help of suitable state diagrams. Also narrate the conditions for state-controllability and observability. [8]
 - c) Let a system be described by dX//dt = AX(t) + Bu(t) and Y(t) = CX(t), where

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix}$$

$$B = [0 \ 1]^T$$
 and $C = [2 \ 1]$

Test controllability and observability of the system.

- d) Also draw the state diagram of the system referred to in Part (c). [3]
- e) Do controllability and observability follow from the above state diagram?-Justify. [2]
- 2. a) Identify the input variable(s), output variable(s) and system state(s) in a series capacitor charging circuit, where output is taken across the capacitance. [3]
- b) Given a system dynamics: $D^3c(t) + 5D^2c(t) + Dc(t) + 2c(t) = 2r(t) + Dr(t)$. Derive the state equation. [4]
 - c) Derive the system states for an autonomous system and a general system. [8]

[6]

Transition Matrix (STM). [5]
e) Also obtain the system states. [5]
3. a) Draw the Bode plot (magnitude and phase plots) of $G()= 10/s(1+0.1s)$. [6]
b) For a phase-lead network, obtain the expression for maximum phase-shift and the frequency where the network offers maximum phase-shift. [8]
c) What is the gain of the network at this frequency? [3]
d) A plant has a phase margin of 25° . How will you select a phase-lead network to obtain a phase-margin of 45° ? Assume that the plant has a gain of $-10 \log(a)$ at $\omega=50$ rad/sec, where 'a' is one parameter of the compensator. [4]
e) Explain with Bode plots, when you prefer to use Phase-lead and when Phase-lag networks for phase margin compensation. [4]
4. a) State the principle of argument in complex number theory. [3]
b) State Nyquist criterion for stability analysis. [3]
c) Draw the Polar plot of $G(s)=K(s-1)/s(s+1)$ for $K>0$. [6]
d) Draw the Nyquist plot of $G(s)=K(s-1)/s(s+1)$ for $K>0$. [8]
e) What do you infer from the Nyquist plot and why? [5]
5. a) Prove that a point P lies on the real axis root locus, if the number of poles plus zeroes to the right of point P is odd. [10]
b) Draw the root locus of $G(s) = K/s(s + 4) (s^2 + 4s + 20)$, K>0. Determine the breakaway points and maximum value of K for stability. [15]
6. a) Derive the expression for step response of a second order system and hence obtain its peak overshoot. [10]
b) Justify mathematically why steady-state response of a first order system with ramp input depends only on the time-constant of the system. [4]
c) Draw an arbitrary time-response of a second order system with step input, and hence plot error versus time, proportional action versus time, integral action versus time and differential action versus time. [8]

- d) Why differential action is called complementary to proportional action?-Explain graphically. [3]
- 7. a) Develop the differential equation model of a magnetic suspension ball system. [4]
 - b) Linearize the differential equation around an equilibrium point. [5]
- c) Identify from physical system consideration, the input and the output parameters of the system and hence obtain the transfer function of the magnetic suspension ball system. [3]
- d) Write down the torque equation of an AC Servomotor. Linearize the torque around an operating speed and control winding voltage, and hence derive the transfer function of a Servomotor. [8]
- e) Draw a block diagram of an AC position control system and explain the role of Synchro in the diagram. [5]
- 8. Write notes on any TWO of the following:
 - a) Signal Flow Graph and Mason's gain formula,
 - b) Amplidyne,
 - c) Illustrating computation of Transfer Function from the Magnitude Bode Plot.
 - d) Computation of Approximate Factored Closed-Loop Transfer Function from the open-loop root locus plot.
 - e) Predator-Prey species dynamics and Predator species control in an ecosystem. [12 $\frac{1}{2} \times 2$]