Ref. No.: Ex/ET/T/315/2019

(5)

(3)

B.E. ELECTRONICS AND TELE-COMMUNICATION ENGINEERING THIRD YEAR, FIRST SEMESTER-2019

Subject: IC Technology

Full Marks: 100 Time: 3 hours

Answer ALL the three Modules (All Parts of the same question must be answered at one place only)

MODULE I (Answer any two questions)

Q1. a. Calculate atomic packing factor for hexagonal closed packed structure.

b. Sketch a cubic unit cell and show the following planes:

	(i) (112)	(ii) (101)	(iii) (123)	
	c. Describe variou	diagram in ionic crystals.	(4)	
	d. Describe burger (FCC) structure	•	ger vector for face centred crystal	(2+1)
	·		lutions with suitable diagram.	(5)
Q2. a	a. What is clean ro	om and what is type of conta	aminations in clean room?	(3)
1	o. Enlist the steps t	for obtaining Electronic Gra	de Silicon (EGS) from sand.	(4)
c. Explain Czochralski (CZ) method for silicon crystal growth with suitable diagran				
(retreating end (C C ₀ is the initial u	s) for float zone process giveniform doping concentration	encentration in the crystal at the en as $C_s = C_0[1-1(1-k_e)^{-k_e x/L}]$, where in the rod, L is the length of molte effective segregation coefficient.	
Q3. a	a. Define effective coefficient (k ₀).	segregation coefficient (k _e)	in terms of equilibrium segregation	(10)
b.	process, what concentration in t	centration of boron atoms she ingot. If the initial load of atomic weight = 10.8) should	n/cm ³ , is to be grown by the CZ nould be in the melt to give the requestion of the crucible is 80 Kg, how med be added. The density of molten is	nany

c. What is wet chemical etching? Name the common wet chemical etchant used in

integrated circuit fabrication with their composition for Si, SiO₂ and Si₃N₄ etching.

(4)

MODULE II (Answer any two questions)

(Answer any two questions)					
Q4.a Show the Deal-Grove kinetic equation for oxidation of silicon is $x^2+Ax=B(t+and show that it reduces to x^2=Bt for long times and to x=B/A (t+\tau) for short times duration.$	τ) (12)				
b. What is field aided diffusion?	(4)				
c. Draw the practical diffusion profile of phosphorus (P) in Si.	(4)				
Q5. a. Explain graphically predeposition and drive in steps in diffusion process.	(8)				
b. Give an example of (i) solid source (ii) liquid source (iii) gaseous source of Boron (B) diffusion in Si.	(3)				
c. Explain Ion channelling with an example.	(4)				
d. What are the pros and cons of ion implantation vs. diffusion?	(5)				
Q6. a. Describe e-beam lithography technique with the schematic diagram and what are its advantages over photolithography?	(5+3+2)				
b. Define "dose" in ion-implantation technique, explain how ions are selected in an ion implanter system.	(1+3)				
c. Explain the difference between contact, proximity and projection printing.	(6)				
Q7. a. Explain electromigration in relation to Al metallization.	(5)				
b. Describe DC sputtering technique with suitable diagram and explain why RF is needed to deposit insulators using sputtering?	(6+4)				
c. What are the typical reactions involved in depositing (i) SiO ₂ and (ii) Si ₃ N ₄ via plasma-enhanced chemical vapor deposition (PECVD) method.	(3)				
d. Why silicides preferred in multilevel interconnects?	(2)				
MODULE III					

MODULE III

- Q8. a. With the help of IC process flow diagram, show the process sequence for forming (6) a deep and narrow trench isolation structure.
 - b. Draw the doping profile for n-p-n transistor. (4)
 - c. Describe briefly, the IC processing steps for fabrication of the complementary metal-oxide-semiconductor (CMOS) using twin well process.