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Chapter 1 

INTRODUCTION 
 

1.1 A Brief Insight into Soccer Robotics 

During the past few decades, Soccer Robotics [1-5] [58-60] has contributed immensely for the 

development and growth of various technologies in the fields of Computational [6] and 

Artificial Intelligence [7]. The primary motivation behind this field is to design autonomous 

mobile robots [3-10] that can accustom and act in accordance to the real-world environment. 

The thesis deals with the design of a soccer robot using a differential drive mobile robot [11-

15] having certain verifications that are required to perform a particular task in our case predict 

the distance and angle of the next state. A basic description of differential drive mobile robots 

has been depicted in the following sections. 

1.2 Differential Drive Mobile Robot 

The differential drive robot is a two-wheeled mobile robot that moves with the aid of separately 

driven wheels consisting of independent actuators for each wheel. Its name has been derived 

from the fact that the motion vector of the robot is sum of the independent wheel motions. Its 

direction of movement can be changed by varying the relative rate of rotation of its wheels 

without any requirement of additional steering motion. Moreover, this robot also consists of a 

motion-driven small swivel wheel known as the caster wheel that helps to balance or stabilize 

its motion. 

1.3 Categories of Wheeled Mobile Robots 

On the basis of the mobility degree (m) and steer-ability degree (s) classification method by 

Campion [16], the mobile robots are of the following classes - 

Type (3,0) robots or Omni-directional robots: These robots have no steering wheels (s=0) 

and are equipped only with Swivel or caster wheels. They have full mobility in the plane (m=3), 

which means that they are able to move in any direction without any reorientation. 

Type (2,0) robots: They have no steering wheels (s=0) but either one or several fixed wheels 

with a common axle. The common axle restricts mobility to a two-dimensional plane (m=2) 

Type (2,1) robots: They have no fixed wheels and at least one steering wheel. If there is more 

than one steering wheel, their orientations must be coordinated (s=1). Therefore, mobility 

restricted to a two-dimensional plane (m=2). 

Type (1,1) robots: They have one or several fixed wheels on a common axle and also one or 

several steering wheels, with two conditions for the steering wheels, their centres must not be 

located on the common axle of the fixed wheels and their orientations must be coordinated 

(s=1). Mobility is restricted to a one-dimensional plane determined by the orientation angle of 

the steering wheel (m=1). 

Type (1,2) robots: These robots have no fixed wheels, but at least two steering wheels. If there 

are more than two steering wheels, then their orientation must be coordinated in two groups 

(s=2). Mobility is restricted to a one-dimensional plane (m=1) determined by the orientation 

angles of the two steering wheels. 
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Some of the well-known differential drive mobile robots are shown below: 

 

 

(a) (b) 

(b) (d) 

Figure 1.1 Types of differential drive robots: (a) Pioneer (b) Bigtrak (c) Edision 

(d)Khepera IV 
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1.4 Differential Drive Kinematics  

Many mobile robots use a drive mechanism known as differential drive. It consists of 2 drive 

wheels mounted on a common axis, and each wheel can independently be driven either forward 

or backward. While we can vary the velocity of each wheel, for the robot to perform rolling 

motion, the robot must rotate about a point that lies along their common left and right wheel 

axis. The point that the robot rotates about is known as the ICC - Instantaneous Center of 

Curvature (see figure 1.2). 

 

 

 

 

 

 

 

 

Figure 1.2 Differential Drive kinematics 

By varying the velocities of the two wheels, we can vary the trajectories that the robot takes. 

Because the rate of rotation ω about the ICC must be the same for both wheels, we can write 

the following equations:  

 

𝜔(𝑅 + 𝑙/2) = 𝑉𝑟   (1.1)  

𝜔(𝑅 − 𝑙/2) = 𝑉𝑙  (1.2) 

where l is the distance between the centres of the two wheels, Vl , Vr are the right and left 

velocities along the ground , and R is the signed distance from the ICC to the midpoint between 

the wheels. At any instance in time we can solve for R and ω:  

 

R =  
𝑙

2
 
𝑉𝑟+𝑉𝑙

𝑉𝑟−𝑉𝑙
  (1.3) 

 

𝜔 =
𝑉𝑟−𝑉𝑙

𝑙
   (1.4) 

 

There are three interesting cases with these kinds of drives.  

1. If 𝑉𝑙 = 𝑉𝑟, then we have forward linear motion in a straight line. R becomes infinite, and 

there is effectively no rotation - ω is zero.  

2. If 𝑉𝑙 = −𝑉𝑟, then R = 0, and we have rotation about the midpoint of the wheel axis - we 

rotate in place.  

3. If 𝑉𝑙 = 0, then we have rotation about the left wheel. In this case R = 
𝑙

2
. Same is true if  𝑉𝑟 =

0. 
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Note that a differential drive robot cannot move in the direction along the axis - this is a 

singularity. Differential drive vehicles are very sensitive to slight changes in velocity in each 

of the wheels. Small errors in the relative velocities between the wheels can affect the robot 

trajectory. They are also very sensitive to small variations in the ground plane, and may need 

extra wheels (castor wheels) for support.  

 

1.4.1 Forward Kinematics for Differential Drive Robots 

Let us assume the robot is at some position (x, y), headed in a direction making an angle θ with 

the X axis. We assume the robot is centred at a point midway along the wheel axle. By 

manipulating the control parameters Vl  ,Vr , we can get the robot to move to different positions 

and orientations. With the knowledge of these control parameter and using equation (1.3), the 

ICC location can be written as: 

𝐶 = [𝑥 − 𝑅 sin 𝜃 , 𝑦 + 𝑅 cos 𝜃] (1.5) 

And at time t + ∆t the robot’s pose will be: 

[
𝑥′
𝑦′

𝜃′

] = [
cos(𝜔∆𝑡) − sin(𝜔∆𝑡)   0
sin(𝜔∆𝑡) cos(𝜔∆𝑡)       0
0                     0                    1 

] [
𝑥 − 𝐶𝑥

𝑦 − 𝐶𝑦

𝜃

] + [
𝐶𝑥

𝐶𝑦

𝜔∆𝑡

] (1.6) 

 

This equation thus describes the motion of a robot rotating a distance R about ICC with an 

angular velocity of 𝜔. 

Another way to understand this as depicted in figure 1.3 is that the motion of the robot is 

equivalent to: - 

 1) Translating the ICC to the origin of the coordinate system,  

 2) Rotating about the origin by an angular amount 𝜔. 

 

 

 

 

 

 

 

Figure 1.3 Forward kinematics of differential drive motor 

 

C 
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1.4.2 Inverse Kinematics of a robot of a mobile robot 

In general, we can describe the position of robot capable of moving in a particular direction Θ𝑡 

at a given velocity V(t) as: 

𝑥(𝑡) = ∫ 𝑉(𝑡) cos(𝜃(𝑡))𝑑𝑡
𝑡

0
 (1.7) 

𝑦(𝑡) = ∫ 𝑉(𝑡) sin[𝜃(𝑡)]𝑑𝑡
𝑡

0
 (1.8) 

Θ(𝑡) = ∫ 𝑤(𝑡)𝑑𝑡
𝑡

0
 (1.9) 

For the special case of a differential drive robot the equation become: 

𝑥(𝑡) =
1

2
 ∫ [𝑣𝑟(𝑡)

𝑡

0
+ 𝑣𝑙(𝑡)] cos[𝜃(𝑡)]𝑑𝑡 (1.10) 

𝑦(𝑡) =  
1

2
∫ [𝑣𝑟(𝑡) + 𝑣𝑙(𝑡)] sin[𝜃(𝑡)] 𝑑𝑡

𝑡

0
 (1.11) 

Θ(𝑡) =
1

𝑙
∫ [𝑣𝑟

𝑡

0
− 𝑣𝑙]𝑑𝑡 (1.12) 

The inverse kinematics problem can be described as the way by which the robot can be 

controlled to reach a given configuration (x, y, 𝜃). Unfortunately, a differential drive robot 

imposes what are called non-holonomic constraints [18-20] on establishing its position. For 

example, the robot cannot move laterally along its axle. A similar non-holonomic constraint is 

a car that can only turn its front wheels. It cannot move directly sidewise, as parallel parking a 

car requires a more complicated set of steering maneuvers. So, it’s not possible simply an 

arbitary robot pose (x, y, 𝜃) and find the velocities that will get it to a desired location. 

For the special cases of vr = vl = v (robot moving in a straight line) the motion equations 

become:  

[
𝑥′
𝑦′

𝜃′

] = [
𝑥 + 𝑣 cos(𝜃)∆𝑡
𝑦 + 𝑣 sin(𝜃)∆𝑡

𝜃

] (1.13) 

If, 𝑣𝑟 = −𝑣𝑙 = 𝑣 then the robot rotates in place and equations become: 

[
𝑥′
𝑦′

𝜃′

] = [

𝑥
𝑦

𝜃 + 2𝑣∆𝑡/𝑡
] (1.14) 

This provides a strategy of moving the robot in straight line, then rotating for a turn in place, 

and then moving straight again thus forming a navigation strategy for differential drive robots. 
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1.5 Applications 

Differential drive mobile robots are used in a wide range of applications, some of which are 

listed below: 

• They are utilized extensively in various rehabilitative domains [21] 

• Hospitals have been using autonomous mobile robots to move materials [22] 

• Warehouses have installed mobile robotic systems to efficiently move materials from 

stocking shelves to order fulfilment zones [23]  

• They are used as military robots for various military applications, from transport to 

search, rescue and attack [24]                                       

• They are used as domestic robots that perform certain household tasks such as 

vacuuming or gardening [25] 

• Mobile robots are also used in sports to entertain the audience [26] 

1.6 Scope of the Thesis 

Soccer robotics is a research field that fosters the development of autonomous mobile robots 

having the capability to interact efficiently with the physical environment. The soccer game 

was first proposed by A.K. Mackworth in the year 1993 [27]. Since then, a large number of 

soccer symposiums and leagues have been conducted by two leading international associations 

namely Robocup [28-36] and FIRA [37-40]. In these leagues, various types of robots have been 

used as soccer players like four legged robots [41-45], two legged humanoid robots [47-52] 

etc. The major real-life areas that are tackled through this game include real time planning [53-

54], reasoning [55], behaviour learning [56-57], sensor fusion, strategy acquisition etc. 

Though extensive research has been carried in this field, however there still exists a dearth of 

literature regarding implementation of soccer player using small sized differential drive robots. 

Moreover, most of the soccer robots still face real time issues like object recognition under a 

noisy environment, appropriate coordinate update [58-60] during navigation etc. Hence this 

thesis aims to design a soccer player goal keeper using the recently developed Khepera IV 

robot which predicts the position i.e., distance and angle of the next state. Though real time 

approach is not done in this thesis but it dealt with prediction approach using Extended Kalman 

Filter. 

The objective of this thesis is divided into three main parts. First, a vigorous method is 

discussed that handles the robot basic hardware related components which are required for the 

thesis and theoretical aspect of EXTENDED KALAMAN FILTER. Second, novel methods for 

object recognition are depicted that are highly robust to noise while working in real life 

scenario. Third, the planning, strategy for implementing the goal keeper decision using 

extended Kalman filter for prediction of distance and angle of the soccer player using the 

function developed using MATLAB. 

1.7. Conclusion 

This chapter provides basic idea regarding Soccer Robotics and its significance in research 

domain. It also discusses the preliminary idea regarding differential drive mobile robots, its 

kinematical modelling. Lastly, it discusses the major motivation behind this thesis work. Thus, 

this chapter helps to understand the basic concepts of differential drive robots and its 

application in the field of robotics. 
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Chapter 2 

KHEPERA IV 
 

2.1 Introduction  

Khepera IV [1-3] is a miniature differential wheeled mobile robot that acts as an important tool 

for indoor research and educational purposes, developed by K-Team [4], Switzerland. It aids 

in real world testing of various algorithms and methodologies like trajectory planning [5-7], 

obstacle avoidance [8-9], object recognition [10-12] etc. 

2.2 Historical Background 

Observing the evolution of robotic technology in 90's, Prof. Jean-Daniel Nicoud, head of the 

Micro computing Laboratory (LAMI) [13-14] of the Swiss Federal Institute of Technology of 

Lausanne (EPFL), decided to start development of a mobile robot occupying less than one 

cubic inch of volume. So, in 1991 this laboratory developed a miniature mobile robot named 

Khepera. In the beginning, the robot became affectionately known as "cafard" by the people of 

the lab, which is French for "cockroach". However, Prof Nicoud thought that this name was 

lacking some elegance and hence finally named it "Khepera" [15-16] which was the name of 

an Egyptian god having the head of a cockroach. 

2.3 Specifications of Khepera 

The technical details and specifications of the robot are provided in the table below: 

Table 2.1 Specifications of the Robot 

ELEMENTS TECHNICAL INFORMATION 

Processor 

 

Linux core running on a 800MHz ARM 

Cortex-A8 Processor with C64x Fixed Point 

DSP core and additional microcontroller for 

peripherals management 

RAM 512 MB 

Flash 512 MB plus additional 4GB for data 

Motion 2 DC brushed motors with incremental 

encoders (roughly 147 pulses per mm of 

robot motion) and gearbox 

Sensors 

 

8 Infra-red proximity and ambient light 

sensors with up to 25cm range, 4 Infrared 

ground proximity sensors for line following 

applications and fall avoidance, 5 Ultrasonic 

sensors with range 25 cm to 2 meters, 3-axis 

accelerometer and 3-axis gyroscope 



  12 
 

Audio 

 

2x1 embedded microphone 100 to 10,000 

Hz, 1x 0.7W speaker (400-20,000Hz) 

Speed 

 

Max 1 m/s in openloop and 0.8 m/s with 

Factory default PID speed controller. Min 

0.003 m/s with Factory default PID speed 

controller 

LED 3 programmable RGB LED on top of the 

robot 

Video 

 

Integrated color camera (752x480 pixels, 

30FPS) 

AC adapter power 9V @ 2.5A 

Autonomy 

 

Approximately 7 hours, Additional turrets 

will reduce battery life 

Battery 

 

Embedded battery, 7.4V Lithium Polymer, 

3400mAh 

Size Diameter: 140 mm, Height: 58 mm 

Docking 

 

Ready for docking (Power input and I2C 

communication) 

Communications 1x USB 2.0 host (500mA), 1x USB 2.0 

device, 802.11 b/g WiFi, Bluetooth 2.0 EDR 

Weight 540g 

Max, payload Approx. 2000 g 

Extension Bus Expansion modules can be added to the robot 

using the KB-250 bus. 

Ground clearance 4 mm. Use only on hard and flat surfaces 

Development Environment for Autonomous 

Application 

GNU C/C++ compiler, for native on-board 

applications. 

Turn radius 0 cm 

Operating temperature 0-40°C 

Other Languages Python 2.79 and higher 

3 Axis Gyroscope and Accelerometer 

 

Gives powerful array of information of 

position, velocity, acceleration, orientation  

Bluetooth and WiFi 

 

WiFi with IEEE 802.11 standard included, 

Bluetooth version 3.0 has been included for 

wireless communication 

High Quality and High Accuracy DC Motors 

 

2 DC motor of max 1.96 W is used with gear 

ratio 19:1 and an efficiency of 78% 
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2.4 Accessories of the Robot 
 

2.4.1 A Quick Look into the features 

 

 

 

  

 

(a)                                                                                   (b) 

 

 

 

 

 

(c) 

Figure 2.1 (a) Left, (b) Rear, (c) Right view of the robot 

 

Figure 2.2 Bottom view    Figure 2.3 Top view 
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1. Caster wheels: The robot consists of two caster wheels that provides it with stability even 

in the presence of high payload or with long cantilever extension modules. 

2. On/Off switch: This switch enables to turn on the robot by moving it inwards and turn off 

the robot by moving it outwards. Moreover, this switch has its effect on the internal regulators 

of the robot rather than the battery i.e., the robot can be charged even if it’s in the off condition. 

3. Status LED: This bicolour indication LED indicates the state of the robot. When it is turned 

on, the green LED will stay on and the red light will blink until the system is ready. Moreover, 

this LED is also user-controllable.  

4. Mini-USB B connector: This connector creates a communication link between the robot 

and a computer. However, it is not possible to charge the robot by this way.  

5. USB A connector: This is a USB host-competent connector. It can be plugged into any USB 

device as required as long as it doesn't draw more than 500mA of current.  

6. Power supply jack: This is the 0.65mm centre positive jack used to charge the internal 

battery of the robot. Its input voltage is 9V. Current drawn by the robot is 1A, so a 1.5+A 

adapter is required. 

7. Charging status LED: This is a bicolour indication LED representing the state of the 

charging. There are two modes, depending if the robot is powered or not. If the robot is off and 

the AC adapter is plugged, the red LED will be on as long as the battery is charging. Once the 

charge terminated, the LED will turn off. If the robot is on and the AC adapter is plugged, the 

red LED will be on as long as the battery is charging. Once the charge terminated, the red LED 

will turn off and the green LED will turn on.  

8. Reset button: This button serves to reset the whole robot, including the extension modules. 

9. Infrared sensors: There are 8 infrared sensors all around the robot, each separated from its 

neighbour by an angle of 45°, that enables it to detect obstacles or measure ambient light. With 

these sensors, the robot is able to see obstacles from 2 to approx. 250mm, depending on the 

calibration, the ambient conditions and the obstacle colour.  

10. Ultrasonic sensors: There are 5 ultrasonic sensors, having an angle of 45° between each 

pair, that enables it to see obstacles from approx. 250 to approx. 2500mm. 

11. Camera: The robot has a colour camera in front with user-changeable lens It can be used 

to take pictures or videos that can be further processed.  

12. Bottom infrared sensors: Four infrared sensors are provided on the bottom of the robot 

which prevents the robot from falling down and can also be used to follow a line. 

13. Contacts for docking station: The Khepera IV has some apparent contacts below its body 

i.e. it can be used as a docking station to charge its battery or to communicate with it. The 

signals that are provided are: Battery out (controlled by a reed relay), 9V in, 12C.  

14. Wheels: The robot is differential driven, with 2 wheels equipped with O-ring. The wheels 

are driven by DC motors with encoder and gearbox. 

15. Sticker: It provides the serial number of the robot.  



  15 
 

16. Bottom M3 Nuts: There is the possibility to fix an extension to the robot from below.  

17. KB-250 Extension connectors: These two connectors are used to connect extension 

modules to the robot.  

18. Top M3 Nuts: There is the possibility to fix an extension to the robot from above.  

19. Magnets: There are three magnets used mainly to attach the gripper, but they can be used 

for any other module.  

20. RGB LED: There are three RGB LED on the top of the robot, all are user-controllable. 

They are primarily intended for robot pattern recognition with a colour camera mounted on the 

ceiling of the experiment room. 

2.4.2 Detailed Functionalities 

 

I. Infrared Sensors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Infrared Sensors viewed from Bottom. 

Khepera IV has 8 infrared sensors placed all around the robot and 4 placed on the bottom. They 

are positioned and numbered as shown in figure 2.4. 

These sensors embed an infrared light emitter and a receiver. The twelve sensors are 

TCRT5000 reflective optical sensors from Vishay Telefunken. Measuring range is from 2 to 

250mm. Each sensor is separated from its neighbour from an angle of 45°. 
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This kind of sensors allows two measures: 

• The normal ambient light. This measure is made using only the receiver part of the 

device, without emitting light with the emitter. A new measurement is made every 5ms. 

The value returned at a given time is the result of the last measurement made. 

• The light reflected by obstacles (=proximity). This measure is made by emitting light 

using the emitter part of the device. The returned value is the difference between the 

measurement made while emitting light and the light measured without light emission 

(ambient light). A new measurement is made every 5ms. The value returned at a given 

time is the result of the last measurement made. 

II. Ambient light measurement 

Ambient light measurement is strongly influenced by the robot's environment. Depending on 

the light source type, colour, and distance, ambient light measurement profile might vary. It is 

not recommended to use light source with large emission in the infrared range, as this could 

confuse the IR sensors. Value range is 0 to 1023, 0 stands for no light and 1023 for full light. 

III. Reflected light measurements (proximity) 

Sensors are mainly meant to detect obstacles around the Khepera. Measurements for reflected 

light depend on objects reflectivity and on ambient light conditions. Object colours, materials 

and surfaces do have an influence on the sensor's response. Moreover, as any sensor, IR sensors 

are subject to environmental noise. For all these reasons, graphics below are given for 

information only and should not be considered as references, Value range is 0 to 1023, 0 stands 

for no obstacle, 1023 for very near obstacle. Here's an example of value with a white paper 

used as an obstacle: 

Figure 2.5 IR value vs Distance 

The IR value never falls to 0, as even with no obstacle, the IR reflects on the floor and adds a 

static value. As all the sensors are not exactly the same, the solution is to perform a calibration 

of the IR with no obstacle in front. With this calibration, the user will be able to improve 

detection of obstacle at distance greater than 20cm. 
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IV. Ultrasonic sensors 

Five sensors are placed around the robot and are positioned and numbered as shown in figure 

below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Ultrasonic sensors viewed from top. 

 

These sensors are transceivers, meaning that they can emit and receive the pulses. The 

ultrasonic Sensors are powered by an 85 Vpp source. The nominal frequency of these 

transducers is 40kHz +/- 1 kHz. The returned value is the distance to the object in centimetres, 

with a tolerance of +/-2cm. Measuring range is from 25 to 200cm. Every transducer is separated 

from its neighbour from an angle of 45°. Each sensor can be disabled in order to get higher 

refresh rate for a particular one (or group). One sensor measure takes 20ms All 5 sensors need 

100ms to be read. 
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V. Battery 

The Khepera IV is equipped with an internal non-removeable Lithium-Polymer battery. It is 

built in a 2S1P configuration, giving 7.4V nominal, 8.4V charging voltage and a capacity of 

3400mAh. 

Table 2.2 Battery Specification 

 

 

 

 

 

Using its embedded power, the robot is able to run completely autonomously for more than 5 

hours with motors at 100% and 7 hours with motors off, running with a basic configuration. 

When additional equipment is used, the autonomy is reduced as Khepera’s extensions like the 

gripper rely on Khepera’s batteries as a power source. There is no specific power management 

system on the Khepera. When the battery voltage falls under 6V, the battery opens itself the 

circuit to avoid a deep discharge of the cells. Users can implement their own software power 

management system to handle extensions to shutdown properly before this case happens. 

The battery can be charged from 3 places: 

• From the jack 

• From the contacts situated below the robot 

• From the KB-250 extensions connectors. 

The battery is charged through an internal battery charge IC that needs 9V of input voltage. 

During its constant current phase, the battery is charged with a 1.1A current. To charge via the 

contact pads situated below the robot, only use the 9V in and Ground pads. To charge via the 

KB250 extensions connectors, use only pin 44 of 1701 and a ground pin. Max voltage is 

9.5VDC the charge status is indicated on the charging status LED. During the charge, the red 

LED turns on. The red LED will turn off when the charge is complete. The charge will not be 

enabled if the external supply is plugged when the battery is above 7.95V. In this case, the red 

LED will never turn on, neither the green LED. If the robot is turned on, the dsPIC will check 

the end-of-charge status in the Fuel Gauge. When this status is set (~5-10 second after the red 

LED turns off), the charge status LED will turn green. 

The Fuel Gauge (DS2781) returns different information available by the application:  

• Battery status register  

• Absolute remaining capacity (unit 1.6mAh)  

• Relative remaining capacity (0-100%)  

• Battery current (updated every 3.5s). The resolution is 78.125[uA]. A positive value 

means a charging current 

• Average current (updated every 28s)  

Nominal voltage   7.4V 
Cut-off voltage   6.0V 
Charging voltage 8.4V 
Nominal capacity 3400mAh 
Max discharge current 3400mA (1C) 
Charging current 1100mA 
Time for a complete charge about 4 to 5 hours 
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• Temperature with a resolution of 0.125°C.  

• Battery voltage with a resolution of 9.76mV 

The battery current is measured through a 20[mΩ]resistor. The battery temperature is accurate 

only when the charge is not active. During the charge, internal component heat will perturb the 

measure. It is required to consider that the returned value is approximately 10°C higher than 

the real battery temperature (especially when charging current is 1A). As the charge is not 

automatically protected against temperature, it is needed to verify before starting a charge. 

VI. Contact pads 

Eight contact pads are situated below the robot and can be used to connect either to an extension 

module or to a docking station. 

 

 

 

 

 

 

 

 

Figure 2.7 Contact pads viewed from bottom 

Table 2.3 Pin out of the contact pads 

 

 

 

 

 

 

The internal battery can be used to power external devices. Signal is "9V out”, present on pads 

number 1 and 8. As this is a power output, this signal is controlled by a reed relay to avoid any 

short-circuit. In order to be able to draw current from the battery, it is first required to activate 

the relay with a magnet. Please refer to the drawing for the exact location of the relay. Max 

current is 1.5A but this value depends on operating current of the robot. Voltage is accordingly 

to the battery state minus voltage drop of one Schottky diode and the Rdson of two MOS-P 

transistors. The internal battery can be charged from a docking station. Signal is "9V in”, 

present on pads number 2 and 7. Communication with the outside is done via I2C. Clock signal 

is on pad 3, while data signal is on pad 6. Level is 0 to 3.3V. Use level adapter if needed. 

Pos. Signal 
1 9V out 
2 9V in 
3 I2C Serial clock 
4 Ground 
5 Ground 
6 I2C Serial data 
7 9V in 
8 9V out 
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Ground signal is present on pins 4 and 5. The signals are routed in a symmetrical way so that 

if the robot is in the wrong direction on the docking, no damage occurs. 

VII. Reed relay location 

The diagram below represents the location of the reed relay. Unit is [mm]. The coordinates are 

about the centre of the relay. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Reed relay location 

VIII. Camera 

The Khepera IV is equipped with a front color camera, disposed below the front ultrasonic 

sensor. The sensor is a MT9V034C12ST from Aptina. It's a 1/3” WVGA CMOS sensor. 

Table 2.4 Camera Specification 

 

The default lens has a focal length of 2.1mm, with IR cut filter and fixed focus. The mounting 

thread is M12x0.5. Diagonal field of view is 150°, horizontal is 131° and vertical is 101°. 

IX. Microphones 

The Khepera IV is equipped with an amplified Microphone PU0414HRSH-SB from Knowles. 

It's directly connected to the Overo Analog right SUB MIC input. 

 

 

 

Active imager size 4.51x2.88mm 
Active pixels 752x480 
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Table 2.5 Specifications of Microphones 

Gain 20dB 

Sensitivity (typ) -22dbv/Pa 

Directivity Omnidirectional 

Supply voltage
  

2.5V 

 

X. Loudspeaker 

A SMS-1308MS-2-R loudspeaker from PUI Audio is mounted on the Khepera IV. This speaker 

is driven by a 1 W low distortion power amplifier. The speaker is connected on the HSOLF 

output of the OVERO. The OVERO can also mute the amplifier with GPIO64 (0 = MUTE, 1 

= ampli on). 

 

Table 2.6 Specifications of Loudspeaker 

Speaker Power 0.7W (max 1W) 
Impedance 8 Ohm 
Output SPL 88dBA 
Distortion (max) 5% 
Resonant frequency 850Hz ±20% 
Frequency range 400 ~ 20’000Hz 

 

XI. Gumstix Overo FireSTORM-P COM 

The Khepera IV was designed to embed a Gumstix Overo processor board. The computer-on 

module mounted by default in the Khepera IV is the Gumstix Overo FireSTORM-P COM. This 

computer-on-module has an additional DSP to perform special tasks, Bluetooth & WiFi 

capabilities (SMD antenna mounted on the Khepera).  

 

Table 2.7 Specifications of Gumstix Overo FireSTORM-P COM 

Architecture ARM Cortex-A8 

NAND Flash 512MB 

Processor Texas Instruments OMAP3730 
@800 MHz 

DSP C64x Fixed Point DSP 660, 
800MHz 

Wifi  802.11b/g/n included  

Bluetooth  version 3.0 included 

 

The Gumstix is provided with a Linux system already installed (Angström distribution). 
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XII. Accelerometer 

The accelerometer mounted on the Khepera IV is a LSM330DLC from ST. This device 

includes in one package a 3D accelerometer and a 3D gyroscope. The device is exactly at the 

centre of the robot (placed on the rotation centre). The device is located on the TOP of the main 

PCB. The accelerometer is oriented with the pin 1 to the front right; this returns a positive value 

for X axis gravity. when going forward. The Y axis is positive on the left, and finally Z axis is 

negative with the gravity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 Directions of Detectable Accelerations (TOP view) 

The accelerometer returns 12-bit data (two's complement) with a range of +/-2g. This means a 

value of l g will return a value of 16’384. The data rate is configured to 100Hz, as the dsPIC of 

the Khepera refreshes 10 values at a time, the user needs to read every 100ms (10Hz) to obtain 

fresh data. 
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XII. Gyroscope 

The gyroscope of the Khepera IV is included in the same package as the accelerometer. The 

directions of detectable angular rates are defined around the accelerometer axis. 

 

 

 

 

 

 

 

 

 

Figure 2.10 Directions of Detectable Angular Rates (TOP view) 

The data format is on 12 bits too, the full range is configured at +/-2'000dps (360dps = 5'898) 

and the data rate is configured at 95Hz. The gyroscope data is read by packets of 10 values at 

a time, which means the user can read new data every 105ms to obtain fresh value. The output 

has a to be multiplied by 0.066 to have (deg/s) units. 

XIV. USB Device (mini-USB B connector) 

A mini-USB B connector provides access to a USB-to-serial adapter (FT234XD from FTDI) 

to access directly to the ttyS2 of the Gumstix. Using a terminal provides the access to the 

boot of the system. When connecting a computer to this connector for the first time, the local 

system will ask for driver. FT234XD driver can be found at 

http://www.ftdichip.com/Products/ICs/FT234XD html. 

XV. MicroSD 

A 4GB Micro SD card is provided inside the Khepera IV. The robot will boot on it and use this 

card. It already contains the OS, kernel and boot files. 

XVI. RGB LED 

Three RGB LED (19-337/R6GHBHC-A01/2T from Everlight) are mounted on the TOP of the 

main board. Each of these LED has a light guide on it. The LED are driven by a dedicated LED 

driver (LTC3219 from Linear) which provides a resolution of 6 Bits (0-63) for each colour. 

These LED can be used to locate the Khepera IV with a camera (at the ceiling) and differentiate 

each robot (in swarm application). As the LED are placed on an isosceles triangle, the direction 

of each robot can also be detected. 
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XVII. Motors 

The Khepera IV has got 2 DC motors in order to drive its two wheels. The motors have 1.96W 

nominal power. The integrated gearbox has a reduction ratio of 19:1 and an efficiency of 78% 

There is another gearbox within the carter of the motor block, with a ratio of 2:1 and efficiency 

of 85%. Total ratio is then 38:1 and efficiency is 66.3%, meaning that there is 1.3W of a usable 

mechanical power by wheel. 

 

 

 

 

 

 

Figure 2.11 Motor Block with Wheel 

The encoder has a 128-pulse by turn resolution. With the reduction ratio of 38:1 and an internal 

hardware 4x multiplier, there are 19'456 pulses by wheel turn. As the diameter of the wheel is 

42mm (perimeter is then 131.94mm), this gives 147.4 pulses by millimeter. Or 1 pulse is 

0.006782mm (6.7818um). 

Reminder: 1 revolution = 131.94mm = 19456 pulses. 

Both motors are controlled via Pulse Width Modulation (PWM) at 20kHz. This technique 

switches the motor ON and OFF at a given frequency and during a given time by this way, the 

motor reacts to the average of the power supply, which can be modified by changing the period 

the motor is switched ON. This means that only the ratio between ON and OFF periods is 

modified, as illustrated in the figure below: 

 

 

 

 

 

 

 

 

 

Figure 2.12 Duty Cycle with PWM    
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The dsPIC calculates the PWM to apply to each motor in speed control and position control. 

The user can override the PID and apply directly a desired PWM to the motor using the open 

loop command. Default PID settings applied to the Khepera IV controller are: 

Kp: 10 

Ki: 5 

Kd: 1 

These values will be used by the PID speed controller. In position control, the PID is the same 

as the position controller calculates a speed order then calls the speed controller to reach this 

order. User can modify these values to improve behaviour to his particular use. When selecting 

a type of control, this mode will be applied to both motors. It's not possible to set the left motor 

in speed control and the right motor in another mode. To put the motor in idle mode (no more 

current drawn by the motors), use the open loop control with parameters set to 0. In speed 

control, even with a parameter of 0, the controller will struggle against any movement. 

XVIII. Speed control 

Both DC motors are controlled by a PID controller executed every 10ms in an interrupt routine 

of the dsPIC. Every term of this controller (Proportional, Integral, Derivative) is associated to 

a constant, setting the weight of the corresponding term: Kp for the proportional, Ki for the 

integral, Kd for the derivative. The controller has as input the speed value of the wheels and 

controls the motor to keep this wheel speed. The speed modification is made as quick as 

possible, in an abrupt way. No limitation in acceleration is considered in this mode. The speed 

unit corresponds to the difference measured in position between the two controllers' routine 

(10ms). Here's the formula to convert the speed unit to metric unit. 

 

The minimum speed order to ensure a correct control is 5 (=3mm/s). Under this value, the 

control is not very stable with default PID parameters. User can modify the PID to try to 

improve the behaviour for this kind of very low speed. The maximum speed order is 

approximately 1'200 (=813mm/s). It's still possible to move the robot faster if the control mode 

is set to open loop. In this case, the maximum speed will vary with the battery voltage and the 

payload. 
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XIX. Speed profile control 

This type of control uses the same PID as standard speed controller but adds an acceleration 

ramp to travel from the actual speed to the new speed order. The ramp used in this mode can 

be configured with the speed profile parameters. Three parameters define the ramp: 

 

Table 2.8 Parameters for defining the Ramp 

 

Acc_Inc value of increment to add or subtract every 

Acc_Div +1 control loop (value from 1 to 

255). 

Default = 3 

Acc_Div defines the number of control loops where 

no increment is added to the speed order. 

For example, a value of 0 means that at 

every control loop, the speed will be 

increased by Acc_Inc. A value of 4, means 

that every 5 control loops (50ms) the speed 

will be modified. (value from 0 to 255) 

Default = 0. 

Min_Speed_Acc  this parameter defines the minimum speed 

used by the controller. This value avoids 

setting a speed too low where the controller 

is not efficient. If the order value is smaller 

than this parameter, the controller will 

automatically limit the speed to 

Min_Speed_Acc. Do not set values lower 

than 1. Default = 20. 
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Here's an example of speed profile with default parameters (Acc_Inc = 3, Acc_Div = 0, 

Min_Speed = 20). 

 

Figure 2.13 Example of Speed Profile 

 

A speed profile order has been set to 100. After 300ms at constant speed, a new speed order of 

200 is set. The motor keeps this speed during 200ms, and finally decreases until reaching 0. 

This curve corresponds to the order sent to the PID speed controller. The real speed of the 

motor will depend on the payload and the PID reactivity. A higher Acc_Div parameter will 

increase the time between two steps to allow the PID to reach the speed order. A value of 0 

means that the effective motor speed will always be late on the order during the acceleration. 

This type of control must be preferred to the simple speed profile in order to avoid high current 

peaks and preserve the mechanical parts. The user needs to adapt the parameters Acc_Inc and 

Acc_Div to match the desired behaviour (high Acc_Inc for a reactive profile, high Acc_Div 

for a smooth profile). 
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XX. Position control 

In this mode, the robot will calculate a speed order (which will be processed by the PID) to 

move the robot using an acceleration ramp, a constant speed, and finally a deceleration ramp. 

Figure 2.14 Speed profile using position control 

Figure 2.15 Position Profile 

This example shows a travel of 475mm (70'000 pulses) using the default parameters. 

The position control mode when the same parameters as the speed profile control to calculate 

the acceleration ramp. The Min_Speed_Acc parameter is used only at the start. When reaching 

the target position, the speed is limited by Min_Speed_Dec parameter (default = 1). In addition 

to these three parameters, the travel speed can be configured through “Speed Order" parameter 

(default = 400). Finally, the "Pos_Margin" parameter defines the threshold when the position 
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controller stops completely the motor (set 0 to the speed controller). A low margin will increase 

the precision, but will add an instability to the control. It is not recommended to set this 

parameter below the default value (10). To calculate the real distance travelled by the motor, 

use the formula below: 

 

 

 

 

The position is stored in a signed 32 bits data, which means that the maximum position order 

is +/- 231 pulses (=14'563m), When performing straight travel (name distance on each wheel), 

the best solution is to reset the position encoder before sending the target position command. 

XXI. Open loop 

This control mode disables the PID controller and sets directly the PWM to the two motors. 

This can be useful if the application wants to calculate its own PID. The range of this command 

is +/-2'940 where 2’940 correspond to 100% of PWM in forward direction and -2’940 in 

backward direction. If the application wants to disable the motor (to decrease current 

consumption), the best way is to use this mode and set the PWM to 0. The motor will be in free 

wheel mode. 

2.5 Safety Precautions 

Here are some recommendations on how to correctly use the robot: 

• Keep the robot away from wet area. Contact with water could cause malfunction and/or 

breakdown. 

• Store your robot in a stable position. This will avoid the risk of falls, which could break 

it or cause damage to a person. 

• Use only the official charger or the cable which is delivered with the robot. Do not try 

to use another charger; this can cause irreversible damage to the battery and or the 

electronics. 

• Do not attach any connector while the robot is powered. To avoid any damage, make 

all connections when the robot power is off. 

• Never leave the robot powered when it is unused. When you have finished working 

with Khepera, turn it off. It will save the battery life. 

• Do not manually force any mechanical movement. Avoid forcing by any mechanical 

way, the movement of the wheels or any other part.  

• Never open the case. Only qualified technicians are allowed to do so. 

2.6 Conclusion 

This chapter discusses the components of Khepera IV robot along with its detailed 

functionalities. It also provides the mechanical drawings of the robot that describe the various 

precautions are listed at the end of this chapter dimensions of its components which can be 

utilized for performing any experiment. The safety precautions are listed at the end of this 

chapter. 
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Chapter 3 

SET UP & PROGRAMMING 
3.1 Introduction 

The setup step is a very important aspect which includes the organization of the necessary 

elements required for programming and controlling the robot, though the real time application 

is not done but to implement some part of the thesis this setup is necessary. There are mainly 

two development packages used for this process- Light tool chain and Full tool chain [1-2] 

Moreover, there are important components that are extremely necessary for the setup process 

which are: 

a) Cross compiler which is installed in the computer of the user  

b) Khepera IV robot where the code will be executed. 

c) Establishment of communication channel (wired or wireless) through which 

communication between the computer and robot will take place. 

3.1.1 Required Hardware 

1. Computer with USB and WiFi consisting of Linux operating system (Kernel 2.6.x and 

higher) with at least 3 GB on /opt account and at least 50 MB on user account. 

2. Khepera IV robot. 

3.1.2 Required Software 

1. Linux OS with packages like GCC (GNU C/C+ Compiler), MINICOM (Terminal 

Emulation), LRZSZ (Communication Package) should be installed. 

2. The following two files must be installed either from the Khepera IV DVD or K-Team [3] 

website: 

i. Cross-compiler Light toolchain: poky-glibc-i686-khepera4-image-cortexa8hf-vfp-

neontoolchain- 1.sh  

ii. Robot library sources: libkhepera-2 1.bz2 

3.1.3 Development Directory 

The development directory is the base folder for Khepera IV development comprising with 

scripts, links, make files which are very much essential for compile the program in cross 

compiler. The creation of new development directory Khepera4 is by the following command: 

~$ mkdir Khepera4 

~$ cd Khepera4/  

mkdir folder_name is used to make directory while cd folder_name is used to change the 

directory to folder_name directory. 
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3.1.4 Installation of Cross-Compiler (Light Tool chain) 

The steps and snapshot for light tool chain installation are illustrated below. 

1. Cross compiler is first installed in /opt folder. However, it can be installed in any other 

folder. 

2. For this process, the execution permission of the .sh file has to be changed. This is done 

by the command chmod +x. 

3. .sh file is a shell script used for sequential execution of linux commands hence, it is 

interpreted by shell (interpreter of terminal commands). After changing the permission 

of poky-glibc-1686-khepera4-image-cortexa8hf-vfp-neon-toolchain-1.sh file, this file 

is required to be executed. 

4. Checking of the correct installation of cross compiler is performed. 

5. The executed file is required to be sourced in the folder where it has been executed 

(/opt/poky/1.8 for our case). Source is used to read and execute a command from a file 

and make environment variables available. 

6. After executing the above steps, the version of cross compiler can be found (which is 

GCC 4.9.2 for our case) 

Figure 3.1 Installation of Light Tool Chain 

3.1.5. Installation of Robot Library 

All the inbuilt functions and commands are within this library. This library is already installed 

inside the robot. However, the same prototype library is required to be installed in the PC that 

will be used for compilation. The following steps are required to install the library on the 

development system: 

1. Extract the robot library libkhepera-2.1.bz2 in the development folder (Khepera4 for my 

case). 

2. After getting into the extracted folder whole library need to be compiled using the make file 

command Make file is used for simplifying the building program executables that may need 

various modules. It is a user-defined file. Make file is also used to make utility while compiling 

and linking programs modules. It is a special format file that helps to do many tasks 
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automatically depending upon the need. It is not mandatory to execute the commands line by 

line as of .sh file used to do. Here when make clean command will be executed then it will 

execute some specific commands which are not as same as the make all command execution. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Execution of the make command 

3.2 Communication with Robot 

Communication with the robot is a vital notion that aids in transferring the cross compiled 

executable code to the robot and interfacing with any hardware or software, 

3.2.1 Establishment of Communication Medium 

The communication between the robot and the PC can be done through a wire medium (USB) 

[4-5] or wireless medium (Bluetooth, WiFi) [6-10]. Both types of communication 

establishment are discussed below: 

A. Communication via USB 

The setup of communication with the robot through USB involves the following steps: 

1. Installation of the Linux package lrzsz following command: 

~$ sudo apt-get install lrzsz 

2. Installation of the Linux package minicom containing several commands to get into the robot 

and by utilizing the terminal to run the following command: 

~$ sudo apt-get install minicom 

3. Turning the robot on 

4. Run minicom with the command: ~$ sudo minicom -s. After this the RETURN key is 

Pressed. 
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Figure 3.3 Display Information after Execution of the minicom command 

 

5. To setup the serial communication changes the Serial post setup configuration und as 

shown below: 

 

 

 

 

 

 

Figure 3.4 Serial Port Setup Configuration Display 

6. After setting the serial post configuration, save it by clicking Save setup as dfl and if 

everything goes fine then it should show configuration saved. It is one-time setup only Now 

press Esc key to enter into the robot. 

7. Press the RETURN key. Khepera id can be viewed as user after being logged in and it will 

ask for login password. For the first time usage of Khepera default login is root and no 

password (Just press Return key). Password can be set using passwd command. 

 

 

 

 

 

 

Figure 3.5 Final Step for Connection via USB 
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B. Communication via Wi-Fi 

For real-time applications, Wi-Fi forms an important media for communication between the 

robot and the computer. Before setting the Wi-Fi of the robot, user's personal computer should 

have an existing Wi-Fi which can be able to create a network (hotspot), i.e. the ssid. Moreover, 

password should be known for that Wi-Fi network. 

1.Wi-Fi configuration of robot:Edit the file  

~/etc/wpa_supplicant/wpa_supplicantwlan0.conf using vi command as given below.  

~$ vi etc/wpa_supplicant/wpa_supplicant-wlan0.conf 

 

 

 

 

 

 

 

 

 

Figure 3.6 Display after Editing the file ~/etc/wpa_supplicat/wpa_supplicant-wlan0.conf 

By default, the system uses the address given by the access point using the DHCP=v4 

command 

~$ vi /etc/systemd/network/wifi.network 

 

Figure 3.7 Display showing the use of address given by Access point 

After setting these files reboot the robot using reboot command. 

2. Checking of connectivity and IP address of robot: To check the wlan IP Address of the 

robot use the command ~$ ifconfig. 
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Figure 3.8 Check for IP address of Robot 

To check the connectivity of the robot, ping the robot from the user's personal computer and 

also ping the computer from the robot using ping command.  

3. Remote access: Robot can be controlled remotely using Wi-Fi. For that establish a 

connection between the robot and the PC using ssh command, 

~$ ssh root@KHEPERA_IP  

where KHEPERA_IP is the robot IP address. After this command give the password to accept 

the authenticity.  

4. NFS Configuration: Network File System (NFS) is used for sharing files and folders across 

an established network. It can be configured as a centralized storage and computation solution 

for different networks which need not require to be running on the same Operating System. It 

is secured with Firewalls. NFS mount needs at least two machines. The machine hosting the 

shared folder is called as server and which connects to it is called as the client. Here some of 

the folders of user's personal computer needs to be shared with the robot. For this case user's 

PC acts as a server and the robot acts as client. Before establishing this NFS configuration the 

IP address of robot and user's personal computer must be known in advance. The directory to 

be shared between the personal computer and the robot must be declared to the NFS service in 

the /etc/exports configuration file. To do this the following line should be added to the 

/etc/exports file on the computer using vi editor: 

/home/khepera 10.42.0.176/255.255.255.0(rw no_root_squash sync) 

Figure 3.9 Line added to /etc/exports file 

where /home/khepera is the folder in the user's PC which will be shared with the robot. 

10.42.0.176 is the IP Address and 255.255.255.0 is the Subnet Mask of the robot which acts as 

a client here. ‘rw' allows all the clients to read and write the files to the shared directory of the 

server. 'no_root_squash’ is used to tell all the root users that they are connected to that 

designated directory. 'sync' will confirm the shared directory once the changes are committed. 

After adding these lines nfs-server on the server side (user's PC here) need to restart using the 

following command 

~$ sudo service nfs-kernel-server restart 

Next step is to mount the shared directory of the personal computer to the robot file system. 

The following command is used to do this. 

root@khepera4_1157: ~# mount 10.42.0.1:/home/khepera home/root 

Figure 3.10 Command for mounting the shared directory 
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10.42.0.1 is the IP address of the server (user PC here) /home/khepera is the folder of the server 

that need to be mounted. /home/root is the folder of the client (robot here) where it will be 

mounted folder’s properties using df command. It should look something like the following. 

 

 

 

 

 

Figure 3.11 Check of mounted folder properties 

Now the directory is changed to /home/root directory to access the mounted folder. 

3.2.2 Procedure for Transferring a File to the Robot 

A. Minicom Console via USB 

In the Minicom console, hold the keys "Ctrl + A" and then press "Z" It will show Minicom 

command summary of different functions. To send files press the keys and then select “Z-

Modem" after that navigate with the arrow keys, 2x "spacebar" to change directory and lx 

“spacebar" to select the file which need to be send to the robot. Then press the RETURN key 

successfully transferring the file to the robot it should show Transfer Successful. 

B. File Transfer using Wi-Fi 

After establishing the network connection between robot and user's personal computer via 

Wi-Fi execute the following command to transfer a file in user's personal computer to robot: 

~$ scp FILE root@KHEPERA_IP:/home/root 

where FILE is the file to transfer and KHEPERA_IP is the robot's IP address. 

Figure 3.12 File transfer using scp 

3.2.3 Procedure for Transferring a File to the Computer 

FILENAME is the file you would like to send. In the Minicom console at the prompt of the 

robot, type the following command, where 

~$ lsz FILENAME 

The file FILENAME is sent to the last directory Minicom used. 
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3.2.4 Use of Camera Module 

For using Camera module ensure that the driver of camera (mt9v032.so) is loaded. For taking 

snapshot v412grab program is required with some input parameters. For that following 

commands need to be executed inside the robot.  

~$ media-pipes.sh  

~$ media-formats.sh 752 480 

And to take one image 'image.jpg' at 85% jpeg quality with the following command:  

~$ v412grab -d /dev/video6 -o image.jpg -W 752 - H 480 -q 85 -I -1 

where image.jpg is the output image file in JPEG format, 752 is the width of the image pixel, 

480 is the height of the image in pixel, 85 is the quality jpg in %, /dev/video6 is the video 

device, -I -1 image frame rate.  

3.2.5 Video Steaming 

For video streaming vlc Gstreamer should be installed first. To install it use the following 

command: 

~$ sudo apt-get install gstreamer0.1* 

Before streaming first set the pipes and image size with the following commands: 

~$ media-pipes.sh  

~$ media-formats.sh 752 480 

For streaming execute the following commands on robot side first: 

~$ gst-launch v412src device=/dev/video6 ! autoconvert ! jpegenc quality=70 ! 

multipartmux ! tcpserversink port=5000 

Then run on the robot side: 

~$ vlc tcp://ROBOT_IP:5000 

3.3 Set Up for Programming Interface 

The most vital components required for this setup are Computer with USB and Wi-Fi and Linux 

operating system (Kernel 2.6.x and higher) with at least 3 GB on /opt account and at least 50 

MB on user account. It is mainly used for cross - compiler programming. As mentioned, this 

cross compiler mainly supports C/C++ programming languages. Corresponding GCC/G++ 

compiler is required for compiling these programs. There are many libraries and pre-processor 

directives specially made for programming this Khepera IV robot. While compiling the scripts 

these pre-processor directives consisting of declaration of various functions need to be included 

in compiling command. After compiling the scripts several object files (.o file) are generated. 

After that executable file (.exe file) will be generated by linking these object files with various 

libraries where the definition of existing Khepera functions and other functions are written. 

Here compiler is not same as GCC/G++, arm-poky-linux-gnucabi-gcc/g++ cross-compiler is 

used here. Each compilation command becomes very big and which makes it difficult to 

remember. For that Make file comes in rescue. Using export command, a part of command can 
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be treated as variable. So, a big command can be divided in many sub-commands using export 

command. Using colon (:) and dollar ($) command is used to create different compilation 

command or target command used for different purpose. Default target is all. Make/ Make all 

used to execute same commands. Details description of Make file is attached in Appendix. 

Two script writers have been used for this purpose. Any one of it is recommended to write 

script file and compile it and make one executable file 

A. Visual Studio Code 

It's very easy to use development editor. In it both programming in user PC and execution of 

.exe file in the robot can be done in different terminals. 

Step 1: Download Visual Studio Code and install it. 

Step 2: Install C/C++ Compiler from Add-ons. 

Step 3: Write a program and save it with .c or.cpp extension. 

Step 4: Store the make file on the same folder and run make all command. 

Step 5: One executable file (.exe file) (let's say template) will be generated after compiling. To 

run this executable file inside robot use the following command. 

~$ ./template 

B. Eclipse Neon 

Its setup is relatively complicated with respect to Visual Studio code. There is no need of 

makefile to compile the code. For that we can develop the code anywhere and generate 

executable file. Here debugging is little easy with respect to Visual Studio Code. 

Step 1: Install the Java Runtime Environment (JRE). 

~$ sudo add-apt-repository ppa:webupd8team/java  

~$ sudo apt-get update  

~$ sudo apt-get install oracle-java8-installer 

Step 2: Download the linux version of "Eclipse Neon IDE" for C/C++ Developers and install 

it.  

Step 3: Ensure khepera light toolchain is already installed. Then Run Eclipse and go to file 

menu "File => C Project" or C++ then click Next button. 

Step 4: In the next window "C Project", press the "Advanced Settings" button and on the 

"C/C++ Build => Settings", In "Cross Settings": 

Prefix: arm-poky-linux-gnueabi 

Path: /opt/poky/1.8/sysroots/1686-pokysdk-linux/usr/bin/arm-poky-linux-gnueabi/ 

Step5: On "Cross GCC Compiler" Includes => Include paths, add: 

/opt/poky/1.8/sysroots/cortexa8hf-vsp-neon-poky-linux-gnueabi/usr/include 

Step 6: On Miscellaneous, replace "Other flags" with the following 
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-c-march-armv7-a -mfloat-abi-hard -mfpu-neon -mtune-cortex-a8 --sysroot= 

/opt/poky/1.8/sysroots/cortexa8hf-vfp-neon-poky-linux-gnucabi 

Step 7: On "The Cross GCC Linker", on Miscellaneous, replace "Linkers flags" with: 

march=armv7-a -mfloat-abi=hard -mfpu-neon -mtune-corter-a8 – 

sysroot=/opt/poky/1.8/sysroots/cortexa8hf-vfp-neon-poky-linux-gnueabi  

Step 8: On "Cross GCC Linker => Libraries 'at' Libraries (-1), add khepera with the + button 

on the upper right. 

Step 9: At "Libraries search path", add: /opt/poky/1.8/sysroots/cortexa8hf-vfp-neon-poky-

linux-gnueabi/usr/lib 

Step 10: Press "Finish" button. 

Step 11: Go to menu "File => New => Source file" choose test.c/test.cpp as filename. 

Step 12: After writing the code Press the Green RUN button. 

Step 13: One executable file (.exe file)(let's say test) will be generated after compiling. To 

run this executable file inside robot use the following command: 

~$ ./test 

3.4 Programming Requisites 

3.4.1 Libraries and Preprocessors 

Khepera IV API include all the libraries after installing the cross-compiler in /opt/poky folder 

The declaration of all in build khepera functions are inside "khepera/khepera.h". 

3.4.2 Basic Functions 

All the important functions are described in the table below. However, an important variable 

must be discussed which is used in almost all programs is dsPic. It is a pointer variable used 

to store microcontroller access which is variable of data type knet_dev_t. It gives access to 

the microcontroller of khepera. Moreover, it is a static variable. 

Apart from dsPic variable there are many static and Global variable used for programming. 

By understanding the functions, the glimpse of those variables can be easily obtained. Apart 

from the variables there are also several khepera defined data types (using typedef function), 

few Enumerator and several Macros. 

Few lists of frequently used functions are tabulated below. What the function do is written in 

the Remarks section. The input data types, formal arguments of that functions and output data 

types are also listed corresponding to that particular function. 
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Table 3.1 Basic functions and Variables used for Programming 

Function name Input type Outpu

t type 

Remarks Return 

kh4_set_speed int left, 

integer 

left motor 

speed(units:encode

r) 

Returns 

A value: 

<0 on 

error 

>=0 on 

success 

int right, right motor 

speed(units:encode

r)  

knet_dev_t* hDev It is a handle to an 

opened knet socket 

(Khepera4:dsPic) 

kh4_SetMode int regtype, 

interge

r 

type of conrol Returns 

A value: 

<0 on 

error 

>=0 on 

success 

knet_dev_t* hDev It is a handle to an 

opened knet socket 

(Khepera4:dsPic) 

kh4_SetRGBLeds int char left_R, integer left led, R colour 

on 6 bits 

Returns 

A value: 

<0 on 

error 

>=0 on 

success 

left_G, left led, G colour 

on 6 bits 

left_B, left led, B colour 

on 6 bits 

right_R, right led, R colour 

on 6 bits 

right_G, right led, G colour 

on 6 bits 

right_B, right led, B colour 

on 6 bits 

back_R, back led, R colour 

on 6 bits 

back_G, back led, G colour 

on 6 bits 

back_B, back led, B colour 

on 6 bits 

knet_

dev_t

* 

hDev It is a handle to an 

opened knet 

socket.(Khepera4: 

dsPic) 

kb_change_term_m

ode 

int dir void 1= mode changed 

to non-blocking, 0 

mode reverted to 

previous 

Return 

none 

timeval_diff struct 

timeval* 

difference, long difference between 

the two times in 

structure time val 

type, 

Returns 

differen

ce 

between 

the 

times in 

[us] 

struct 

timeval* 

end_time, end time 

struct 

timeval* 

start_time, start time 
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kb_clrscr void void Clear the console 

screen  

none 

kb_change_term_m

ode 

int dir void Change terminal 

for getchar to 

return immediately 

dir 1=mode change 

to non-blocking, 0 

mode reverted to 

previous 

Returns 

none 

ctrlc_handler int sig void static Returns 

none 

kb_kbhit void integer Test if any key was 

pushed 

Returns 

-1 if 

error 

occurred 

>=0 

number 

of 

characte

rs to 

read 

kb4_get_speed int* left  integer kh4_get_speed get 

motors speed left 

motor speed(units: 

encoder) 

Returns 

a value: 

<0 on 

error 

>=0 on 

success 
int* right right motor speed 

(units: encoder) 

knet_dev_t* hDev It is a handle to an 

opened knet 

socket(Khepera4:d

sPic) 

kb_change_term_m

ode 

int dir void Change terminal 

mode for get char 

to return 

immediately Dir 

1=mode changed 

to non-blocking, 0 

mode reverted to 

previous 

Return 

none 

main int argc,char *argv[] integer Provide a basic test 

program to control 

a K-Team pan tilt 

camera with a 

KoreMotor using 

the KoreBot 

library 

Returns 

none 

kb4_init int argc, integer kh4_init initializes 

some things like 

the GPIO40 

pin.This function 

needs to be called 

BEFORE any 

other functions 

Returns 

a value: 

<0 on 

error 

=0 on 

success 

char* argv[] 
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3.4.3 Steps for Program Execution 

This section provides the basic steps for compiling and running the program after it has been 

written in the editor. Further details regarding this section are provided in Appendix part at the 

end of this thesis. 

 

Step 1: Write the program in the editor and save it as program-template.c 

Step 2: Open a new terminal and enter into the path where the program has been saved using 

cd command as shown below:  

cd Khepera4_development  

cd libkhepera-2.1 cd template 

cd template 

Step 3: Compile the program using make command 

Step 4: Open another new terminal where execution of the program will be done. 

Step 5: Establish a connection between the robot and computer through Wi-Fi by the command: 

ssh root @10.42.0.176 

Step 6: Mount the program using the following command: mount 10.42.0.1:/home/khepera 

/home/root 

Step 7: Enter into the path again where the program has been written by the following 

commands:  

cd /home/root 

cd khepera4_development  

cd libkhepera-2.1 

cd template 

Step 8: now run the program using the following command and then press enter. ./template 

 

 

3.5 Conclusion 

This chapter describes the entire setup process required to work and program with Khepera IV 

robot. Then description of various variables and functions useful for programming are also 

explained vividly. Thus, this chapter would act as a useful guide for novice users of this robot. 
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Chapter 4 

Socket Communication 
4.1 Introduction 

Socket programming [1] is defined as a notion that enables communication between two nodes 

(i.e. the processing computer and the robot). The basic idea of this type of communication is 

that one socket (node) listens on a particular port at an IP, while other socket reaches out to the 

other to form a connection. Server forms the listener socket while client reaches out to the 

server. It utilizes the TCP/IP protocol suite [2-4] due to its good failure recovery, its capability 

to add networks without interrupting existing services, high error-rate handling performance 

and provides low data overhead. 

4.2 TCP/IP Protocol Suite 

TCP/IP defines the acronym that is commonly used for the set of network protocols that 

compose the Internet Protocol suite. It is the conceptual model and set of communications 

protocols used on the Internet and similar computer networks. Moreover, it is commonly 

known as TCP/IP because the foundational protocols in the suite are the Transmission Control 

Protocol (TCP) and the Internet Protocol (IP). The TCP/IP protocol suite maps to a four-layer 

conceptual model known as the DARPA [5-6] model, which was named after the U.S. 

government agency that initially developed TCP/IP. The four layers of the DARPA model are: 

Application, Transport, Internet, and Network Interface. Each layer in the DARPA model 

corresponds to one or more layers of the seven-layer OSI model as shown in the figure below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 TCP/IP and OSI model 
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4.2.1 Physical and Data Link Layers 

At these layers, TCP/IP does not define any specific protocol. It supports all the standard and 

proprietary protocols. A network in a TCP/IP can be a local-area network or a wide area 

network. 

4.2.2 Network Layer 

At this layer, TCP/IP supports the Internet Protocol. IP, in turn, uses four supporting protocols 

which are ARP [7], RARP [8], ICMP [9], and IGMP [10]. 

I. Internet Protocol (IP) 

This protocol is the transmission mechanism used by TCP/IP. It is an unreliable and 

connectionless protocol providing best effort delivery service. The term best effort means that 

the IP does no error checking or tracking. It assumes the unreliability of the underlying layer 

and does its best to provide a transmission to its destination but without any guarantees. IP 

transports called datagrams, each of which is transported separately. Datagrams can travel 

along different routes and can arrive out of sequence or be duplicated. IP does not keep track 

of the routes and has no facility for reordering the datagrams once they have arrived at the 

destination. 

II. Address Resolution Protocol (ARP) 

This protocol is used to associate a logical address with a physical address. On a typical 

physical network such as LAN, each device address, usually imprinted on a link is identified 

by a physical address or a station imprinted on the network interface card (NIC). ARP is used 

to find the physical address of the node when its Internet address is known. 

III. Reverse Address Resolution Protocol (RARP) 

It allows its host to discover its Internet address when it knows only its physical address. It is 

used when a computer is connected to the network for the first time or when a diskless computer 

is booted. 

IV. Internet Control Message Protocol (ICMP) 

This protocol is mechanism used by hosts and gateways to send notification of datagram 

problems back to the sender, thus providing the service of sending query and error reporting 

messages. 

V. Internet Group Message Protocol (IGMP) 

This protocol is used to facilitate the simultaneous transmission of a message to a group of 

recipients. 

4.2.3 Transport Layer 

Earlier, the transport layer was represented in TCP/IP by two protocols: TCP and UDP. IP is a 

host to host protocol, meaning it can deliver a packet from one physical device to another. UDP 

and TCP are the transport level protocols responsible for delivery of a message from a process 
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(running program) to another process. A new transport layer protocol, SCTP, has been devised 

to meet the needs of some of the newer applications. 

 

A. User Datagram Protocol (UDP) 

This protocol is the simpler of the two standard TCP/IP transport protocols. It is a process to 

process protocol that adds only port addresses, check sum, error control, and length of 

information to the data from the upper layer, 

B. Transmission Control Protocol (TCP) 

It provides full transport layer services to applications. It is a reliable stream transport protocol. 

At the sending end of each transmission, TCP divides a stream of data into smaller units called 

segments. Each segment includes a sequence number for reordering after recipient, together 

with an acknowledgment number for the segments received. Segments are carried across the 

internet inside of the IP datagrams. At the receiving end, TCP collects each datagrams as it 

comes in and reorders the transmission based on sequence numbers. 

C. Stream Control Transmission Protocol (STCP) 

This protocol provides support for newer applications such as voice over the Internet. It 

combines the best features of UDP and TCP. 

4.2.4 Application Layer 

The Application layer allows applications to access the services of the other layers, and it 

defines the protocols that applications use to exchange data. The Application layer contains 

many protocols, and more are always being developed. The most widely known Application 

layer protocols help users exchange information are: 

• The Hypertext Transfer Protocol (HTTP) [11] transfers files that make up pages on the 

World Wide Web.  

• The File Transfer Protocol (FTP) [12] transfers individual files, typically for an 

interactive user session.  

• The Simple Mail Transfer Protocol (SMTP) [13] transfers mail messages and 

attachments. 

Additionally, the following Application layer protocol helps to use and manage TCP/IP 

networks: 

• Domain Name System (DNS) [14] protocol resolves a host name, such as 

‘www.microsoft.com’, to an IP address and copies name information between DNS 

servers. 

• The Routing Information Protocol (RIP) [15] is a protocol that routers use to exchange 

routing information on an IP network. 

• The Simple Network Management Protocol (SNMP) [16] collects and exchanges 

network management information between a network management console and 

network devices such as routers, bridges, and servers. 
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4.2.5 Advantages of using TCP/IP Protocol Suite 

a) It is a freely available protocol and not a secret protocol that is owned by a single 

company. This makes it possible for anyone with sufficient technical knowledge to 

improve it. 

b) It is compatible with virtually all modern operating systems, and thus it enables almost 

any system to communicate with any other system. 

c) It is also compatible with virtually all types of computer hardware and network 

configurations. 

d) It is routable protocol, which means that it can determine the most efficient path for 

every packet as it moves through the network. This makes TCP/IP highly scalable and 

thus the size of the network virtually unlimited (e.g., the Internet). 

e) It provides reliable data delivery. Reliable means that it can guarantee that the data is 

delivered to its intended destination (e.g., through the use of error checking and 

retransmission of corrupted or missing packets). 

f) The use of a single (and relatively simple) addressing scheme, referred to as IP 

addressing, allows administrator to transfer their knowledge of TCP/IP to any TCP/IP 

network without the need to learn a new addressing scheme. 

4.3 Establishment of Socket Communication 

For implementation of any task assigned to Khepera robot, socket communication is 

established between the robot that works in C programming platform and the working computer 

[17-18] that utilizes the MATLAB software for various processing activities. However, socket 

communication in general, be it for any platform, has some basic steps as explained below. It 

is also represented diagrammatically in the figure 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Server-Client Model 
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4.3.1 Server Model 

The Server process takes a request from the client end. After getting this request, this process 

will perform the required processing, gather the requested information, and send it to the 

requestor client. Once done, it becomes ready to serve another client. The basic steps for this 

process are: 

i. Creation of a socket using the socket() system call. 

ii. Binding the socket to an address using the bind() system call. For a server socket on 

the Internet an address consists of a port number on the host machine.  

iii. Listening for connections using the listen() system call. 

iv. Accepting a connection with the accept() system call. This call typically blocks the 

connection until a client connects with the server. 

v. Send and receive data by the use of read() and write() system calls. 

4.3.2 Client Model 

The Client process involves the production of a request for information. After getting the 

response this process may terminate or may do some other processing. The basic steps for 

this process are: 

1. Creation of a socket using the socket() system call. 

2. Connection of the socket to the address of the server using the connect() system call. 

3. Send and receive data by the use of the read() and write() system calls respectively. 

4.4 Socket Programming in C 

The stages for implementing a server and client in C programming platform is discussed 

below: 

4.4.1 Stages for Server Implementation 

A. Socket Creation 

In the beginning, a socket function needs to be declared to get the socket descriptor which is 

done by the following code: 

int sockfd = socket(domain, type, protocol) 

Table 4.1 Socket creation variables and declaration 

Domain AF_UNIX-connection inside same machine 

or AF_INET -connection with different 

machine 

Type SOCK_STREAM - TCP connection or 

SOCK_DGRAM - UDP connection  

Protocol Define here when there is any additional 

protocol. Otherwise, define it as 0 

 

Next, decision regarding which struct needs to be used based on what domain (Linux for our 

case) is used. 
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struct sockaddr_in 

{ 

short int sin_family; 

int sin_port; 

struct in_addr sin_addr; 

} 

B. Binding the Socket 

After creation of the socket, bind function binds the socket to the address and port number 

specified in addr by the following code: 

int bind(int sockfd, const struct sockaddr* addr, socklen_t addrlen); 

C. Listening to Connections 

It puts the server socket where it waits for the client to approach the server to make a 

connection. If a connection request arrives when the queue is full, the client may receive an 

error with an indication of ECONNREFUSED. 

int listen(int sockfd, int backlog); 

backlog  Defines the maximum length to which the 

queue of pending connections for sockfd 

may grow. 

D. Accepting a Connection 

It extracts the first connection request on the queue of pending connections for the listening 

socket, sockfd, creates a new connected socket, and returns a new file descriptor referring to 

that socket. At this point, connection is established between client and server, and they are 

ready to transfer data. 

int new_socket=accept(int sockfd, struct sockaddr * addr, socklen_t * addrlen); 

E. Read/Write Data 

Once a connection has been established, server will either read or write to the connection 

using the code: 

i=read(newsockfd, buffer,255); 

Socket_description Put server socket description depending on 

reading data from client  

read buffer Content of the data retrieved 

read buffer length Length of the output string 

w=write(newsockfd,”I got your meassage”,18); 

socket_description Put server socket description depending on 

sending data to client 

write buffer Data to be sent 

write buffer length Length of the output string 
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4.4.2 Stages for Client Implementation 

A. Socket Creation 

The procedure for socket creation at the Client end is exactly same as that of the server side. 

B. Connection 

The connect() system call connects the socket referred to by the file descriptor sockfd to the 

address specified by addr. Server’s and port is specified in addr. 

int connect(int sockfd, const struct sockaddr * addr, socklen_t addrlen); 

C. Read/Write Data 

Once a connection has been established, the client will either read or write to the connection 

using the code: 

n=read(newsockfd, buffer,255); 

socket description Put client socket description depending on 

reading data from server  

read buffer  Content of the data retrieved  

read buffer length  Length of the output string 

n= write(sockfd, buffer,strlen(buffer)); 

socket_description Put client socket description depending on 

sending data to client  

write buffer   Data to be sent 

write buffer length  Length of the output string 

4.5 Socket Programming in MATLAB 

The procedure for implementing a server and client in MATLAB are discussed below: 

4.5.1 Server Implementation 

First acceptance of a connection is done from a machine on a particular port no. say 3000 

which is implemented using the code below: 

t=tcpip(‘0.0.0.0’,3000,’NetworkRole’,’server’); 

Here, the IP address ‘0.0.0.0’ means that the server will accept the first machine that tries to 

connect. 

Then, a connection is opened by the following code: 

fopen(t); 

This will not return until a connection is received. 

Then finally the data is read and confirmed visually by plotting it by the code below: 

data=fread(t, t.BytesAvailable); 

plot(data); 
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4.5.2 Client Implementation 

The client code is written on a different script file. First, the data is created and visualized by 

the following set of codes: 

data = sin(1:64);  

plot(data) 

Then, a client interface is created and opened by the following set of codes: 

t= tcpip(‘localhost', 3000, 'NetworkRole', 'client');  

fopen(t); 

The data is finally written to the server session by the following code: 

fwrite(t, data); 

 

 

4.6 Conclusion  

This chapter provides a detailed explanation of the socket communication implementation. 

First, a vivid description has been provided regarding the TCP/IP protocol suite to have a clear 

idea regarding the underlying networking used for this communication. Then, a detailed 

illustration has been provided for implementation of socket and client nodes. Thus, this chapter 

helps to develop the required interfacing while working with robots like Khepera. 
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Chapter 5 

Kalman & Extended Kalman Filter 
 

5.1 Introduction 

This chapter mainly deals with Kalman and extended Kalman filter [1-4] which was 

implemented for the soccer goal keeper for ball tracking and interception using the Khepera 

IV. Kalman filter is the analytical implementation of Bayesian filtering [14] recursions for 

linear Gaussian state space models. At the beginning of the chapter it describes the Bayesian 

filters, brief description on probability then our thesis objective using Kalman Filter i.e. to 

predict distance and angle. But to increase the accuracy in range and position estimation along 

near linear trajectories it is achieved by employing extended Kalman filter as Kalman filter 

[11] works best for linear systems and extended Kalman filter in non-linear systems [5-10]. 

5.2 What is estimation? 

Estimation is the process by which we infer the value of a quantity of interest, (in our case these 

are distance and angle) represented by x, by processing data that is in some way dependent on 

x. In all the below cases we require estimation. 

• Measured data corrupted by noise—uncertainty in input transformed into uncertainty 

in inference (e.g. Bayes rule) 

• Quantity of interest not measured directly (e.g. odometry in skid-steer robots) 

• Incorporating prior (expected) information (e.g. best guess or past experience) 

• Open-loop prediction (e.g. knowing current heading and speed, infer future position) 

• Uncertainty due to simplifications of analytical models (e.g. performance reasons 

linearization) 

5.2.1 Bayes Theorem 

In probability theory and statistics, Bayes' theorem [13] (alternatively Bayes' law or Bayes' 

rule) describes the probability of an event, based on prior knowledge of conditions that might 

be related to the event, which is described below: 

P(B|A) = P(A|B) P(B)/P(A), 

where P(B|A) is the posterior probability and P(A|B) is the likelihood. This is a fundamental 

rule for machine learning (pattern recognition) as it allows to compute the probability of an 

output B given measurements A. The prior probability is P(B) without any evidence from 

measurements. The likelihood P(A|B) evaluates the measurements given an output B. Seeking 

the output that maximizes the likelihood (the most likely output) is known as the maximum 

likelihood estimation (ML). The posterior probability P(B|A) is the probability of B after taking 

the measurement A into account. Its maximization leads to the maximum a-posteriori 

estimation (MAP). 
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5.2.2 Overview of the Probability Rules 

The Product rule: P (A, B) = P(A|B) P(B) = P(B|A) P(A) 

The Sum rule: P(B) = ∑ 𝑃(𝐴, 𝐵)𝐴 = ∑ 𝑃(𝐵|𝐴)𝑃(𝐴) 
𝐴  

Random events A, B are independent, P(A, B) = P(A) P(B), and the independence means: 

P(A|B) = P(A), P(B|A) = P(B). A,B are conditionally independent , P(A,B|C) = P(A|C)P(B|C) 

The Bayes theorem: 

P(A|B) = P(A, B)/P(B) = P(B|A)P(A)/P(B) = P(B|A)P(A)/ ∑ 𝑃(𝐵|𝐴)𝑃(𝐴) 
𝐴  

5.2.3 Mean & Covariance 

The mean of a discrete random variable X is a weighted average of the possible values that 

the random variable can take. Unlike the sample mean of a group of observations, which 

gives each observation equal weight, the mean of a random variable weights each 

outcome xi according to its probability, pi. 

In statistics, variance refers to the spread of a data set. It’s a measurement used to identify 

how far each number in the data set is from the mean.  

Covariance provides insight into how two variables are related to one another. More 

precisely, covariance refers to the measure of how two random variables in a data set will 

change together.  

A positive covariance means that the two variables at hand are positively related, i.e. they 

move in the same direction.  

A negative covariance means that the variables are inversely related, i.e. they move in 

opposite directions.  

Expectation = the average of a variable under the probability distribution. 

Continuous definition of Expectation: E(x) =∫ 𝒙𝒇(𝒙)𝒅𝒙
∞

−∞
 (5.1) 

Discrete definition of Expectation: 𝑬(𝒙) = ∑ 𝒙𝑷(𝒙)𝒙  (5.2) 

In probability theory and statistics, covariance is a measure of the joint variability of two 

random variables. Mutual covariance 𝝈𝒙𝒚 of two random variables X, Y is given by: 

𝝈𝒙𝒚 = 𝑬((𝑿 − 𝝁𝒙)(𝒀 − 𝝁𝒚)) (5.3) 

Covariance matrix is symmetric i.e. ∑  = ∑  𝑇
   and positive semidefinite (as the covariance 

matrix is real valued, the positive-semidefinite means that 𝑥𝑇𝑀𝑥 ≥ 0 for all  𝑥 ∈ ℝ. For n 

variables X1, . . ., Xn is 

∑  = [
𝝈𝟏

𝟐 ⋯ 𝝈𝟏𝒏
𝟐

⋮ ⋱ ⋮
𝝈𝒏𝟏

𝟐 ⋯ 𝝈𝒏
𝟐

] (5.4) 
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5.2.4 MAP - Maximum A-Posteriori Estimation 

In many cases, we already have some prior (expected) knowledge about the random variable 

x, i.e. the parameters of its probability distribution p(x). 

With the Bayes rule, we go from prior to a-posterior knowledge about x, when given the 

observations z: 

p(x|z) = p(z|x) p(x) / p(z) 

p(x|z) = likelihood × prior/normalizing constant ~ C × p(z|x)p(x) 

Given an observation z, a likelihood function p(z|x) and prior distribution p(x) on x, the 

maximum a posteriori estimator MAP finds the value of x which maximizes the posterior 

distribution p(x|z): 

�̂�𝑴𝑨𝑷 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝒙

𝒑(𝒛|𝒙)𝒑(𝒙) (5.5) 

5.2.5 MMSE – Minimum Mean Squared Error 

We want to find such a �̂� , an estimate of x, that given a set of measurements 𝑍𝑘 = {z1, z2, ..., 

zk} it minimizes the mean squared error between the true value and this estimate. 

�̂�𝑴𝑴𝑺𝑬 = 𝐚𝐫𝐠𝐦𝐢𝐧
𝒙

 𝓔 {(�̂� − 𝒙)𝑻( �̂� − 𝒙)|𝒁𝒌} = ℇ{𝒙|𝒁𝒌} (5.6) 

The purpose of the above step in MMSE estimate as given a set of measurements is the mean 

of that variable conditioned on the measurements. In LSQ the x is a unknown constant but in 

MMSE x is a random variable. 

5.2.6 RBE- Recursive Bayesian Estimation 

RBE [14] is the natural extension of MAP to time-stamped sequence of observations being 

processed at each time step. In RBE we use the priory estimate and current measurement to 

compute the posteriori estimate �̂�. When the next measurement comes, we use our previous 

posteriori estimate as a new prior and proceed with the same estimation rule. Hence for each 

time-step k we obtain an estimate for its state given all observations up to that time (the set 𝑍𝑘). 

Using the Bayes rule and conditional independence of measurements (zk being single 

measurement at time k): 

𝒑(𝒙, 𝒁𝒌) = 𝒑(𝒙|𝒁𝒌) = 𝒑(𝒁𝒌|𝒙) = 𝒑(𝒁𝒌−𝟏|𝒙)𝒑(𝒁𝒌|𝒙)𝒑(𝒙) (5.7) 

We express 𝑝(𝑍𝑘−1|𝑥) and substitute for it to get: 

𝒑(𝒙, 𝒁𝒌) =
𝒑(𝒁𝒌|𝒙)𝒑(𝒙|𝒁𝒌−𝟏)𝒑(𝒁𝒌−𝟏)

𝒑(𝒁𝒌)
 (5.8) 

RBE is extension of MAP to time-stamped sequence of observations. We obtain RBE as the 

likelihood of current kth measurement × prior which is our last best estimate of x at time k − 1 

conditioned on measurement at time k − 1 (denominator is just a normalizing constant). 

𝒑(𝒙, 𝒁𝒌) =
𝒑(𝒁𝒌|𝒙)𝒑(𝒙|𝒁𝒌−𝟏)𝒑(𝒁𝒌−𝟏)

𝒑(𝒛𝒌|𝒁𝒌−𝟏)
=

𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 ∗ 𝒍𝒂𝒔𝒕 𝒃𝒆𝒔𝒕 𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆

𝒏𝒐𝒆𝒎𝒂𝒍𝒊𝒛𝒊𝒏𝒈 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕
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5.2.7 LSQ- Least Squares Estimation 

A. Given measurements z, we wish to solve for x, assuming linear relationship: 

Hx = z 

If H is a square matrix with det H ≠ 0 then the solution is trivial: 

x = H-1 z, 

otherwise (most commonly), we seek such solution �̂�  that is closest (in Euclidean distance 

sense) to the ideal: 

�̂� = 𝐚𝐫𝐠𝐦𝐢𝐧
𝒙

‖𝑯𝒙 − 𝒛‖𝟐 =𝐚𝐫𝐠𝐦𝐢𝐧
𝒙

{(𝑯𝒙 − 𝒛)𝑻(𝑯𝒙 − 𝒛)} (5.9) 

B. Weighted Least Squares Estimation 

If we have information about reliability of the measurements in z, we can capture this as a 

covariance matrix R (diagonal terms only since the measurements are not correlated: 

𝑹 = [
𝝈𝟏

𝟐 𝟎 𝟎

𝟎 𝝈𝟏
𝟐 …

⋮ ⋮ ⋱

] 

In the error vector e defined as e = Hx − z we can weight each its element by uncertainty in 

each element of the measurement vector z, i.e. by R-1. The optimization criteria then become: 

𝒙 = 𝐚𝐫𝐠𝐦𝐢𝐧
𝒙

‖𝑹−𝟏𝑯𝒙 − 𝒛‖
𝟐
 (5.10) 

In the same way we obtain the weighted least squares: 

𝒙 = (𝑯−𝟏𝑹−𝟏𝑯)−𝟏𝑯𝑻𝑹−𝟏𝒛 (5.11) 

The world is non-linear, nonlinear model function h(x) -> non-linear LSQ: 

�̂� = 𝐚𝐫𝐠𝐦𝐢𝐧
𝒙

‖𝒉(𝒙) − 𝒛‖𝟐 (5.12) 

We seek such 𝛿 that for x1 = x0 + 𝛿 the ||h(x1) − z||2 is minimized. 

We use Taylor series expansion: 

𝒉(𝒙𝟎 + 𝜹) = 𝒉(𝒙𝟎) + 𝛁𝑯𝒙𝟎𝜹 (5.13) 

||h(x1) − z||2  = ||𝒉(𝒙𝟎) + 𝛁𝑯𝒙𝟎𝜹||2 = ||𝛁𝑯𝒙𝟎 𝜹 − (𝒛 − 𝒉(𝒙𝟎))||
2 (5.14) 

Where ∇𝐻𝑥0 is Jacobian of h(x): 

𝛁𝑯𝒙𝟎 =
𝝏𝒉

𝝏𝒙
=

[
 
 
 
𝝏𝒉𝟏

𝝏𝒙𝟏
⋯

𝝏𝒉𝟏

𝝏𝒙𝒎

⋮ ⋱ ⋮
𝝏𝒉𝒏

𝝏𝒙𝟏
⋯

𝝏𝒉𝒏

𝝏𝒙𝒎]
 
 
 
 (5.15) 
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The extension of LSQ to the non-linear LSQ can be formulated as an algorithm below: 

1. Start with an initial guess �̂�. 

2. Evaluate the LSQ expression for 𝛿 (update the ∇𝐻�̂� and substitute). 

𝜹 ≔ (𝛁𝑯�̂�
𝑻𝛁𝑯�̂�)

−𝟏
𝛁𝑯�̂�

𝑻[𝒛 − 𝒉(�̂�)] (5.16) 

3. Apply the 𝛿 correction to our initial estimate: �̂� ≔ �̂� + 𝜹 

4. Check for the stopping precision: if ||h (�̂�) − z||2 > ∈ proceed with step (2) or stop 

otherwise. 

5.3 Kalman Filter 

5.3.1 What is a Kalman Filter?  

Theoretically Kalman Filter is an estimator for what is called the linear-quadratic problem, 

which is the problem of estimating the instantaneous "state" of a linear dynamic system 

perturbed by white noise-by using measurements linearly related to the state but corrupted by 

white noise. The resulting estimator is statistically optimal with respect to any quadratic 

function of estimation error. 

Practically, it is certainly one of the greatest discoveries in the history of statistical estimation 

theory and possibly the greatest discovery in the twentieth century. It has enabled mankind to 

do many things that could not be done without it, and it has become as indispensable as silicon 

in the makeup of many electronic systems. Its most immediate applications have been for the 

control of complex dynamic systems such as continuous manufacturing processes, aircraft, 

ships, or spacecraft. Kalman filter provides a mean for inferring the missing information from 

indirect (and noisy) measurements. The Kalman filter is also used for predicting the likely 

future courses of dynamic systems that people are not likely to control, such as the flow of 

rivers during flood, the trajectories of celestial bodies, or the prices of traded commodities. 

5.3.2 How It Came to Be Called a Filter  

It might seem strange that the term “filter” would apply to an estimator. More commonly, a 

filter is a physical device that removes unwanted fractions of mixtures. The word comes from 

the same medieval Latin stem for the material was used as a filter for liquids. Originally a filter 

solved the problem of separating unwanted components of gas liquid solid mixtures. In the era 

of crystal radios and vacuum tubes, the term was applied to analog circuits that “filter” 

electronic signals. These signals are mixture of different frequency components, and these 

physical devices preferentially attenuate unwanted frequencies. 

With Kalman filtering the term assumed a meaning that is well beyond the original idea of 

separation of the components of a mixture. It has also come to include the solution of an 

inversion problem, in which one knows how to present the measurable variables a function of 

the variables of principal interest. In essence it inverts this functional relationship and estimates 

the independent variables as inverted functions of the dependent (measurable) variables These 

variables of interest are allowed to be dynamic, with dynamics that are only partially 

predictable. 
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5.3.3 Its Mathematical Foundations 
 

 

 

 

 

 

 

 

Figure 5.1 Foundational concepts in Kalman filtering 

Figure 5.1 depicts the essential subjects forming the foundations for Kalman filtering theory. 

Although it shows Kalman filtering as the apex of a pyramid, it is itself but part of the 

foundations of another discipline—modern control theory—and a proper subset of statistical 

decision theory. Most of them are already explained in the chapter so far. 

5.4 Uses of Kalman Filter 

It is used as a tool almost exclusively for two purposes:  

a) Estimating the state of dynamic systems. Nearly all physical systems are 

dynamic to some degree. The kalman filter allows us to estimate state of 

dynamic systems with certain types of random behaviour by using such 

statistical information. 

b) Performance analysis of estimation systems. The objective of design analysis 

is to determine how best to use these sensor types for a given set of design 

criteria. These criteria used to measure the estimation accuracy and system cost. 

 

5.5 Optimal Estimation Methods 

Kalman filter is the result of an evolutionary process of ideas from many creative thinkers over 

many centuries. here some of the seminal ideas in this process, the discoverers of which are 

listed in historical perspective in figure 5.2 below. This list is by no means exhaustive. The 

figure covers only half a millennium, and the study and development of mathematical concepts 

goes back beyond history. 

 

 

 



  60 
 

 

 

 

 

 

 

 

 

 

Figure 5.2 Lifelines of some important contributors to estimation 

An important figure in probability theory and the theory of random processes in the 20th century 

was the Russian academician Andrei Nikolaeovich Kolmogorov. Starting around 1925, 

working with Aleksandr Yakovlevich Khinchin and others, he re-established the foundations 

of probability theory on measure theory, which had originated as the basis for integration theory 

and became the accepted mathematical basis of probability and random processes. Along with 

Norbert Wiener, he is credited with founding much of the theory of prediction, smoothing and 

filtering of Markov processes, and the general theory of ergodic processes. His was the first 

formal theory of optimal estimation for systems involving random processes. 

5.5.1 Kalman Filter culmination 

It is the culmination of progression of models and associated optimal estimation methods for 

dynamic processes. 

a) Wiener–Kolmogorov models use the power spectral density (PSD) in the frequency 

domain to characterize the dynamic and statistical properties of a dynamic process. 

b) Control theorists use linear differential equations as dynamic system models. This led 

to the development of mixed models, in which the dynamic system functions as a 

“shaping filter” excited by white noise. Coefficients of the linear differential equations 

determine the shape of the output PSD, and the shape of the PSD defines the Wiener–

Kolmogorov estimator. This approach allows the dynamic system model to be time-

varying. These linear differential equations can be modelled as a system of first-order 

differential equations in what has come to be called state space. 

With the additional assumption of finite dimensionality, Kalman was able to derive the 

Wiener–Kolmogorov filter as what we now call the Kalman filter. 
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5.5.2 Linear Kalman Filter to Extended Kalman Filter 

Linear models in the non-linear environment is BAD. 

Non-linear models in the non-linear environment is BETTER. 

Assume the following the non-linear system model function f (x) and the non-linear 

measurement function h(x), we can reformulate: 

𝒙𝒌 = 𝒇(𝒙𝒌−𝟏, 𝒖(𝒌),𝒌) + 𝒗(𝒌) (5.17) 

𝒛𝒌 = 𝒉(𝒙(𝒌), 𝒖(𝒌),𝒌) + 𝒘(𝒌) (5.18) 

𝒙𝒌 : State Vector 

𝒗(𝒌): Measurement noise vector 

𝒘(𝒌): Process noise vector 

f (.): Process non-linear vector function 

h(.): Observation non-linear vector function 

The main idea behind EKF is to linearize the non-linear model around the “best” current 

estimate. This is realized using a Taylor series expansion. Assume an estimate 

�̂�(𝑘−1|𝑘−1) then  

𝒙(𝒌) ≈ 𝒇 (𝒙(𝒌 − 𝟏|𝒌 − 𝟏), 𝒖(𝒌),𝒌) + 𝛁𝑭𝒙 [𝒙(𝒌−𝟏) − �̂�(𝒌 − 𝟏|𝒌 − 𝟏)] + ⋯+ 𝒗(𝒌) 

Where the term ∇𝐹𝑥 is a Jacobian of f(x) with respect to x evaluated at �̂�(𝑘 − 1|𝑘 − 1):  

𝛁𝑭𝒙 =
𝝏𝒇

𝝏𝒙
=

[
 
 
 
𝝏𝒇𝟏

𝝏𝒙𝟏
⋯

𝝏𝒇𝟏

𝝏𝒙𝒎

⋮ ⋱ ⋮
𝝏𝒇𝒏

𝝏𝒙𝟏
⋯

𝝏𝒇𝒏

𝝏𝒙𝒎]
 
 
 
 (5.19) 

The same holds for the observation model, i.e. the predicted observation z(k|k−1) is the 

projection of �̂�(𝑘|𝑘−1)through the non-linear measurement model. 

Hence assume an estimate �̂�(𝑘|𝑘−1) then  

𝒛(𝒌) ≈ 𝒉(�̂�(𝒌|𝒌 − 𝟏), 𝒖(𝒌),𝒌) + 𝛁𝑯𝒙 [�̂�(𝒌|𝒌 − 𝟏) − 𝒙(𝒌)] + ⋯+ 𝒘(𝒌) 

Where the ∇𝐻𝑥is Jacobian of h(x) with respect to x evaluated at �̂�(𝑘|𝑘 − 1): 

𝛁𝑯𝒙 =
𝝏𝒉

𝝏𝒙
=

[
 
 
 
𝝏𝒉𝟏

𝝏𝒙𝟏
⋯

𝝏𝒉𝟏

𝝏𝒙𝒎

⋮ ⋱ ⋮
𝝏𝒉𝒏

𝝏𝒙𝟏
⋯

𝝏𝒉𝒏

𝝏𝒙𝒎]
 
 
 
 (5.20) 
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5.6 Kalman filter in target tracking and Interception by Mobile Robots 

Target tracking is a problem of common interest for researchers of numerous domains. The 

concept of target tracking classically emerged from the disciplines of control engineering. The 

concerned problem in the present context is to predict the trajectory of a moving target mainly 

soccer ball, soccer player by a given tracker. Usually the speed of response of the tracker is 

higher or at least comparable to that of the target. Since the intelligent target and the tracker 

both use the same level of technology, it is expected that their speed of response is more or less 

comparable. The Khepera IV employs a video camera to capture the images of the moving 

target mainly soccer ball for segmentation and localization of the target in its image. It then 

identifies the location of the target by a range finder and consequently plans a path towards the 

target by using the knowledge of the obstacle map in its workspace.  

5.6.1 Schematic diagrams of tracking scheme 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Schematic of tracking scheme 

 

5.6.2 Measurements of the Input to Kalman Filter 

The Kalman filter employed in the tracking system can predict the current position of the target 

from its preceding positions. The accuracy in prediction by a Kalman filter greatly depends on 

the time gap between successive data samples. Since the speed of the robots is considerably 

high (around 813mm/ second), the predicted current position of the target may suffer from 

inaccuracy. To overcome the above problem the tracker is designed to work in 2 phases. In the 

first phase, the tracker is given a controlled rotation around its z-axis so that it can direct its 

vision system to grab 3 successive frames of the target. Let the polar co-ordinates of these 3 

positions be (r0,θ0), (r1,θ1), (r2,θ2) respectively.  
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Figure 5.4 The tracker observing the motion of the target 

 

Figure 5.4 describes 3 successive positions of the target in the measurement update phase of 

the tracker. The time t=0, t=tı, t=t2 correspond to the image sampling times associated with 

these measurements. After the measurement update phase is over, the tracker switches to 

prediction phase. In the prediction phase, the tracker determines the current position of the 

target from its preceding positions (ri,θi) for i=0 to 2. Once the prediction phase is over, the 

tracker starts its next measurement update phase, and the process continues until the tracker 

intercepts the target. A schematic view of a tracking cycle comprising of the measurement 

update phase and prediction phase is presented in figure 5.5. 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 The recursive Kalman filter cycle 
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5.7 Extended Kalman Filter 

In the present section, the principle of extended Kalman filtering is just outlined to demonstrate 

its application in target tracking. 

An extended Kalman filter [12] is a digital filter that attempts to minimize the measurement 

noise for estimating a set of unknown parameters, linearly related with a set of measurement 

variables. The most important significance of this filter is that it allows recursive formulation 

and thus improves accuracy of estimation up to users' desired level at the cost of new 

measurement inputs.  

Let, 

fi(xi, a) = 0 be a set of measurement equations describing relationships among an estimator 

vector a and measurement variable vector xi. 

xi* = xi + Ii, where I is a white Gaussian type measurement noise such that E[Ii Ij
T] =0 

positive symmetric matrix 𝚲𝐢, and E[Ii Ij
T]=0, 

ai-1 * = a + si-1, where si-1 is a gaussian type measurement noise such that E[si-1] = 0, 

is a white Gaussian type estimation noise. 

E[si-1sj-1
T] = positive symmetric matrix si-1, and E[si-1sj-1

T] =0. 

Expanding fi(xi, a) by Taylor's series around (xi *, ai-1 *), we find  

yi=Mi a+wi (5.21) 

Mi = 
𝝏𝒇𝒊

𝝏𝒂
 (5.22) 

wi= (
𝝏𝒇𝒊

𝝏𝒙
)(𝒙𝒊 − 𝒙𝒊 ∗) (5.23) 

Wi = E[wi wi
T] = (

𝝏𝒇𝒊

𝝏𝒙
)𝚲𝒊 (

𝝏𝒇𝒊

𝝏𝒙
)
𝑻

(5.24) 

Let 𝑺𝒊 = 𝑬[(𝒂𝒊 − 𝒂𝒊
∗)(𝒂𝒊 − 𝒂𝒊

∗)𝑻] (5.25) 

An attempt to minimize 𝑆𝑖yields the filter equations [32], given by: 

𝒂𝒊
∗ = 𝒂𝒊−𝟏

∗ + 𝑲𝒊(𝒚𝒊 − 𝑴𝒊𝒂𝒊−𝟏
∗ ) (5.26) 

𝑲𝒊 = 𝑺𝒊−𝟏𝑴𝒊
𝑻(𝑾𝒊 + 𝑴𝒊𝑺𝒊−𝟏𝑴𝒊

𝑻)
−𝟏

(5.27) 

𝑺𝒊 = (𝑰 − 𝑲𝒊𝑴𝒊)𝑺𝒊−𝟏 (5.28) 

Given 𝑺𝟎 and 𝒂𝟎, the Kalman filter recursively updates 𝑎𝑖, 𝐾𝑖, 𝑆𝑖 until error covariance matrix 

𝑺𝒊 becomes insignificantly small, or all the number of data points have been submitted. The 

𝒂𝒊 thus obtained after termination of the algorithm is the estimated value of the parameters. 
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5.7.1 Predicting target position using Extended Kalman Filter 
 

Let the input measurement vector x be given by 

𝒙 = (
𝒓
𝜽
𝒕
) (5.29) 

Where r is the perpendicular distance of the target from the tracker at time t, 

𝜽 is the angular displacement of the target measured with respect to the axis of sensor of the 

tracker, i.e. 𝜃 is the angular shift of tracker with respect to the target from time t=0 to the 

current time of observation, 

t is the time elapsed measured from the beginning of the observation phase 

Let the measurement equations in the present context be 

𝒇𝒊 = (
𝒂𝒕𝟐 + 𝒃𝒕 + 𝒄 − 𝒓 𝐜𝐨𝐬 𝜽
𝒑𝒕𝟐 + 𝒒𝒕 + 𝒔 + 𝒓 𝐬𝐢𝐧𝜽

) = 𝟎 (5.30) 

where 

c and s are the initial displacements of the target with respect to sensor axis and its 

perpendicular direction,  

b and q are the velocity in the corresponding directions, and  

a and p are the time rate of change of velocity in the corresponding directions. 

For determination of the current position of the target we need to evaluate a, b, c, p, q, s from 

the measured (r,θ)s at time t=0, t=t1, and t=t2, respectively. The estimated values of a, b, c, p, 

q, s then may be substituted in the measurement equations to evaluate 𝑟 cos 𝜃 and 𝑟 sin 𝜃 at 

time t ≥ t2 

The estimator in the present context thus is given by 

𝒂 =

(

  
 

𝒂
𝒃
𝒄
𝒑
𝒒
𝒔 )

  
 

  (5.31) 

 

For the evaluation of the estimator we, however, need to determine the following derivatives: 

𝝏𝒇𝒊

𝝏𝒙
= (

−𝒄𝒐𝒔𝜽 𝒓𝒔𝒊𝒏𝜽 𝟐𝒂𝒕 + 𝒃
−𝒔𝒊𝒏𝜽 −𝒓𝒄𝒐𝒔𝜽 𝟐𝒑𝒕 + 𝒒

   
) (5.32) 

𝝏𝒇𝒊

𝝏𝒂
= (

𝒕𝟐 𝒕 𝟏 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝒕𝟐 𝒕 𝟏

) (5.33) 
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Let 

𝚲𝒊 = (
𝜶 𝟎 𝟎
𝟎 𝜷 𝟎
𝟎 𝟎 𝜸

) (5.34) 

Where α = the variance of the noise measurement of range r. 

β = the variance of the noise in measurement of angle θ, 

and 𝜸 = the variance of the noise in measurement of time t. 

 

 

5.8 Conclusion 

In this chapter we have discussed about Kalman Filter and extended Kalman filter. Briefly 

described about the derivation and different variables which are used to derive the algorithm. 

The algorithm will be discussed in the later chapter. The historical background of Bayesian to 

recursive Bayesian how the Kalman filter had been came into existence. This chapter gave an 

idea on Kalman Filter what is its use and answer to how, why extended Kalman filter is required 

for non-linear systems. 
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Chapter 6 

Object Recognition 
6.1 Introduction 

Object recognition [1-6] is a vital concept that comprises of the abilities of robots to recognize 

various things and entities while performing a particular task. This technique aids to pick out 

and identify objects from inputs like video and still camera images. Robots thus can understand 

their environments better and can perform more complex tasks. Methods used for object 

identification include 3D models, component identification, edge detection and analysis of 

appearances from different angles. Object recognition is at the convergence points of robotics, 

machine vision, neural networks and AI [7-12]. 

6.2 Edge Detection 

Edges [13-15] play an important role in many image processing applications. They provide an 

outline of the object. In the physical plane, edges correspond to the discontinuities in depth, 

surface orientation, change in material properties, and light variations. These variations are 

present in the image as gray scale discontinuities. An edge is a set of connected pixels that lies 

on the boundary between two regions that differ in gray value. The pixels on an edge are called 

edge points. Most edges are unique in space that is, their position and orientation remain the 

same in space when viewed from different points. When an edge is detected the unnecessary 

details are removed, while only the important structural information is retained. An edge is 

typically extracted by computing the derivative of the image function. This consists of two 

parts magnitude of the derivative, which is an indication of the strength or contrast of the edge, 

and the direction of the derivative vector, which is a measure of edge orientation. Some of the 

edges that are encountered in image processing are as follows: 

a) Step edge: It is described as an abrupt intensity change. 

b) Ramp edge: It is described by a gradual change in intensity.  

c) Spike edge: This edge represents a quick change and immediately returns to the original 

intensity. 

d) Roof edge: This edge is not instantaneous over a short distance. 

 

 

 

 

 

 

 

 

 

Figure 6.1 Types of edges- a) Step edge, b) Ramp edge, c) Spike edge, d) Roof edge 
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6.2.1 Stages of Edge Detection 

The basic idea of edge detection is to detect the sharp edges in image brightness, which can 

capture the important events and properties. This is done in three stages as described below: 

A. Filtering  

It is better to filter the input image to get maximum performance for the edge detectors. This 

stage may be performed either explicitly or implicitly. It involves smoothing, where the noise 

is suppressed without affecting the true edges. In addition, this phase uses a filter to enhance 

the quality of the edges in the image. Normally, Gaussian filters are used as they are proven to 

be very effective for real-time images, 

B. Differentiation 

This phase distinguishes the edges pixels from other pixels. The idea of edge detection is to 

find the difference between two neighbourhood pixels. If the pixels have the same value, the 

difference is 0. This means that there are no transitions between the pixels. The non-zero 

difference indicates the presence of an edge point. A point is defined as an edge point (or edge) 

if its derivative is greater than the user-specified threshold and encounters a sign change in the 

derivative. The first derivative is 
𝜕𝑥

𝜕𝑦
= lim

∆𝑥→0

𝑓(𝑥)−𝑓(𝑥−∆𝑥)

∆𝑥
 , images are discrete. Hence, ∆𝑥 

should be discrete and should be at least 1. Therefore, the gradient vector is (called grad of x) 

should be equal to f(x) - f(x-1), if the intensities are same, the derivative is 0. The non-zero 

element indicates the presence of images. In the case of the second derivatives, the zero 

crossings indicate the presence of edges.  

Images are two dimensional. Hence, the gradient vector of f(x,y) is also two dimensional. The 

gradient vector of f(x,y) at location (x,y) is a vector that consists of the partial derivatives of 

f(x,y) as follows: 

𝛁𝒇(𝒙, 𝒚) = [

𝝏𝒇(𝒙,𝒚)

𝝏𝒙
𝝏𝒇(𝒙,𝒚)

𝝏𝒚

] (6.1) 

𝛁𝒇(𝒙, 𝒚) = [
𝒈𝒙

𝒈𝒚
] (6.2) 

The magnitude of this vector, generally referred to as the gradient ∇𝑓, is 

𝛁𝒇(𝒙, 𝒚) = 𝒎𝒂𝒈(𝛁𝒇(𝒙, 𝒚)) = [(𝒈𝒙)
𝟐 + (𝒈𝒚)

𝟐
]
𝟏/𝟐

(6.3) 

Edge strength is indicated by the edge magnitude. The direction of the gradient vector is useful 

in detecting a sudden change in image intensity. The common practice is to approximate the 

gradient with absolute values that are simpler to implement, as follows: 

𝛁𝒇(𝒙, 𝒚) = |𝒈𝒙| + |𝒈𝒚| (6.4) 

𝛁𝒇(𝒙, 𝒚) = 𝐦𝐚𝐱 (𝒈𝒙, 𝒈𝒚) (6.5) 

The gradient direction can be given as: 

𝜽 = 𝐭𝐚𝐧−𝟏 (
𝒈𝒚

𝒈𝒙
) (6.6) 
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C. Localization 

In this stage the detected edges are localized. The localization process involves determining 

the object location of the edge. In addition, this stage involves edge linking and edge thinning 

steps to measure that edge is sharp and connected. The sharp and connected edges are then 

displayed. 

The prerequisite of localization stage is normalization of the gradient magnitude. The 

calculated gradient can be scaled to be very specific range say, 0-K by performing this 

operation. For example, the value of the constant K may be an integer, say 100. N(x,y) is called 

the normalized edge image and is given by: 

𝑵(𝒙, 𝒚) =
𝑮(𝒙,𝒚)∗𝑲

𝐦𝐚𝐱
𝒊=𝟏 𝒕𝒐 𝒏,𝒋=𝟏 𝒕𝒐 𝒏

𝑮(𝒊,𝒋)
 (6.7) 

The normalized magnitude can be compared with a threshold value T to generate the edge 

map. 

The edge map is given as: 

𝑬(𝒙, 𝒚) = {
𝟏 𝒊𝒇 𝑵(𝒙, 𝒚) > 𝟏
𝟎        𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 (6.8) 

The edge map is the displayed or stored for further image processing operations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Edge detection Process 
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6.2.2 Types of Edge Detectors 

The edge detection is implemented in all kinds of edge detectors. In image processing, four 

types of edge detection operators are available which are: 

 

1. Derivative filters: These filters use the differentiation technique to detect the edges. 

2. Template matching filters: These filters use templates that resemble the target shapes 

and match with the image. Gradient operations are isotropic in nature as they detect 

edges in all directions. Hence, template matching filters are used to perform directional 

smoothing as they are very sensitive to directions. If there is a match between the target 

shape or directions and the masks, then a maximum gradient value is produced. By 

rotating the template sensitive in all eight directions, masks, are produced. Point 

detection and line detection masks mare good examples of template matching filters. 

3. Gauss derivative filters: They are very effective for real time images and are used 

along with the derivative filters. 

4. Patten fit approach: This is another approach where a surface is considered as a 

topographic surface, with the pixel value representing altitude. The aim is to fit a pattern 

over a neighbourhood of a pixel where the edge strength is calculated. The properties 

of the edge points are calculated based on the parameters. 

6.2.3 First Order Edge Detection Operators 

Local transitions among different image intensities constitute an edge. Therefore, the aim is 

measuring the intensity gradients. Hence, edge detectors can be viewed as gradient calculators. 

Based on the differential geometry and vector calculus, the gradient operator is represented as: 

𝛁 = [

𝝏

𝝏𝒙
𝝏

𝝏𝒚

] (6.9) 

Applying this to the image f, one gets: 

𝛁𝐟 = [

𝝏𝒇

𝝏𝒙
𝝏𝒇

𝝏𝒚

] (6.10) 

In differences between the pixels are quantified by the gradient magnitude. The direction of 

the greatest change is given by the gradient vector. This gives the directions of the edge. Since 

the gradient functions are continuous functions, the discrete versions of the continuous 

functions can be used. This can be done by finding the differences. The approaches in 1D are 

as follows. Here. ∇x and ∇𝑦 are the movements in x and y directions respectively. 

Backward difference = 
𝑓(𝑥)−𝑓(𝑥−∆𝑥)

∆𝑥
 (6.11) 

Forward difference = 
𝑓(𝑥+∆𝑥)−𝑓(𝑥)

∆𝑥
 (6.12) 

Central difference = 
𝑓(𝑥+∆𝑥)−𝑓(𝑥−∆𝑥)

2∆𝑥
 (6.13) 

The differences can be obtained by applying the following masks, assuming ∆𝑥 = 1. 
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Backward differences = f(x)-f(x-1) = [1-1] (6.14) 

Forward difference = f(x+1) – f(x) = [-1+1] (6.15) 

Central difference = 
1

2
*[10-1] (6.16) 

These differences can be extended to 2D as 𝑔𝑥 =
𝜕𝑓

𝜕𝑥
 and 𝑔𝑦 =

𝜕𝑓

𝜕𝑦
.Then the magnitude is given 

by: 

∇𝑓(𝑥, 𝑦) = 𝑚𝑎𝑔(∇𝑓(𝑥, 𝑦)) = [(𝑔𝑥)
2 + (𝑔𝑦)

2
]
1/2

 (6.17) 

The gradient direction is given by: 

𝜃 = tan−1 (
𝑔𝑦

𝑔𝑥
) (6.18) 

Now let us discuss most important first order edge detection operators, that is the Sobel 

operator. The Sobel operator also relies on central difference. This can be viewed as an 

approximation of the first Gaussian derivative. This is equivalent to the first derivative of the 

Gaussian blurring image obtained by applying 3 x 3 mask to image. Convolution is both 

commutative and associative, and is given by: 

𝜕

𝜕𝑥
(𝑓 ∗ 𝐺) = 𝑓 ∗

𝜕

𝜕𝑥
𝐺 (6.19) 

A 3 x3 digital approximation of the Sobel operator is given as: 

∇𝑓 = |(𝑧7 + 2𝑧8 + 𝑧9) − (𝑧1 + 2𝑧2 + 𝑧3)| + |(𝑧3 + 2𝑧6 + 𝑧9) − (𝑧1 + 2𝑧4 + 𝑧7)| (6.20) 

The masks are as follows: 

𝑀𝑥 = [
−1 −2 −1
0 0 0
1 2 1

] (6.21) 

𝑀𝑦 = [
−1 0 1
−2 0 2
−1 0 1

] (6.22) 

6.2.4 Second Order Edge Detection Operators 

Edges are considered to be present in the first derivative when the edge magnitude is large 

compared to threshold value. In the case of the second derivative, the edge pixel is present at a 

location where the second derivative is zero. This is equivalent to saying that f"(x) has a zero 

crossing which can be observed as a sign change in pixel differences. The Laplacían algorithm 

in one such zero-crossing algorithm. However, the problems of the zero-crossing algorithms 

are many, the problem with laplacian masks is that they are sensitive to noise as there is no 

magnitude checking- even a small ripple causes the method to generate as an edge point. 

Therefore, it is necessary to filter the image before the edge detection process is applied. This 

method produces two-pixel thick edges, although generally, one pixel thick edges are preferred. 

However, the advantage is that there is no need for the edge thinning process as the zero-

crossings themselves specify the location of the edge points. The main advantage is these 

operators are rotationally invariant. 
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The second order derivative is given as: 

∇ x ∇=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
 (6.23) 

This ∇2 operator is called the Laplacian operator. The Laplacian of the 2D function f(x,y) is 

also defined as: 

∇2𝑓(𝑥, 𝑦) =
𝜕2𝑓(𝑥,𝑦)

𝜕𝑥2  +
𝜕2𝑓(𝑥,𝑦)

𝜕𝑦2  (6.24) 

6.2.5 Edge Linking Algorithms 

The detector often does not produce continuous edges. Often, the detected edges are not sharp 

continuous presence of noise and intensity variations. Therefore, the idea of edge [16] is to use 

the magnitude of the gradient operator to detect the presence of edges and connect it to a 

neighbourhood to avoid breaks. Continuity is ensured by techniques such as variation 

thresholding and edge relaxation. The adjacent pixels (x,y) and (x’,y') are connected as they 

have properties such as the following: 

1. Similar gradient magnitude 

| ||f(x,y)|| - ||f(x’,y’)|| | ≤ T (6.25) 

2. Similar gradient orientation 

|𝜑(∇𝑓(𝑥, 𝑦) − 𝜑(∇𝑓(𝑥′, 𝑦′))| ≤ A (6.26) 

Thus, A is the angular threshold. Edge linking is a post-processing technique that is used to 

link edges. The idea of using detection algorithm to extract the edges and using as appropriate 

threshold for combining them is known as edge elements extraction by thresholding. The 

threshold selection can be static, dynamic or adaptive. 

6.2.6 Hough Transform 

The Hough transform [17-20] takes the images created by the edge detection operators. Most 

of the edge map generated by the edge detection algorithms is disconnected. The Hough 

transform can be used to connect the disjoint edge points. Unlike the edge linking algorithms, 

the transform does not require any prerequisites to connect the edge points. It is used to fit the 

points as plane curves. The plane curves typically are lines, circles and parabolas. The line 

equation is given as:  

y = mx + c (6.27) 

Where, m is the slope and c is the y-intercept of the line. However, the problem is that there 

are lines that can be drawn connecting these points. Therefore, an edge point in an x - y should 

be transformed into a different c - m plane. The trick here is to write the line equation as: c = 

(-x) m + b. All the edge points (x1,y1)(x2, y2), .......... (xn, yn) in the x – y needs to be fitted. 

Hence, the x - y plane should be transformed into a different c - m points are lines in the c - m 

plane. The objective is to find the intersection point. A common intersection points indicates 

that edge points are part of the same line. If A and B are connected by a line in the spatial 

domain, then they will be intersecting lines in the Hough transform. This is illustrated in the 

figure 6.3. To check whether they are intersecting lines, the c-m plane is, portioned as 

accumulator lines. To find this, it can be assumed that the c-m plane can be partitioned as an 

accumulator array. At the end of this process, the accumulator values are checked. The largest 
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value of the accumulator is called (m', c'). The significance is that this point gives us the line 

equation of the (x, y) space: 

y = m'x + c' (6.28) 

 

 

 

 

 

 

 

 

 

Figure 6.3 Lines in Hough transform 

The Hough transform can be stated as follows: 

1. Load the image 

2. Find the edges of the image using any edge detector 

3. Quantize the parameter space P  

4. Repeat the following for all pixels of the image.  

    If the pixel is an edge pixel, then  

(a) c = (-x)m + y  

(b) P(c.m) = P(c.m) + 1 

5. Show the Hough space. 

6. Find the local maxima in the parameter space 

7. Draw the line using the local maxima. 

The major drawback with the algorithm is that it does not work for vertical line, as they have 

a slope of infinity. Therefore, it is better to convert this line into polar coordinates. The line in 

polar form can be represented as 𝜌 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃, where 𝜃 is the angle between the line 

and the x-axis, and 𝜌 is the diameter. 
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The modified hough transform for the polar coordinate line is as follows: 

i. load the image. 

ii. Find the edges of the image using any edge detector 

iii. Quantize the parameter space P. 

iv. Repeat the following for all pixels of the image: 

if the pixel is an edge pixel, then for all θ  

a) Calculate 𝜌 for the pixel (x,y) and θ 

b) Increment the position (𝜌, θ) in the accumulator array P. 

v. Show the Hough space 

vi. Find the local maxima in the parameter space. 

vii. Draw the line using the local maxima 

Similarly, the Hough transform for the other edges can also be found. The Hough transform 

for circle detection can be given as follows: 

(𝑥 − 𝑥𝑜)
2 − (𝑦 − 𝑦𝑜)

2 − 𝑟2 = 0 (6.29) 

The parameter space is three dimensional as the there are three unknowns. So, the polar form 

circle detection algorithm can be written as follows: 

1. Load the image 

2. Find the edges of the image using any edge detector. 

3. Quantize the parameter space P 

4. Repeat the following for all pixels of the image: 

 If the pixel is a edge pixel, then for all values of r,calculate 

a) 𝑥𝑜 =  𝑥 −  𝑟𝑐𝑜𝑠θ 

b)  𝑦𝑜 =  𝑦 −  𝑟𝑠𝑖𝑛θ 

c) P(𝑥𝑜,, 𝑦𝑜 , 𝑟) = P(𝑥𝑜,, 𝑦𝑜 , 𝑟) + 1 

5. Show the Hough space. 

6. Find the local maxima in the parameter space. 

7. Draw the line using the local maxima 

8. Draw the circle using the local maxima 

In this manner, a circle can be fit to cover the edge points. The Hough transform is a powerful 

algorithm and can be modified to fit any generalized shape having disjoint edge points. 

6.3 Image Morphology 

Morphological image processing [21-22] is a collection of non-linear operations related to the 

shape or morphology of features in an image. Morphological techniques probe an image with 

a small shape or template called a structuring element. The structuring element is positioned at 

all the possible locations in the image and it is compared with the corresponding neighbourhood 

of pixels. Some operations test whether the element "fits" within the neighbourhood, while 

others test whether it "hits" or intersects the neighbourhood. 
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6.3.1 Dilation 

Dilation can be applied to binary as well as grey-scale images. The basic effect of this operator 

on a binary image is that it gradually increases the boundaries of the region, while the small 

holes present in the images become smaller. In short, dilation can be considered as a union 

operation of all translations of the image A caused by the elements specified in the structuring 

element B. 

𝑨⨁𝑩 = ⋃ (𝑨)𝒃
𝒏
𝒃∈𝑩  (6.30) 

Where, b is any point that belongs to image B. As the dilation operator is commutative, hence 

we can write: 

𝑩⨁𝒂 = ⋃ (𝑩)𝒂
𝒏
𝒂∈𝑨  (6.31) 

Here, a is any point corresponding to the image A. This operation is also known as Minkowski 

addition. Dilation increases the size of the object and also thickens the object. 

6.3.2 Erosion 

Erosion is another important morphological operator. This is also known as Minkowski 

subtraction. The objective of this operator is to make an object smaller by removing its outer 

layer of pixels. If a black pixel, has a white neighbour, then all the pixels are made white. This 

can be described mathematically. 

𝑨𝚯𝑩 = ⋂𝑨𝑩 (6.32) 

The erosion takes the image and the structuring element as inputs and thins the object. 

6.3.3 Opening 

The opening operation is an erosion operation followed by dilation operation. This operation 

can be defined as: 

𝑨 ∘ 𝑩 = ⋂{𝑩𝒘; 𝑩𝒘 ⊆ 𝑨} (6.33) 

Opening is useful for smoothing the edges, breaking the narrow joints and thinning the 

protrusions that are present in an image. 

6.3.4 Closing 

This operation is defined as dilation followed by erosion operation. This is mathematically 

denoted as: 

𝑨•B =(𝑨⨁𝑩)𝚯𝑩 (6.34) 

Closing is useful for attaching the narrow joints and thickening the protrusions that are present 

in an image. 

6.4 Region Descriptors 

The region descriptors [23-24] include descriptions that characterize the object. These include 

approaches such as histogram, geometrical, topological and structural features. We shall now 

specifically discuss geometrical or shape descriptors in details. 
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6.4.1 Shape Features 

Shape is one of the most important features of an object. It is difficult to describe a shape as 

most of the real-world objects do not exhibit standard geometrical shapes. Hence we correlate 

unknown shapes with known objects, for example, how circular or spherical an object is, to 

convey the shape information. A shape is the external or visual appearance of an object which 

is characterized by boundaries. Patterns such as textures characterize its surface. There is a 

subtle difference between object shapes and image shapes. An object shape is independent of 

position, orientation, and scale. This idea can be extended to image shapes if independence of 

grey level is taken into account. 

Shape region can be described by many parameters. Objects can exhibit various shapes. Shape 

region feature (or geometric features) characterize the appearance of an object. The common 

shape region features are listed as follows: 

A. Area 

The area of an object refers to all pixels inside the object. This is shift invariant, but not size 

invariant. The area of a binary image is defined as the number of pixels in the binary image B 

and is given as follows: 

𝑨 = ∑ ∑ 𝑩(𝒊, 𝒋)𝒎
𝒋=𝟏

𝒏
𝒊=𝟏  (6.35) 

Here, B(i,j) is the binary image. The number of pixels or the sum of the pixels is the same and 

is the area of the binary image. 

B. Perimeter 

The perimeter of an object is the number of pixels present on the boundary of the object. In a 

binary image, the perimeter is the number of foreground pixels that touches the background in 

the image. Perimeter can also be defined as the length of the path through the boundary pixels. 

Perimeter is shift invariant and rotation invariant, but is not size invariant. 

C. Shape Factor 

This is also known as compactness and is given as: 

Compactness = 
(𝑷𝒆𝒓𝒊𝒎𝒆𝒕𝒆𝒓)𝟐

𝑨𝒓𝒆𝒂
 (6.36) 

D. Area to Perimeter Ratio 

This ratio is a metric that indicates the roundness, circularity, or thinness ratio. This metric 

indicates how close an object is to a circle. It is a dimensionless quantity and ranges between 

0 and 1. If its value is 1, then the object is a perfect circle. This measure is insensitive to scaling 

transformations. 

E. Major Axis Length 

The longest line that can be drawn through the object connecting the two farthest points in the 

boundary is called its major axis. If the major axis end points are (x1,y1) and (x2, y2) then the 

length of the object is the major axis length and can be calculated as: 

𝒎𝒂𝒋𝒐𝒓 𝒂𝒙𝒊𝒔 𝒍𝒆𝒏𝒈𝒕𝒉 =  √(𝒙𝟐 − 𝒙𝟏)𝟐 + (𝒚𝟐 − 𝒚𝟏)𝟐 (6.37) 
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The orientation of the object can be obtained using the angle between major axis and x-axis 

of the image and is described as: 

𝒐𝒓𝒊𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏 = 𝐭𝐚𝐧−𝟏 (𝒚𝟐−𝒚𝟏)

(𝒙𝟐−𝒙𝟏)
 (6.38) 

F. Minor Avis Length 

The minor axis basically provides the object width. Minor axis is the longest line that can be 

drawn through the object while maintaining perpendicular with the major axis. This is 

calculated using the formula: 

𝒎𝒊𝒏𝒐𝒓 𝒂𝒙𝒊𝒔 𝒍𝒆𝒏𝒈𝒕𝒉 =  √(𝒙′𝟐 − 𝒙′𝟏)𝟐 + (𝒚′𝟐 − 𝒚′𝟏)𝟐 (6.39) 

Where, (𝑥′1, 𝑥′2) and (𝑦′1, 𝑦′2) are the end points of the minor axis. 

The ratio of the minor axis width and the major axis width length is called object elongation. 

The value of this parameter is 1 when the object is roughly square or circle. 

G. Bounding Box 

Bounding Box [25] is defined as the smallest rectangle that can encompass an object. The 

computation of a minimum bounding rectangle is a difficult task, but approximations can be 

used. There are two types of boundary boxes. One is called the Feret box and another is called 

the minimum bounding rectangle. 

The area of the box that completely surrounds an object is called then bounding box area which 

is calculated by: 

bounding box area = major axis length * minor axis length (6.40) 

 

 

6.5 Conclusion 

This chapter summarizes the important methodologies required for object recognition. Minute 

descriptions of these techniques along with elementary mathematical operations illustrated 

helps to grasp these mythologies much easily. Moreover, these methods provide useful 

applications while working with real time images captured by robots. 

 

 

 

 

 

 

 

 



  79 
 

References 
 

[1] K. Fukanaga, Introduction to Statistical Pattern Recognition", Academic Press, New York, 

1972. 

[2] F. Arman and J. K. Aggarwal, “CAD-based vision: object recognition in cluttered is using 

recognition strategies", Computer Vision, Graphics and Image using recognition strategies”, 

Computer vision, Graphics and Image Processing, vol.58, no. 1, pp. 33-48, 1993. 

[3] D. Huber and M. Hebert. "3D Modeling Using a Statistical Sensor Model and Stochastic 

search,”. Proc. IEEE Int 'I Conf Computer Vision and Pattern Recognition, pp. 858-865,2003. 

[4] R Donamukkala,D. Huber, A. Kapuria, and M. Hebert, “Automatic Class Selection and 

styping for 3-D Object Classification," Proc. Int'l Conf 3-D Digital Imaging and Modeling, pp. 

64-71, 2005. 

[5] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, "Multiple kernels for object 

detection", ICCV, 2009. 

[6] L. Zhu, Y. Chen, A. Yuille, and W. Freeman, "Latent hierarchical structural learning for 

object detection", CVPR, 2010, 

[7] A. Frome, D. Huber, and R. Kolluri, “Recognizing objects in range data using regional 

point descriptors," ECCV, vol. 1, pp. 1-14, 2004. 

[8] X. Ren, L. Bo, and D. Fox, “RGB-(D) scene labeling: Features and algorithms,” CVPR, 

2012. 

[9] H. Jegou, M. Douze, and C. Schmid., “Hamming Embedding and Weak Geometric 

Consistency for Large Scale Image Search”, European Conference on Computer Vision, pp. 

304–317, Marseille, 2008. 

[10] D Nister and H Stewenius, "Scalable Recognition with a Vocabulary Tree", IEEE 

Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, pp. 

2161-2168. IEEE, 2006. 

[11] Zheng Song, Qiang Chen, Zhongyang Huang, Yang Hua, and Shuicheng Yan, 

“Contextualizing object detection and classification”, IEEE Conference on Computer Vision 

and Pattern Recognition, pp. 1585-1592. IEEE, June 2011. 

[12] Zhihui Du, Weigiang Yang, Yinong Chen, Xin Sun, Xiaoying Wang, and Chen 

Xu,"Design of a Robot Cloud Center”, International Symposium on Autonomous decentralized 

Systems pp. 269–275, March 2011. 

[13] Lina Shi, Tu Feng, Zhu Hong, "A Method for the Detection of Moving Targets in Complex 

Background", Electronic Engineer, pp. 45-47, Jan 2006. 

[14] Rafael C. Gonzalez Richard E. Woods, "Digital Image Processing (Second Edition)" in, 

Beijing Publishing House of Electronics Industry, Mar 2005. 

[15] F A Pellegrino. "Edge Detection Revisited," IEEE Trans On System Man and Cybernetics, 

vol.34.no.3 pp. 1500-1517, 2004. 



  80 
 

[16] Lin Q, Han Y. Han H, "Real-time lane departure detection based on extended edge Having 

algorithm," Second International Conference Computer Research and Development, IEEE, 

2010, pp. 725-730. 

[17] D H. Ballard, "Generalizing the hough transform to detect arbitrary shapes”, Pattern 

Recognition, 13(2):111-122, 1981. 

[18] F. M. G. da Costa, L. da F. Costa, "Straight line detection as an optimization problem an 

approach motivated by the jumping spider visual system", Biologically Motivated Computer 

Vision, Germany, Berlin:Springer, vol. 1811, pp. 32-41, 2000, 

[19] J. Song, M. R. Lyu, "A Hough transform based line recognition method utilizing both 

parameter space and image space", Pattern Recognit., vol. 38, no. 4, pp. 539-552, 2005. 

[20] L. A. F. Fernandes, M. M. Oliveira, "Real-time line detection through an improved Hough 

transform voting scheme", Pattern Recognit., vol. 41, no. 1, pp. 299-314, 2008, 

[21] A. Pardo., “Semantic image segmentation using morphological tools”, Proc. of IEEE 

Conf. on Image Proc., pp. 745-748, 2002. 

[22] X. Huang, L. Zhang, "A multidirectional and multiscale morphological index for 

automatic building extraction from multispectral GeoEye-l imagery", Photogramm. Eng. 

Remote Sens., vol. 77, no. 7, pp. 721-732, Jul. 2011. 

[23] S. Belongie, J. Malik, J. Puzicha, "Shape Matching and Object Recognition Using Shape 

Contexts", IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 2, no. 4, pp. 509522, 

Apr. 2002. 

[24] A. Opelt, M. Fussenegger, A. Pinz, P. Auer, "Weak Hypotheses and Boosting for Generic 

Object Detection and Recognition", Proc. Eighth European Conf. Computer Vision, pp. 71-84, 

2004. 

[25] V. Lempitsky, P. Kohli. C. Rother, T. Sharp, "Image segmentation with a bounding box 

prior", MSR-TR-2009-85. 

 

 

 

 

 

 

 

 

 

 



  81 
 

Chapter 7 

Implementation of Soccer Goal Keeper 
 

7.1 Introduction 

The chapter provides the entire technical details regarding the implementation of soccer goal 

keeper using the Khepera IV mobile robot [1-3]. All steps are described vividly to have a clear 

understanding of the designing procedure. MATLAB code and the function for extended 

kalman filter [24-25] developed to implement the goal keeper prediction of range and position 

information. This chapter contains step by step information on how the whole prediction is 

done right from the beginning of taking the image by khepera to prediction using MATLAB 

function. 

7.2 Methodologies Utilized for Implementation 

The steps involved in the implementation of the soccer robot goal keeper are discussed in this 

section. Moreover, the techniques for such an implementation are also illustrated in this 

segment. 

7.2.1 An overview of the proposed scheme for prediction  

Step 1. 2 mobile robots identical in all respects have been configured as the target (for kicking 

the ball) and the tracker.  

Step 2. The target robot is controlled to move on a fixed trajectory by a control program running 

at its desktop server to kick the ball at different instance.  

Step 3. The tracker robot on the other hand receives sensory information by using the video 

camera and the ultrasonic sensors. 

Step 4. The received real time video frames collected by the tracker robot are first transferred 

to its server. 

Step 5. The server pre-processes the image and segments it into objects of interest (here the 

ball). 

Step 6. The individual images are segmented and subsequent localization of each image for 

the ball is done. 

Step 7. After the target is identified in the image, its distance and orientation with respect to 

some reference axis of the tracker needs to be determined. 

Step 8. After distance and orientation is measured from each image then the values were passed 

to the extended Kalman filter function.  

Step 9. It processes the values and it updates the estimation vector till a pre-condition is met. 

Step 10. It then gives the next distance and angle values by processing the matlab function for 

extended kalman filter.   
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7.2.2 Ball Recognition 

A. Ball Recognition using MATLAB function 

The step begins by capturing an image through the camera by TCP/IP protocol [4-5], socket 

communication and processing it through the matlab BallDetction function. 

Image processing in MATLAB for ball recognition has the following steps: 

1. The image captured, read and converted to gray scale.  

2. The contrast of this image is enhanced using the contrast-limited adaptive histogram 

equalization (CLAHE) [6-15]. The development and necessity of this method is 

described below: 

Under certain scenarios the grayscale distribution is highly localized, then it becomes a difficult 

task to transform very low-contrast images by full histogram equalization. In these cases, the 

mapping curve might be mapped to significantly different grayscales. This issue is then 

resolved by limiting approach with the adaptive Histogram Equalization results in Contrast 

Limited Adaptive Equalization (CLAHE). Thus, this method enhances the contrast of the 

image much more efficiently as compared to histogram equalization and adaptive histogram 

equalization techniques. 

3. Finally, the ball is detected by the user of Circular Hough Transform [16-20].  

 

B. Algorithm used in Ball Recognition 

imfindcircles uses a Circular Hough Transform (CHT) based algorithm for finding circles in 

images. This approach is used because of its robustness in the presence of noise, occlusion and 

varying illumination. 

The CHT is not a rigorously specified algorithm, rather there are a number of different 

approaches that can be taken in its implementation. However, by and large, there are three 

essential steps which are common to all. 

I. Accumulator Array Computation 

Foreground pixels of high gradient are designated as being candidate pixels and are allowed to 

cast ‘votes’ in the accumulator array. In a classical CHT implementation, the candidate pixels 

vote in pattern around them that forms a full circle of a fixed radius. Figure 7.1 (a) shows an 

example of a candidate pixel lying on an actual circle (solid circle) and the classical CHT voting 

pattern (dashed circles) for the candidate pixel. 
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Figure 7.1 Classical CHT Voting Pattern 

 

II. Center Estimation 

The votes of candidate pixels belonging to an image circle tend to accumulate at the 

accumulator array bin corresponding to the circle’s center. Therefore, the circle centers are 

estimated by detecting the peaks in the accumulator array. Figure 7.1 b shows an example of 

the candidate pixels (solid dots) lying on an actual circle (solid circle), and their voting patterns 

(dashed circles) which coincide at the center of the actual circle. 

III. Radius Estimation 

If the same accumulator array is used for more than one radius value, as is commonly done in 

CHT algorithms, radii of the detected circles have to be estimated as a separate step. 

imfindcircles provides two algorithms for finding circles in images: Phase-Coding (default) 

and Two-Stage. 

The common computational features shared by both algorithms are as follow: 

a) Use of 2-D Accumulator Array 

The classical Hough Transform requires a 3-D array for storing votes for multiple radii, which 

results in large storage requirements and long processing times. Both the Phase-Coding and 

Two-Stage methods solve this problem by using a single 2-D accumulator array for all the 

radii. Although this approach requires an additional step of radius estimation, the overall 

computational load is typically lower, especially when working over large radius range. This 

is a widely adopted practice in modern CHT implementations. 



  84 
 

b) Use of Edge Pixels 

Overall memory requirements and speed is strongly governed by the number of candidate 

pixels. To limit their number, the gradient magnitude of the input image is threshold so that 

only pixels of high gradient are included in tallying votes. 

c) Use of Edge Orientation Information 

Another way to optimize performance is to restrict the number of bins available to candidate 

pixels. This is accomplished by utilizing locally available edge information to only permit 

voting in a limited interval along direction of the gradient (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 Voting Mode: Multiple Radii, Along Direction of Gradient 

 

 

 

 

 

 

 

 

 

 

rmin Minimum search radius 

rmax Maximum search radius 

ractual Radius of the circle that the candidate pixel belongs to 

cmin Center of the circle of radius rmin 

cmax Center of the circle of radius rmax 

cactual Center of the circle of radius ractual 
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The two CHT methods employed by function imfindcircles fundamentally differ in the manner 

by which the circle radii are computed. 

• Two-Stage 

Radii are explicitly estimated utilizing the estimated circle centers along with image 

information. The technique is based on computing radial histograms [21-22]. 

• Phase-Coding 

The key idea in Phase Coding [23] is the use of complex values in the accumulator array with 

the radius information encoded in the phase of the array entries. The votes cast by the edge 

pixels contain information not only about the possible center locations but also about the radius 

of the circle associated with the center location. Unlike the Two-Stage method where radius 

has to be estimated explicitly using radial histograms, in Phase Coding the radius can be 

estimated by simply decoding the phase information from the estimated center location in the 

accumulator array. 

C. Distance and Angle Calculation 

After the recognition of the ball, it is important to know its distance from the robot and its angle 

of orientation with respect to the robot. These factors are calculated by the following formulae: 

𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 =
𝒇∗𝒅𝒓∗𝒕

𝒐∗𝒔
 (7.1) 

Where  

f is the focal length of the robot’s camera in mm 

r is the real height of the ball  

i is the image height in pixels 

𝒐 is the object height within the image in pixels. 

s is the sensor height of robot’s camera in mm 

The angle of inclination of the ball with respect to the robot can be calculated by the 

following formulae: 

𝒂′ = (
𝟏𝟗𝟐

𝟐
) − 𝒚 (7.2) 

𝒃′ = 144 – x (7.3) 

angle = 𝐭𝐚𝐧−𝟏 𝒂′

𝒃′
 (7.4) 
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7.2.3 Algorithm used in MATLAB EKF function 

Function EKF (r0, θ0, r1, θ1, r2, θ2)  

Begin 

1. Initialize 

a) W0 = (
𝜕𝑓𝑖

𝜕𝑥
)Λ𝑖 (

𝜕𝑓𝑖

𝜕𝑥
)
𝑇

where Λ0 and (
𝜕𝑓0

𝜕𝑥
) are available from expression (5.32) and 

(5.34). 

b) S0 as a diagonal matrix with large positive diagonal values. 

c) a0 to be zero; 

d) M0: = (
𝜕𝑓0

𝜕𝑎
) vide expression (5.33) 

e) Loop iteration index i:=1. 
2. Repeat 

a) Input new measurement xi and evaluate yi by expression (5.21) 

b) Update Ki, ai, Si in order using expression (5.27), (5.26) and (5.28); 

Until abs(ai-ai-1) < a pre-defined threshold.  

3. Determine 

a) 𝑎𝑡2 + 𝑏𝑡 + 𝑐 at time t=t3 > t2 

b) 𝑝𝑡2 + 𝑞𝑡 + 𝑠 at time t=t3 > t2 

For known a,b,c,p,q, and s; 

End 

where 

c and s are the initial displacements of the target with respect to sensor axis and its 

perpendicular direction,  

b and q are the velocity in the corresponding directions, and  

a and p are the time rate of change of velocity in the corresponding directions. 

In the third step of determine we evaluate the values of rcosθ and rsinθ at time t ≥ t2 . 

And to measure the predicted angle use the following equation: 

Angle = pred_x(2,1) + atan(Y(i)/X(i)) – 5 

Where pred_x = Predicted value for input measurement vector. 

Y and X are calculated from the above algorithm last step i.e determine state. 
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7.3 Results 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 Ball detection 
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7.4 Output from EKF function written in MATLAB 

 

The predicted range is: 

 

Y = 

 

  -99.7812  521.4616  384.2512 

 

The actual range is: 

 

r = 

 

   330   364   379 

 

The predicted angle is: 

 

A = 

 

   24.8854   19.7528   13.5505 

 

The actual angle is: 

 

theta = 

 

    31    24    18 
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7.5 Outcome 

 

As seen above the predicted distance is:  

384.2512 

Actual distances for all the images taken by KHEPERA IV: 

124.001047096430 151.048302441459 173.840297877355 209.565561441147

 272.021877183786 330.815923238659 364.344160717200

 379.851978457323 388.476689097816 

In our case actual distance calculated from image by BallDetection function: 

388.4766 

The predicted angle is: 

13.5505 

Actual Angle measured by BallDetection function for all images: 

3.10574440131613 20.4197152223547 28.9818659013446 34.1996160268671

 36.3529028768892 31.6438363165663 24.8482487455750

 18.5362652409631 13.3859260960704 

In our case actual angle calculated for the instant will be: 

13.3859 

So, it is seen the values predicted are near but not accurate completely. 

 

7.6 Conclusion 

This chapter provided the entire technical details regarding the design of soccer goal keeper 

using the Khepera IV mobile robot. All steps are described vividly to have a clear 

understanding of the designing procedure and the predicted values from matlab code is given 

which were obtained from function developed to implement the goal keeper prediction code 

which predicted the distance and angle information. 
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Chapter 8 

Conclusion and Future Direction 
 

8.1 Summary of the work 

The most important aspect depicted by this thesis work is the design of a soccer player using 

the recently developed Khepera IV mobile robot. The fundamental motivation behind this 

research is to develop prediction of the next state of the target from its few preceding positions. 

The work vividly describes the ball recognition part mathematical aspect algorithms which are 

used for more complex environments. Then the values obtained from each image captured by 

KHEPERA are processed to calculate distance and angle. Later these values are passed to 

extended Kalman filter to predict distance and angle of the next state, for which the 

mathematical derivation, various definition, historical aspect of Kalman filter and extended 

Kalman Filter various matrix partial derivatives used for developing the algorithm of extended 

kalman filter are discussed in different chapters. The MATLAB function for the filter has been 

written in such a way that it can be understood by a novice user. Each line of the code has 

comments to make more sense it is divided in initialization, prediction and update steps. 

Though I had passed the values manually from the values obtained from the ball detection in 

set of three to reduce complexity. The code checks a pre-defined condition after every loop 

iteration and if it is met then it updates the different arrays and matrix used for prediction 

otherwise it comes out of the loop. This work acts as an excellent test bed for the prediction 

and interception part of goal keeper design of the soccer robotics. 

Chapter 1 gives an introductory concept regarding the differential drive robots, their categories 

kinematical modelling. It then provides a short literature review regarding the development of 

robotics and the types of robots used previously. Then the main objective of this thesis work is 

discussed. 

Chapter 2 describes the entire Khepera IV robot in great details. It comprises of its 

specifications, functionalities and the working principle of its various components. This 

chapter acts a useful guide that aids in understanding the basic components and the functions 

of Khepera IV robot. 

Chapter 3 comprises of the entire set up part required to communicate with the robot. This 

chapter provides in depth description of how to install all the necessary directives, libraries etc. 

Then it discusses how the communication pathway between the robot and the computer can be 

built using either USB cable or Wi-Fi. It then provides the detailed description of the functions 

and variables used for programming. And finally, it provides the basic steps required for 

writing the program and executing the codes. 

Chapter 4 describes the essence of socket communication. In this chapter the protocol used for 

interfacing is discussed in great details. Then the steps required for creating a client and server 

are discussed for two software platforms i.e. C and MATLAB. Basic codes required for such 

implementation are also included in this chapter. 
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Chapter 5 describes mainly the concept of our thesis i.e. Kalman and Extended Kalman filter 

its historical aspect all the mathematical steps required for extended kalman filter derivation, 

state variable, probability, random values and noise.  

Chapter 6 provides the algorithms of object recognition. Various techniques utilized for object 

recognition. Mathematical details of circular Hough transform. 

Chapter 7 it is main chapter of the thesis work that comprises of the design of soccer robot 

player using KHEPERA IV. Algorithm used to implement Extended Kalman Filter in 

MATLAB. Mathematical details of ball recognition and extended kalman filter techniques are 

vigorously described calculation of distance and angle of next state are also shown. Finally, the 

output of ball detection function and predicted values for distance and angle from extended 

Kalman filter are shown and compared. 

Thus, this thesis work has been able to accomplish and fulfil the desired objectives and has 

provided important results that are extremely useful for prediction of next states. 

 

8.2 Future Scope 

Though the thesis work has provided vital results that are extremely useful, however, there 

exists an immense scope for improvement. Some of the future directives are listed below: 

• The Real time implementation of prediction can be implemented to make more use of 

the filter. 

• Static obstacles can be placed within the field along with the ball. This will produce a 

greater challenge for the soccer robot to find the ball. 

• Make fellow soccer players which will approach ball efficiently by avoiding the 

obstacles.  

• Develop Back Propagation Neural Net for prediction. 

• Develop player interception and ball detection simultaneously for more complex task. 

• Two teams consisting of a combination of Khepera robots can be modelled along with 

two goal keepers. This problem would require various complex actions like kicking the 

ball to the opposite goal, passing the ball to its fellow mate and other complex reasoning 

and decision-making tasks. 

• 3D reconstruction from multiple 2D images of the robot work space by using Kalman 

Filter. 
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APPENDIX 
 

User guide to run various scripts, codes and 

function of MATLAB  
 

The section provides step wise guidance for the execution of the codes given in the 

accompanying CD at the end of the thesis. 

Step 1: 

Write the C code for processing image using soccer robot in the text file within the template 

folder as shown below and save it as prog-template.c. 

 

 

 

 

 

 

 

 

 

 

 

 

A.1 Screen depicting the C code for Soccer Robot 
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Step 2: 

Open a new terminal and complete the code by first entering into the path where the program 

has been written by using the following commands: 

cd khepera4_development 

cd libkhepera-2.1 

cd template 

Then remove the previously written code by using rm template and compile the present code 

by make command. If the compilation is successful then message with no error will be 

shown as depicted below: 

 

A.2 Screen for C program compilation 
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Step 3: 

Write the code in script for function calling which calls BallDetection function in MATLAB. 

 

A.3 Screen showing script which calls BallDetection function 
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Step 4: 

The BallDetection function screen is shown below which calculates distance and angle values 

stores them in Avec and Dvec for each image that is taken by the KHEPERA IV. 

 

 

A.4 Screen showing script which shows the BallDetection Function. 
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Step 5: 

Write the code for Extended Kalman Filter the screen below shows the EKF filter to predict 

the distance and angle of the next state. 

 

A.5 Screen showing extended kalman filter. 

 

  

 

 

 


