

Scope of Optimization in Identification of Gene

Regulatory Network

By

Dipanjan Biswas

Registration No.: 137304 of 2016-2017

Examination Roll No.: M6IAR19014

Under the guidance of

Dr. Pratyusha Rakshit

This thesis is submitted in the partial fulfillment for the Degree of

Master of Technology in Intelligent Automation and Robotics

under Electronics and Telecommunication Engineering

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION

ENGINEERING

Jadavpur University

Kolkata – 700032

May 2019

FACULTY OF ENGINEERING AND TECHNOLOGY

JADAVPUR UNIVERSITY

CERTIFICATE OF RECOMMENDATION

This is to certify that the thesis entitled “Scope of Optimization in Identification of Gene

Regulatory Network” has been carried out by Dipanjan Biswas (University Registration No.

137304 of 2016-2017) under my guidance and supervision and be accepted in partial

fulfillment of the requirement for the Degree of Master of Technology in Intelligent

Automation and Robotics of Jadavpur University.

 Dr. Pratyusha Rakshit Prof. Amit Konar

 (Project Guide) (Course Coordinator)

Intelligent Automation and Robotics Intelligent Automation and Robotics

 Department of Electronics & Department of Electronics &

 Telecommunication Engineering Telecommunication Engineering

 Jadavpur University Jadavpur University

 Dr. Sheli Sinha Chaudhuri Prof. Chiranjib Bhattacharjee

 (Head of the Department) Dean. Faculty Council of

 Department of Electronics & Engineering and Technology

 Telecommunication Engineering Jadavpur University

 Jadavpur University

FACULTY OF ENGINEERING AND TECHNOLOGY

JADAVPUR UNIVERSITY

CERTIFICATE OF APPROVAL

The forgoing thesis is hereby approved as a creditable study of engineering subject and

presented in a manner satisfactory to warrant acceptance as prerequisite to the degree for which

it has been submitted. It is understood that by this approval the undersigned do not necessarily

endorse or approve any statement made, opinion expressed or conclusion drawn there in but

approve the thesis only for which it is submitted.

Dipanjan Biswas

Examination Roll No.: M6IAR19014

Committee on final examination for evaluation of the thesis

 External Examiner

 Dr. Pratyusha Rakshit

 (Supervisor)

FACULTY OF ENGINEERING AND TECHNOLOGY

JADAVPUR UNIVERSITY

DECLARATION OF ORIGINALITY OF COMPLIANCE

OF

ACADEMIC THESIS

I hereby declare that this thesis entitled “Scope of Optimization in Identification of Gene

Regulatory Network” contains literature survey and original research work by the

undersigned candidate, as part of his Degree of Master of Technology in Intelligent Automation

and Robotics.

All information have been obtained and presented in accordance with academic rules and

ethical conduct.

I also declare that, as required by these rules and conduct, I have fully cited and referenced all

materials when required and none of the work represented in this thesis is fabricated.

Name: Dipanjan Biswas

Examination Roll No.: M6IAR19014

Thesis Title: Scope of Optimization in Identification of Gene Regulatory Network

Date:

Place: Kolkata

Signature of the candidate

ACKNOWLEDGEMENTS

First and foremost, I would like to express my earnest gratitude and heartfelt indebtedness to

my advisor, Dr. Pratyusha Rakshit, Department of Electronics and Telecommunication

Engineering, for the privilege of allowing me to work under her towards my Degree of Master

of Electronics & Telecommunication Engineering. This work would not have been

materialized, but for her whole-hearted help and support. Working under her has been a great

experience. I sincerely thank my supervisor, particularly for all the faith she had in me. I am

thankful to Dr. Sheli Sinha Chaudhuri who acted as Head of the Department of Electronic and

Telecommunication Engineering during the tenure of my studentship. I would also like to show

my gratitude to the respected professors of the Department of Electronics and

Telecommunication engineering particularly Prof. Amit Konar for his constant guidance and

valuable advices.

I am indebted to my classmates and friends for the good wishes they have provided. Lastly, I

would like to thank my family for their love and support.

Date:

Place: Kolkata

 Dipanjan Biswas

 Examination Roll No.: M6IAR19014

 Jadavpur University

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1.1. Gene 2

1.2. Different functions of Gene 4

1.3. Central Dogma 4

1.4. Gene Regulatory Network (GRN) 7

1.5. Importance of Gene Regulatory Network (GRN) 9

1.6. GRN as an optimization problem 9

1.7. Organization of Thesis 11

CHAPTER 2: DIFFERENTIAL EVOLUTION

2.1. Introduction 14

2.2. Different steps of Differential Evolution 15

2.3. Pseudo code of DE 19

2.4. Applications of DE in Bioinformatics 20

2.5. Conclusion 22

CHAPTER 3: SOLVING GRN USING DIFFERENTIAL EVOLUTION

3.1. Introduction 25

3.2. Proposed Methodology 26

3.3. Pseudo Code 31

3.4. Actual Code 33

3.5. Experiments and Results 38

3.6. Conclusion 69

CHAPTER 4: CONCLUSION & FUTURE WORK

4.1. Conclusion 73

4.2. Future Works 74

CHAPTER 1

INTRODUCTION

2: INTRODUCTION

1.1. GENE

A gene is a sequence of nucleotides in DNA or RNA that codes for a molecule

that has a function. A gene is the basic physical and functional unit of heredity.

Some genes act as instructions to make molecules called proteins. However,

many genes do not code for proteins. In humans, genes vary in size from a few

hundred DNA bases to more than 2 million bases. The Human Genome

Project estimated that humans have between 20,000 and 25,000 genes.

Fig 1.1. Figure shows gene is a region of DNA

Every person has two copies of each gene, one inherited from each parent. Most

genes are the same in all people, but a small number of genes (less than 1 percent

of the total) are slightly different between people. Alleles are forms of the same

gene with small differences in their sequence of DNA bases. These small

differences contribute to each person’s unique physical features.

During gene expression, the DNA is first copied into RNA. The RNA can

be directly functional or be the intermediate template for a protein that performs

a function. The transmission of genes to an organism's offspring is the basis of

the inheritance of phenotypic trait. These genes make up different DNA

sequences called genotypes. Genotypes along with environmental and

developmental factors determine what the phenotypes will be. Most biological

traits are under the influence of polygenes (many different genes) as well

as gene–environment interactions. Some genetic traits are instantly visible, such

as eye color or number of limbs, and some are not, such as blood type, risk for

specific diseases, or the thousands of basic biochemical processes that

constitute life.

https://ghr.nlm.nih.gov/primer/basics/noncodingdna
https://ghr.nlm.nih.gov/primer/hgp/description
https://ghr.nlm.nih.gov/primer/hgp/description

3: INTRODUCTION

Genes can acquire mutations in their sequence, leading to different variants,

known as alleles, in the population. These alleles encode slightly different

versions of a protein, which cause different phenotypical traits. Usage of the term

"having a gene" (e.g., "good genes," "hair color gene") typically refers to

containing a different allele of the same, shared gene. Genes evolve due to natural

selection / survival of the fittest and genetic drift of the alleles.

The structure of a gene consists of many elements of which the actual protein

coding sequence is often only a small part. These include DNA regions that are

not transcribed as well as untranslated regions of the RNA.

Flanking the open reading frame, genes contain a regulatory sequence that is

required for their expression. First, genes require a promoter sequence. The

promoter is recognized and bound by transcription factors that recruit and

help RNA polymerase bind to the region to initiate transcription. The recognition

typically occurs as a consensus sequence like the TATA box. A gene can have

more than one promoter, resulting in messenger RNAs (mRNA) that differ in how

far they extend in the 5' end. Highly transcribed genes have "strong" promoter

sequences that form strong associations with transcription factors, thereby

initiating transcription at a high rate. Others genes have "weak" promoters that

form weak associations with transcription factors and initiate transcription less

frequently. Eukaryotic promoter regions are much more complex and difficult to

identify than prokaryotic promoters.

Additionally, genes can have regulatory regions many kilobases upstream or

downstream of the open reading frame that alter expression. These act

by binding to transcription factors which then cause the DNA to loop so that the

regulatory sequence (and bound transcription factor) become close to the RNA

polymerase binding site. For example, enhancers increase transcription by

binding an activator protein which then helps to recruit the RNA polymerase to

the promoter; conversely silencers bind repressor proteins and make the DNA

less available for RNA polymerase.

The transcribed pre-mRNA contains untranslated regions at both ends which

contain a ribosome binding site, terminator and start and stop codons. In

addition, most eukaryotic open reading frames contain untranslated introns

which are removed before the exons are translated. The sequences at the ends of

the introns dictate the splice sites to generate the final mature mRNA which

encodes the protein or RNA product.

https://en.wikipedia.org/wiki/Population
https://en.wikipedia.org/wiki/Phenotypical
https://en.wikipedia.org/wiki/Evolution
https://en.wikipedia.org/wiki/Promoter_(genetics)
https://en.wikipedia.org/wiki/Transcription_factors
https://en.wikipedia.org/wiki/RNA_polymerase
https://en.wikipedia.org/wiki/Consensus_sequence
https://en.wikipedia.org/wiki/TATA_box
https://en.wikipedia.org/wiki/MRNA
https://en.wikipedia.org/wiki/Eukaryote
https://en.wikipedia.org/wiki/Promoter_(genetics)
https://en.wikipedia.org/wiki/Prokaryote
https://en.wikipedia.org/wiki/DNA_binding_site
https://en.wikipedia.org/wiki/Enhancer_(genetics)
https://en.wikipedia.org/wiki/Activator_(genetics)
https://en.wikipedia.org/wiki/Silencer_(DNA)
https://en.wikipedia.org/wiki/Repressor
https://en.wikipedia.org/wiki/Pre-mRNA
https://en.wikipedia.org/wiki/Untranslated_regions
https://en.wikipedia.org/wiki/Ribosome_binding_site
https://en.wikipedia.org/wiki/Terminator_(genetics)
https://en.wikipedia.org/wiki/Start_codon
https://en.wikipedia.org/wiki/Stop_codons
https://en.wikipedia.org/wiki/Open_reading_frame
https://en.wikipedia.org/wiki/Introns
https://en.wikipedia.org/wiki/Exons
https://en.wikipedia.org/wiki/Splice_site
https://en.wikipedia.org/wiki/Mature_mRNA

4: INTRODUCTION

Many prokaryotic genes are organized into operons, with multiple protein-coding

sequences that are transcribed as a unit. The genes in an operonare transcribed as

a continuous messenger RNA, referred to as a polycistronic mRNA. The

term cistron in this context is equivalent to gene. The transcription of an operon's

mRNA is often controlled by a repressor that can occur in an active or inactive

state depending on the presence of specific metabolites. When active, the

repressor binds to a DNA sequence at the beginning of the operon, called

the operator region, and represses transcription of the operon; when the repressor

is inactive transcription of the operon can occur. The products of operon genes

typically have related functions and are involved in the same regulatory network.

1.2. Functions of Gene

The chromosomes within our cells contain an enormous amount of information.

It is estimated that humans have somewhere around 30,000 genes. Each gene

codes for an RNA molecule that is either used directly or used as a guide for the

formation of a protein such as the insulin shown earlier. Information in our cells

generally flows in a predictable order from the storage form of the information

(DNA) through the working form (RNA) into the final product (protein).

The process in which particular sections of DNA (genes) are used to produce

RNA is known as transcription. The set of genes that are 'on' at any given time is

critical. The variable environment in which we live means that different genes

need to be 'on' at different times. For example, if a meal contains large amounts

of lactose, a sugar found in milk, then our bodies respond by turning on

(transcribing) the genes that lead to the production of enzymes that break down

lactose. If a different sugar or nutrient is present, the correct genes need to be

turned on to process it.

1.3. Central Dogma

The central dogma of molecular biology describes the two-step process,

transcription and translation, by which the information in genes flows into

proteins: DNA → RNA → protein. It was first proposed in 1958 by Francis Crick,

discoverer of the structure of DNA.

The central dogma suggests that DNA contains the information needed to make

all of our proteins, and that RNA is a messenger that carries this information to

the ribosomes. The ribosomes serve as factories in the cell where the information

https://en.wikipedia.org/wiki/Operon
https://en.wikipedia.org/wiki/Operon
https://en.wikipedia.org/wiki/Messenger_RNA
https://en.wikipedia.org/wiki/Messenger_RNA#Monocistronic_versus_polycistronic_mRNA
https://en.wikipedia.org/wiki/Repressor
https://en.wikipedia.org/wiki/Operon#General_structure_of_an_operon
https://en.wikipedia.org/wiki/Transcription_(genetics)
https://en.wikipedia.org/wiki/Operon

5: INTRODUCTION

is translated from a code into the functional product. The process by which the

DNA instructions are converted into the functional product is called gene

expression.

The central dogma states that the pattern of information that occurs most

frequently in our cells is:

• From existing DNA to make new DNA (DNA replication)

• From DNA to make RNA (transcription)

• From RNA to make new proteins (translation)

Fig.1.3. Flow of information between DNA, RNA, protein

Transcription

The goal of transcription is to make an RNA copy of a gene. This RNA can direct

the formation of a protein or be used directly in the cell. All cells with

a nucleus contain the same exact genetic information. As discussed, only a small

percentage of the genes are actually being used to make RNA at any given time

in a particular cell. The transcription process is very tightly regulated in normal

cells.

• Genes must be transcribed at the correct time.

• The RNA produced from a gene must be made in the correct amount.

6: INTRODUCTION

• ONLY the required genes should to be transcribed.

• Turning transcription off is just as important as turning it on.

You can picture this as a sophisticated production line, like you would find in a

factory. You would want the assembly line working when you needed the product

and shut down when you no longer needed the product.

Translation

After the messenger RNA (mRNA) is produced through the transcription process

just described, the mRNA is processed in the nucleus and then released into the

cytosol.

The mRNA is then recognized by the ribosomal subunits present in the cytosol

and the message is 'read' by the ribosome to produce a protein. The information

for the direction of protein formation is encoded in the sequence of nucleotides

that make up the mRNA. Groups of three nucleotides (called codons) are 'read'

by the ribosome and lead to the addition of a particular amino acid into the

growing polypeptide (protein).

After the protein is formed it acquires its active folded state and is able to perform

its functions in the cell. The proper folding, transportation, activity and eventual

destruction of proteins are all highly regulated processes.

Replication

Finally, as the final step in the Central Dogma, to transmit the genetic information

between parents and progeny, the DNA must be replicated faithfully. Replication

is carried out by a complex group of proteins that unwind the super helix, unwind

the double-stranded DNA helix, and, using DNA polymerase and its associated

proteins, copy or replicate the master template itself so the cycle can repeat DNA

→ RNA → protein in a new generation of cells or organisms.

Exceptions to the central dogma

The central dogma is not really a dogma in the traditional sense of the word, like

all scientific theories it is modified as we learn more details of the processes. The

biggest revolution in the central dogma was the discovery of retroviruses, which

transcribe RNA into DNA through the use of a special enzyme called reverse

transcriptase has resulted in an exception to the central dogma; RNA → DNA →

RNA → protein. Also, some virus species are so primitive that they use only RNA

7: INTRODUCTION

→ proteins, having not developed DNA. With the discovery of prions, a new

exception to the central dogma has been discovered, Protein → Protein. That is,

proteins directly replicating themselves by making conformational changes in

other proteins. Although retroviruses, certain primitive viruses, and prions may

violate the central dogma, they are technically not considered "alive", and thus

the rule that "all cellular life follows the central dogma" still holds true.

1.4. Gene Regulatory Network (GRN)

A gene regulatory network (GRN) is a collection of molecular regulators that

interact with each other and with other substances in the cell to govern the gene

expression levels of mRNA and proteins. These play a central role

in morphogenesis, the creation of body structures, which in turn is central

to evolutionary developmental biology.

Fig. 1.4. Structure of a gene regulatory network

The regulator can be DNA, RNA, protein and complexes of these. The

interaction can be direct or indirect (through transcribed RNA or translated

protein). In general, each mRNA molecule goes on to make a specific protein (or

set of proteins). In some cases this protein will be structural, and will accumulate

at the cell membrane or within the cell to give it particular structural properties.

In other cases the protein will be an enzyme, i.e., a micro-machine that catalyzes

a certain reaction, such as the breakdown of a food source or toxin. Some proteins

though serve only to activate other genes, and these are the transcription

https://en.wikipedia.org/wiki/Gene_expression
https://en.wikipedia.org/wiki/Gene_expression
https://en.wikipedia.org/wiki/MRNA
https://en.wikipedia.org/wiki/Morphogenesis
https://en.wikipedia.org/wiki/Evolutionary_developmental_biology
https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/RNA
https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Protein#Structural_proteins
https://en.wikipedia.org/wiki/Enzyme
https://en.wikipedia.org/wiki/Transcription_factors

8: INTRODUCTION

factors that are the main players in regulatory networks or cascades. By binding

to the promoter region at the start of other genes they turn them on, initiating the

production of another protein, and so on. Some transcription factors are

inhibitory.

In single-celled organisms, regulatory networks respond to the external

environment, optimizing the cell at a given time for survival in this environment.

Thus a yeast cell, finding itself in a sugar solution, will turn on genes to make

enzymes that process the sugar to alcohol. This process, which we associate with

wine-making, is how the yeast cell makes its living, gaining energy to multiply,

which under normal circumstances would enhance its survival prospects.

In multicellular animals the same principle has been put in the service of gene

cascades that control body-shape. Each time a cell divides, two cells result which,

although they contain the same genome in full, can differ in which genes are

turned on and making proteins. Sometimes a 'self-sustaining feedback loop'

ensures that a cell maintains its identity and passes it on. Less understood is the

mechanism of epigenetics by which chromatin modification may provide cellular

memory by blocking or allowing transcription. A major feature of multicellular

animals is the use of morphogen gradients, which in effect provide a positioning

system that tells a cell where in the body it is, and hence what sort of cell to

become. A gene that is turned on in one cell may make a product that leaves the

cell and diffuses through adjacent cells, entering them and turning on genes only

when it is present above a certain threshold level. These cells are thus induced

into a new fate, and may even generate other morphogens that signal back to the

original cell. Over longer distances morphogens may use the active process

of signal transduction. Such signaling controls embryogenesis, the building of

a body plan from scratch through a series of sequential steps. They also control

and maintain adult bodies through feedback processes, and the loss of such

feedback because of a mutation can be responsible for the cell proliferation that

is seen in cancer. In parallel with this process of building structure, the gene

cascade turns on genes that make structural proteins that give each cell the

physical properties it needs.

https://en.wikipedia.org/wiki/Transcription_factors
https://en.wikipedia.org/wiki/Promoter_(biology)
https://en.wikipedia.org/wiki/Epigenetics
https://en.wikipedia.org/wiki/Chromatin
https://en.wikipedia.org/wiki/Morphogen
https://en.wikipedia.org/wiki/Diffusion
https://en.wikipedia.org/wiki/Morphogens
https://en.wikipedia.org/wiki/Signal_transduction
https://en.wikipedia.org/wiki/Embryogenesis
https://en.wikipedia.org/wiki/Body_plan
https://en.wikipedia.org/wiki/Feedback
https://en.wikipedia.org/wiki/Cancer
https://en.wikipedia.org/wiki/Protein#Structural_proteins

9: INTRODUCTION

1.5. Importance of Gene Regulatory Network (GRN)

GRNs provide the fundamental control mechanism directing developmental

process. Gene expression is regulated sequence-specifically by the interaction of

transcription factors with cis-regulatory DNA modules. Thus, the control

operations which assign diverse cellular functions are those determining when

and where transcription factor encoding genes will be expressed. By encoding the

cis-regulatory inputs of every regulatory gene, GRNs specify the interactions

among regulatory genes that are responsible for the expression of particular sets

of transcription factors. These transcription factors in turn also control cohorts of

genes encoding many other kinds of protein, here referred to as effector genes,

that is, differentiation genes and morphogenesis genes. Cells manifest their fates

in development by the programmed activation of distinct suites of effector genes,

directly determining their biological properties, the final specific readout of

developmental GRNs. Thus ultimately the expression of all genes in the genome

is linked by interactions within GRNs.

Regulatory genes have the special feature that they play dual roles in the GRN,

in that their expression is at once the output of the upstream regulatory genes

which provide their transcriptional inputs, and at the same time they provide

inputs to other target genes within the same network. Thus, the set of transcription

factors present in a given time and place determines the new set of transcription

factors to be expressed, which then in turn establishes the expression of another

regulatory condition. The continuous changes of regulatory gene expression in

developmental time can be regarded as the major driver of developmental

progression. Development is powered by changes in states of regulatory gene

activity and as a consequence of these changes, new cell fates are established in

the construction of the body plan. Development is ultimately controlled by GRNs,

and these constitute the primary machinery of control in Metazoa.

1.6. GRN as an optimization problem

Estimating the true gene regulatory network (GRN), when the number of genes

is much greater than the number of samples, it has aroused considerable interest

in the computational biology community. Several scientists and researchers have

presented different approaches to this difficult problem and have advanced the

field. However, many unsolved tasks in this area remain, including identifying

10: INTRODUCTION

high correlated covariates, noisy data, and reasonable prior knowledge necessary

to accomplish GRN inferring and model estimation.

Fig.1.5. Process of gene regulatory network

The past 30 years has seen several developments concerned the learning structure

of GRNs. The complex relationships between such components motivated us to

identify a multivariate approach. Inferring gene networks is usually known as the

process of identifying gene interactions from gene expression data through

computational analysis. The entire inferring process can be summarized as a task

of predicting connectivity among genes. Essentially, it involves learning the

structure of a graph. However, in many domains, problems such as the large

numbers of variables, small samples sizes, and possible presence of unmeasured

causes, remain major impediments to practical applying these developments.

To accomplish this task and infer the structure of GRNs from high throughput

microarray data, several techniques have been developed for the mathematical

modeling of GRNs from expression data, notably differential equation, the vector

autoregressive, dynamic Bayesian networks, Boolean networks, and the

information-theoretic method. In addition, other methods based on regression,

such as least absolute shrinkage and selection operator (Lasso), or partial least

squares (PLS) and supervised learning, have shown positive results. Although

standard linear modeling approaches enable analysis of a modeled system, they

are not effective in large-scale network discovery. This is because the number of

candidate parameters and models is extremely high, and thus searching efficiently

and reliably with tight control on many false positives is difficult. By contrast, by

11: INTRODUCTION

using ordinary differential equations to model transcriptional changes in terms of

environmental and transcription factor influence, time-series network

identification (TSNI) constructs a local regulatory network of genes that are

affected by an external perturbation. Dynamic regulatory events miner (DREM)

uses a Hidden Markov Model (HMM) based algorithm to identify transcription

factors that control divergence points in gene expression profiles in order to

reconstruct dynamic regulatory networks. Friedman et al. (Friedman, 2004) were

among the first to suggest using dynamic Bayesian networks (DBNs) to model

regulatory networks that change over time, as such models can capture time

dependent structures such as feedback loops that are impossible to express using

traditional probabilistic networks.

1.7. Organization of Thesis

The paper is organized as follows. In Chapter 1 we provides definitions of Gene,

functions of gene, GNR, importance of GNR. Chapter 2 provides overview of

Differential Evolution (DE) algorithm and pseudo code, important steps,

applications of DE. In Chapter 3 we used DE algorithm with different activation

functions such as Sigmoid, tanh, ReLU to optimize Gene Regulatory Network.

And experiments and results are done in Chapter 3. Finally, the thesis is

summarized and concluded in Chapter 4.

12: INTRODUCTION

References

[1]. https://www.cancerquest.org/cancer-biology/gene-function

[2]. https://en.wikipedia.org/wiki/Gene

[3]. https://www.yourgenome.org/facts/what-is-the-central-dogma

[4]. http://groups.inf.ed.ac.uk/bionlp/links/central-dogma.html

[5]. https://en.wikipedia.org/wiki/Gene_regulatory_network

[6]. Davidson, E. H., & Peter, I. S. (2015). Gene Regulatory Networks.

Genomic Control Process

[7]. Li, Y & Li, G. (2017). An optimization approach of the reconstructing

gene regulatory networks and simulation based on dynamic Bayesian

networks. Revista de la Facultad de Ingenieria. 32. 82-90.

https://www.cancerquest.org/cancer-biology/gene-function
https://en.wikipedia.org/wiki/Gene
https://www.yourgenome.org/facts/what-is-the-central-dogma
http://groups.inf.ed.ac.uk/bionlp/links/central-dogma.html
https://en.wikipedia.org/wiki/Gene_regulatory_network

CHAPTER 2

DIFFERENTIAL

EVOLUTION

14: DIFFERENTIAL EVOLUTION

2.1. Introduction

Differential evolution (DE) is a stochastic, population-based search strategy

developed by Storn and Price in 1995.[2][3] While DE shares similarities with other

evolutionary algorithms (EA), it differs significantly in the sense that distance

and direction information from the current population is used to guide the search

process. Furthermore, the original DE strategies were developed to be applied to

continuous-valued landscapes.

DE is used for multidimensional real-valued functions but does not use

the gradient of the problem being optimized, which means DE does not require

the optimization problem to be differentiable, as is required by classic

optimization methods such as gradient descent and quasi-newton methods. DE

can therefore also be used on optimization problems that are not even continuous,

are noisy, change over time, etc.[1]

Fig.2.1. Differential evolution optimizing 2-D Ackley function

DE optimizes a problem by maintaining a population of candidate solutions and

creating new candidate solutions by combining existing ones according to its

simple formulae, and then keeping whichever candidate solution has the best

score or fitness on the optimization problem at hand. In this way the optimization

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Differentiable_function
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Quasi-newton_methods
https://en.wiktionary.org/wiki/continuous
https://en.wikipedia.org/wiki/Differential_evolution#cite_note-elediadereview-1

15: DIFFERENTIAL EVOLUTION

problem is treated as a black box that merely provides a measure of quality given

a candidate solution and the gradient is therefore not needed.

A basic variant of the DE algorithm works by having a population of candidate

solutions (called agents). These agents are moved around in the search-space by

using simple mathematical formulae to combine the positions of existing agents

from the population. If the new position of an agent is an improvement then it is

accepted and forms part of the population, otherwise the new position is simply

discarded. The process is repeated and by doing so it is hoped, but not guaranteed,

that a satisfactory solution will eventually be discovered.

As in genetic algorithms, design parameters in a d-dimensional search space are

represented as vectors, and various genetic operators are operated over their bits

of strings. However, unlike genetic algorithms, differential evolution carries out

operations over each component (or each dimension of the solution). Almost

everything is done in terms of vectors. For example, in genetic algorithms,

mutation is carried out at one site or multiple sites of a chromosome, whereas

in differential evolution, a difference vector of two randomly chosen population

vectors is used to perturb an existing vector. Such vectorized mutation can be

viewed as a more efficient approach from the implementation point of view. This

kind of perturbation is carried out over each population vector and thus can be

expected to be more efficient. Similarly, crossover is also a vector-based,

component-wise exchange of chromosomes or vector segments.

Apart from using mutation and crossover as differential operators, DE has explicit

updating equations. This also makes it straightforward to implement and to design

new variants.

2.2. Different steps of Differential Evolution

Variation from one generation to the next is achieved by applying crossover

and/or mutation operators. If both these operators are used, crossover is usually

applied first, after which the generated offspring are mutated. For these

algorithms, mutation step sizes are sampled from some probability distribution

function. DE differs from these evolutionary algorithms in that mutation is

applied first to generate a trial vector, which is then used within the crossover

operator to produce one offspring, and mutation step sizes are not sampled from

a prior known probability distribution function. In DE, mutation step sizes are

influenced by differences between individuals of the current population.

https://en.wikipedia.org/wiki/Candidate_solutions
https://en.wikipedia.org/wiki/Candidate_solutions
https://en.wikipedia.org/wiki/Formula
https://www.sciencedirect.com/topics/computer-science/search-space
https://www.sciencedirect.com/topics/computer-science/genetic-operator
https://www.sciencedirect.com/topics/computer-science/differential-evolution
https://www.sciencedirect.com/topics/computer-science/population-vector
https://www.sciencedirect.com/topics/computer-science/population-vector

16: DIFFERENTIAL EVOLUTION

 Main stages of Differential Evolution

1. Initialization

A good uniform random initialization method is used to construct the initial

population, the initial individuals will provide a good representation of the entire

search space, with relatively large distances between individuals. Over time, as

the search progresses, the distances between individuals become smaller, with all

individuals converging to the same solution.

Evaluation of all the population and storing the fitness value of the same

population in a vector.

2. Mutation

The DE mutation operator produces a trial vector for each individual of the

current population by mutating a target vector with a weighted differential. This

trial vector will then be used by the crossover operator to produce offspring. For

each parent, 𝑥𝑖(𝑡), generate the trial vector, 𝑢𝑖(𝑡), as follows: Select a target

17: DIFFERENTIAL EVOLUTION

vector, 𝑥𝑖1(𝑡), from the population, such that i ≠ i1. Then, randomly select two

individuals, xi2 and xi3, from the population such that i ≠ i1 ≠ i2 ≠ i3 and i2, i3 ∼

U(1, ns). Using these individuals, the trial vector is calculated by perturbing the

target vector as follows:

 𝑢𝑖(𝑡) = 𝑥𝑖1(𝑡) + β*(𝑥𝑖2(𝑡) - 𝑥𝑖3(𝑡))

Where β ∈ (0, ∞) is the scale factor, controlling the amplication of the differential

variation.

3. Crossover

The DE crossover operator implements a discrete recombination of the trial

vector, 𝑢𝑖(𝑡), and the parent vector, 𝑥𝑖(𝑡), to produce offspring, 𝑥′𝑖(𝑡). Crossover

is implemented as follows:

 𝑥′𝑖𝑗(𝑡) = {
𝑢𝑖𝑗(𝑡), 𝑗 ∈ 𝐽

𝑥𝑖𝑗(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Where 𝑥𝑖𝑗(𝑡) refers to the jth element of the vector 𝑥𝑖(𝑡), and J is the set of element

indices that will undergo perturbation (or in other words, the set of crossover

points). Different methods can be used to determine the set, J, of which the

following two approaches are the most frequently used:

• Binomial crossover: The crossover points are randomly selected

from the set of possible crossover points, {1, 2, . . ., 𝑛𝑥}, where 𝑛𝑥

is the problem dimension. In this algorithm, 𝑝𝑟 is the probability that

the considered crossover point will be included. The larger the value

of 𝑝𝑟, the more crossover points will be selected compared to a

smaller value. This means that more elements of the trial vector will

be used to produce the offspring, and less of the parent vector.

Because a probabilistic decision is made as to the inclusion of a

crossover point, it may happen that no points may be selected, in

which case the offspring will simply be the original parent, 𝑥𝑖(𝑡).

This problem becomes more evident for low dimensional search

spaces. To enforce that at least one element of the offspring differs

from the parent, the set of crossover points, J, is initialized to include

a randomly selected point, j∗

18: DIFFERENTIAL EVOLUTION

• Exponential crossover: inclusion of a crossover point, it may

happen that no points may be selected, in which case the offspring

will simply be the original parent, xi(t). This problem becomes more

evident for low dimensional search spaces. To enforce that at least

one element of the offspring differs from the parent, the set of

crossover points, J , is initialized to include a randomly selected

point, j∗

4. Selection

Selection is applied to determine which individuals will take part in the mutation

operation to produce a trial vector, and to determine which of the parent or the

offspring will survive to the next generation. With reference to the mutation

operator, a number of selection methods have been used. Random selection is

usually used to select the individuals from which difference vectors are

calculated. For most DE implementations the target vector is either randomly

selected or the best individual is selected. To construct the population for the next

generation, deterministic selection is used: the offspring replaces the parent if the

fitness of the offspring is better than its parent; otherwise the parent survives to

the next generation. This ensures that the average fitness of the population does

not deteriorate.

19: DIFFERENTIAL EVOLUTION

2.3. Pseudo Code of DE

Begin

 Initialize the population with random values between (0 and 1)

 Denormalize the population

 Evaluate the fitness value of the population.

Choose the best candidate from the population according to the fitness

value and store it in best.

Best_vector

Best_fitness

 For i = 0 to num_its:

 For j = 0 to no_pop:

 Target_vector

 Target_fitness

Mutation

Select randomly three candidates a, b, c such that a != b != c

and not equal to target candidate.

 Create a mutant candidate using a, b, c.

 Mutant = a + mutation_factor*(b – c)

 #Crossover

 If rand() < Crossover_point then:

 Create a trial vector using mutant and target vector.

 End If

 Evaluate this trial vector and store the result in f.

 # Selection

If f < Target_fitness then:

 Target = trial

 Target_vector = f

 If f < Best_fitness then:

 Best = trial

 End If

 End IF

 End For

 End For

 Return Best, Best_fitness

20: DIFFERENTIAL EVOLUTION

2.4. Applications of DE in Bioinformatics

Bioinformatics is an interdisciplinary field that develops and improves methods

for storing, retrieving, organizing and analyzing biological data. A major activity

in bioinformatics is to develop software tools to generate useful biological

knowledge. As an interdisciplinary field of science, bioinformatics combines

biology, computer science, information engineering and statistics to analyze and

interpret biological data.

The term bioinformatics was coined by Paulien Hogeweg and Ben Hesper to

describe "the study of informatic processes in biotic systems" and it found early

use when the first biological sequence data began to be shared. Whilst the initial

analysis methods are still fundamental to many large-scale experiments in the

molecular life sciences, nowadays bioinformatics is considered to be a much

broader discipline, encompassing modelling and image analysis in addition to the

classical methods used for comparison of linear sequences or three-dimensional

structures.

Fig.2.4. Different fields that make up Bioinformatics

The actual process of analyzing and interpreting data is referred to

as computational biology. Important sub-disciplines within bioinformatics and

computational biology include:

21: DIFFERENTIAL EVOLUTION

• Development and implementation of computer programs that enable efficient

access to, use and management of, various types of information

• Development of new algorithms (mathematical formulas) and statistical

measures that assess relationships among members of large data sets. For

example, there are methods to locate a gene within a sequence, to predict

protein structure and/or function, and to cluster protein sequences into

families of related sequences.

The primary goal of bioinformatics is to increase the understanding of biological

processes. What sets it apart from other approaches, however, is its focus on

developing and applying computationally intensive techniques to achieve this

goal. Examples include: pattern recognition, data mining, machine

learning algorithms, and visualization. Major research efforts in the field

include sequence alignment, gene finding, genome assembly, drug design, drug

discovery, protein structure alignment, protein structure prediction, prediction

of gene expression and protein–protein interactions, genome-wide association

studies, the modeling of evolution and cell division/mitosis.

The Evolutionary Algorithms (EA) works on the principle of exploration and

exploitation. The exploration starts from a random population. Later stages of

process where the search is concentrated in a particular area, exploitation of search

space yields the optimal solution. Compared to other global optimization

techniques, evolutionary algorithms (EA) are easy to implement and very often

they provide satisfactory solutions. A population of candidate solutions is

initialized. New solutions are created by applying operators on the chosen

parameters. The fitness or worthiness of the resulting solutions is evaluated and

suitable selection strategy is then applied for the continuation of those solutions in

the next iteration.

The general procedure for an evolutionary algorithm is as follows:

1. Given a population of individuals

2. Environmental pressure causes natural selection

3. Rise in fitness

4. For a fitness function, randomly create a set of candidate solutions

5. Based on fitness, some better candidates are chosen to seed the next

generation.

6. Recombination – A procedure on two or more candidates which gives rise

to two or more candidates.

https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Biological_Data_Visualization
https://en.wikipedia.org/wiki/Sequence_alignment
https://en.wikipedia.org/wiki/Gene_finding
https://en.wikipedia.org/wiki/Genome_assembly
https://en.wikipedia.org/wiki/Drug_design
https://en.wikipedia.org/wiki/Drug_discovery
https://en.wikipedia.org/wiki/Drug_discovery
https://en.wikipedia.org/wiki/Protein_structural_alignment
https://en.wikipedia.org/wiki/Protein_structure_prediction
https://en.wikipedia.org/wiki/Gene_expression
https://en.wikipedia.org/wiki/Protein%E2%80%93protein_interactions
https://en.wikipedia.org/wiki/Genome-wide_association_studies
https://en.wikipedia.org/wiki/Genome-wide_association_studies
https://en.wikipedia.org/wiki/Evolution
https://en.wikipedia.org/wiki/Cellular_model

22: DIFFERENTIAL EVOLUTION

7. Due to recombination, the newly formed candidates are entirely based on

fitness.

8. The newly formed candidates replace the less fit individuals

9. The process is iterated.

In bioinformatics, if the problem is protein sequencing, the population would be

set of proteins. The objective function would be maximizing the set of proteins

that match with the DNA database.

Most of the bioinformatics applications are of multi-objective optimization

problems. Algorithms like FASTLSA and FASTA can be easily applied with

evolutionary procedure and they compare two sequences and the selection

procedure can be decided the evolutionary way.

Most of the bioinformatics applications are of multi-objective optimization

problems. Algorithms like FASTLSA and FASTA can be easily applied with

evolutionary procedure and they compare two sequences and the selection

procedure can be decided the evolutionary way.

2.5. Conclusion

Differential evolution (DE) is such a method that since its inception in 1995, DE

has earned a reputation as a very effective global optimizer. While DE is not a

panacea, its record of reliable and robust performance makes it one of the best

optimizer.

While DE may not always be the fastest method, it is usually the one that produces

the best result, although the number of cases in which it is also faster is

significant. DE also proves itself to be robust, both in how control parameters are

chosen and in the regularity with which it finds the true optimum.

In addition, when compared to one-point optimizers, DE is relatively immune to

differences in initial populations. Because it is a direct search method, DE is

versatile enough to solve problems whose objective functions lack the analytical

description needed to compute gradients. DE is a good first choice when

approaching a new and difficult global optimization problem is defined with

continuous or discrete parameters.

23: DIFFERENTIAL EVOLUTION

References

[1] Rocca, P.; Oliveri, G.; Massa, A. (2011). "Differential Evolution as

Applied to Electromagnetics". IEEE Antennas and Propagation

Magazine. 53 (1): 38–49. doi:10.1109/MAP.2011.5773566.

[2] Storn, R.; Price, K. (1997). “Differential evolution – a simple and efficient

heuristic for global optimization over continuous spaces”, Journal of

Global Optimization. 11 (4): 341-359. Doi:10.1023/A:1008202821328

[3] Storn, R. (1996). "On the usage of differential evolution for function

optimization". Biennial Conference of the North American Fuzzy

Information Processing Society (NAFIPS). pp. 519–523.

[4] https://en.wikipedia.org/wiki/Differential_evolution

[5] https://pablormier.github.io/2017/09/05/a-tutorial-on-differential-

evolution-with-python/#

[6] https://www.ebi.ac.uk/training/online/course/bioinformatics-terrified-

2018/what-bioinformatics

[7] http://www.nust.edu.pk/INSTITUTIONS/Centers/RCMS/ap/pg/MSBioin

formatics/Pages/default.aspx

https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109%2FMAP.2011.5773566
https://doi.org/10.1023%2FA%3A1008202821328
https://en.wikipedia.org/wiki/Differential_evolution
https://pablormier.github.io/2017/09/05/a-tutorial-on-differential-evolution-with-python/
https://pablormier.github.io/2017/09/05/a-tutorial-on-differential-evolution-with-python/
https://www.ebi.ac.uk/training/online/course/bioinformatics-terrified-2018/what-bioinformatics
https://www.ebi.ac.uk/training/online/course/bioinformatics-terrified-2018/what-bioinformatics
http://www.nust.edu.pk/INSTITUTIONS/Centers/RCMS/ap/pg/MSBioinformatics/Pages/default.aspx
http://www.nust.edu.pk/INSTITUTIONS/Centers/RCMS/ap/pg/MSBioinformatics/Pages/default.aspx

CHAPTER 3

SOLVING GRN USING

DIFFERENTIAL

EVOLUTION

25: Solving GRN using DE

3.1. Introduction

Inference of genetic regulatory networks from time series gene expression data

has attracted attention, due to its importance in revealing fundamental cellular

processes, investigating functions of genes, and understanding complex relations

and interactions between genes. Large-scale gene expression data provide us with

genome-wide information about the genetic regulatory networks that control

basic biological processes such as development, disease, and the cell cycle. Time-

series

gene expression data of such measurements allow us to visualize this dynamics

directly as changing intensity patterns on gene chips. The goal of reverse

engineering [1] techniques is to capture the pattern of regulatory excitation and

inhibition amongst a set of genes and reconstruct their underlying genetic

network.

Many types of linear or nonlinear mathematical models have been already

proposed to infer gene regulatory networks from the time series microarray data

i.e. a reverse engineering problem. Boolean networks [5], Dynamic Bayesian

network [6], S-system [7], etc. were very popular methods to infer GRN. However

in this project we have used Recurrent Neural Network (RNN) which is a closed

loop Neural Network with a delayed feedback variable. It is very suitable to

model the dynamics of genes and infer GRN from the temporal data. Generally,

RNN along with an optimization technique is used to infer the GRN where the

objective function of optimization is the training error. In a recurrent neural

network, the current state of a neuron is determined by the previous states of all

or most of the neurons in the network. As a result, the model provides dynamic

aspect, which is most essential for the gene regulatory network. The weight

between neurons gives the numeric interaction values between genes. Thereby, if

it is possible to find those weight values between neurons from the time series

data available for genes, then the real interaction between genes can be revealed.

We have implemented differential evolution algorithm (DE) for the

reconstruction of GNR based on RNN. Though there are many techniques

available to train recurrent neural network, such as back propagation through

time, Genetic Algorithm (GA)[9], Particle Swarm Optimization (PSO)[10], K-

means Population-Based Incremental Learning (KPBIL)[11], Bat Algorithm

(BA)[12], hybridized Cuckoo Search (CS)-Flower Pollination Algorithm (FPA)[13],

we have chosen DE because of its fast convergence rate and simplicity.

26: Solving GRN using DE

Traditional gradient descent-based methods are easily stuck in local minima and

the computation of the derivatives is also not always possible. Here, the

performance of the evolutionary computation technology-based method, known

as differential evolution (DE) in training RNNs is investigated.

3.2. Proposed Methodology

A. Model used in the framework:

To the dynamic aspect of recurrent neural network, we have chosen the

differential equation (1) as our model, where each gene expression is

differentiated with respect to time.

𝛤𝑖
𝑑𝑒𝑖

𝑑𝑡
 = ∫(∑ 𝑤𝑗𝑖 𝑒𝑗(𝑡)𝑁

𝑗=1 − 𝑏𝑖) − 𝑑𝑖𝑔𝑖 (1)

Let 𝑒𝑖 is the expression of ith gene, 𝛤𝑖 is the time constant, 𝑤𝑗𝑖 be a weight from

neuron j to neuron i in the neural net representation of a recurrent neural network ;

𝑤𝑗𝑖 can be positive, negative or zero depending on whether jth gene is activating,

inhibiting gene i or doesn’t have any effect on it at all, ‘𝑏𝑖’, ‘𝑑𝑖’, and ‘N’ represent

the bias term for ith gene, decay constant for 𝑒𝑖, and total number of genes present

in the network, f(z)=1/(1+𝑒−𝑧), tanh and ReLU are the nonlinear functions used

to get the output of each gene. Here, z is the combined effect of all genes on ith

gene. To incorporate the discrete feature in our model with respect to time we

have changed (1) as follows:

𝛤𝑖
𝑑𝑒𝑖

𝑑𝑡
 = ∫(∑ 𝑤𝑗𝑖 𝑒𝑗(𝑡)𝑁

𝑗=1 − 𝑏𝑖) − 𝑑𝑖𝑔𝑖

𝛤𝑖
𝑒𝑖(𝑡+ 𝛥𝑡)− 𝑒𝑖(𝑡)

 𝛥𝑡
 = ∫(∑ 𝑤𝑗𝑖 𝑒𝑗(𝑡)𝑁

𝑗=1 − 𝑏𝑖) − 𝑑𝑖𝑔𝑖

𝑒𝑖(𝑡 + 𝛥𝑡) =
𝛥𝑡

𝛤𝑖
 ∫(∑ 𝑤𝑗𝑖 𝑒𝑗(𝑡) − 𝑏𝑖 𝑁

𝑗=1) + 𝑒𝑖(𝑡) (1 −
 𝛥𝑡

𝛤𝑖
𝑑𝑖) (2)

Equation (2) demonstrates how expression of a particular gene changes with time

in response to the other genes present in the network.

27: Solving GRN using DE

B. Synthesis of gene expression data

Here we attempted to generate artificial gene expression time series data to test

the accuracy of our method. Using the model in equation (2), we have generated

time series data using the parameter values of TABLE I of a 4-gene network.

TABLE - I

 Gene 1 Gene 2 Gene 3 Gene 4 bi Γi

Gene 1 20.0 -20.0 0.0 0.0 0.0 10.0

Gene 2 15.0 -10.0 0.0 0.0 -5.0 5.0

Gene 3 0.0 -8.0 12.0 0.0 0.0 5.0

Gene 4 0.0 0.0 8.0 -12.0 0.0 5.0

The interpretation of the above weight values are as follows. From TABLE I we

can see that box (1, 2) = - 20.00, the meaning is that gene1 has -20.00 unit of

effect

on gene2. We have chosen the same set of values as in paper [1] to compare the

accuracy of our model. The generated time series data for the genes are shown in

Fig.1

Fig.3.2. Expression profile of Gene1, Gene 2, Gene 3 and Gene 4 respectively.

28: Solving GRN using DE

It can be seen from Fig. 3.2 that nearly after150 points, the expression of all the

genes get saturated, therefore this is the region from where we can extract

maximum information. Because of this reason we have used 150 data points for

each gene profile.

 C. The cost function used

Accuracy of gene regulatory network (GRN) design mainly depends on two

issues (i) how well we can measure the accuracy of the existing connection values

of the network, and (ii) how well we can measure the accuracy of the skeletal

structure (network topology) of the simulated network. Handling both issues

simultaneously is a tough job, because we do not have any knowledge except the

available gene expression time series data, which is also limited. To meet the first

issue, we evaluated the accuracy of the produced gene expression of our

simulated network

by comparing it with the gene expression produced using the network parameters

of TABLE I with the hope that if the network parameters of our simulated

network is closer to the parameters of TABLE I then the difference (error)

between these two set of gene expression will be less. That error has been

calculated using the equation (3).

𝐶1 =
1

TNM
 ∑ ∑ ∑ {[𝑒𝑜𝑟𝑔

𝑛 (𝑡)]
𝑚

− [𝑒𝑐𝑎𝑙
𝑛 (𝑡)]𝑚}

2
𝑁

𝑛

𝑇

𝑡=1

𝑀

𝑚=1

 (3)

Here M is the number of time series used; T is the number of data point in each

time series data, and N is the number of gene present in the network. [𝑒𝑜𝑟𝑔
𝑛 (𝑡)]

𝑚

is

the original expression of nth gene at tth time instance in mth time series, and

[𝑒𝑐𝑎𝑙
𝑛 (𝑡)]𝑚 is the calculated expression of the same using our simulated network.

The study of genetics reveals that in a gene regulatory network it is unlikely that

all the genes interact with each other; rather few genes are involve in regulation

of a gene. Considering this practical phenomenon, we designed the cost function

given by equation (4).

𝐶2 = 𝑐 ∑ ∑
|𝑤𝑗𝑖|

|1 + 𝑤𝑗𝑖|
 (4)

𝑁

𝑗=1

𝑁

𝑖=1

29: Solving GRN using DE

Here wji is the connection value between gene j, and gene i, and c is a constant.

Choosing proper value of c is also tricky. An appropriate value will lead to a good

solution or it may mislead the system, its value should be such that C2 can’t

override C1. Our final cost function is shown in equation (5).

𝐶 = 𝐶1 + 𝐶2

𝐶 =
1

TNM
 ∑ ∑ ∑ {[𝑒𝑜𝑟𝑔

𝑛 (𝑡)]
𝑚

− [𝑒𝑐𝑎𝑙
𝑛 (𝑡)]𝑚}

2
𝑁

𝑛

𝑇

𝑡=1

𝑀

𝑚=1

+ 𝑐 ∑ ∑
|𝑤𝑗𝑖|

|1 + 𝑤𝑗𝑖|
 (5)

𝑁

𝑗=1

𝑁

𝑖=1

Using this cost function, we will select the solution with the smallest cost value

as the final solution i.e. if cost of solution1 is less than that of solution2 then

solution1 is our final solution.

D. Differential Evolution (DE)

Consider a population of size N

The population matrix can be shown as:

𝑥𝑛,𝑖
𝑔

= [𝑥𝑛,1
𝑔

, 𝑥𝑛,2
𝑔

, 𝑥𝑛,3
𝑔

, … … . , 𝑥𝑛,𝐷
𝑔

]

Where g is the generation, n = 1, 2,3, 4,…….,N and D parameters

The steps of Differential Evolution are as follows:

1. Initialization

Initial population is generated randomly between lower and upper bound.

𝑥𝑛,𝑖 = 𝑥𝑛,𝑖
𝐿 + 𝑟𝑎𝑛𝑑() ∗ (𝑥𝑛,𝑖

𝑈 − 𝑥𝑛,𝑖
𝐿) i = 1, 2, 3,.., D and n = 1, 2, 3,..,N

Where 𝑥𝑖
𝑈 is the upper bound of the variable 𝑥𝑖

Where 𝑥𝑖
𝐿 is the lower bound of the variable 𝑥𝑖

2. Mutation

From each parameter vector, select three other vectors 𝑥𝑟1𝑛
𝑔

, 𝑥𝑟2𝑛
𝑔

 𝑎𝑛𝑑 𝑥𝑟3𝑛
𝑔

randomly.

Add the weighted difference of two of the vectors to the third

𝑣𝑛
𝑔

= 𝑥𝑟1𝑛
𝑔

+ 𝐹(𝑥𝑟2𝑛
𝑔

− 𝑥𝑟3𝑛
𝑔

) 𝑛 = 1, 2, 3, … . , 𝑁

30: Solving GRN using DE

𝑣𝑛
𝑔

 is called donor vector

F is generally taken between 0 and 1

3. Recombination

A trial vector 𝑈𝑛,𝑖
𝑔+1

 is developed from the target vector, 𝑥𝑛,𝑖
𝑔

, and the donor

vector, 𝑉𝑛,𝑖
𝑔+1

𝑈𝑛,𝑖
𝑔+1

= {
𝑉𝑛,𝑖

𝑔+1
 𝑖𝑓 𝑟𝑎𝑛𝑑() ≤ 𝐶𝑝 𝑜𝑟 𝑖 = 𝐼𝑟𝑎𝑛𝑑 𝑖 = 1, 2, 3, … , 𝐷

𝑥𝑛,𝑖
𝑔

 𝑖𝑓 𝑟𝑎𝑛𝑑() > 𝐶𝑝 𝑎𝑛𝑑 𝑖 ≠ 𝐼𝑟𝑎𝑛𝑑 𝑛 = 1, 2, 3, … , 𝑁

𝐼𝑟𝑎𝑛𝑑 is a integer random number between [1, D]

𝐶𝑝 is the recombination probability

4. Selection

The target vector 𝑥𝑛,𝑖
𝑔

 is compared with the trial vector 𝑢𝑛,𝑖
𝑔+1

 and the one with

the lowest function value is selected for the next generation.

𝑥𝑛
𝑔+1

= {
𝑈𝑛,𝑖

𝑔+1
 𝑖𝑓 𝑓(𝑈𝑛

𝑔+1
) < 𝑓(𝑥𝑛

𝑔
)

𝑥𝑛
𝑔

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

n = 1, 2, 3, …, N

31: Solving GRN using DE

3.3 Pseudo Code

INITIALIZE LIBRARIES

INITIALIZE PARAMETERS

Crossover ratio = CR

Mutation = mut

No of iteration = its

No of gene, No of parameters (NP), Upper and Lower bound

Initialize gene_cal

INITIALIZE POPULATION

Randomly initialize a population of NP individuals with each individual

uniformly distributed in range [Upper, Lower]

FUNCTION DE (population):

Fitness = array of fitness of all population

Best = best individual having lowest fitness

Fitness(best) = fitness of the best individual

FOR I in range(NP): do

 I. MUTATION:

select a target vector

a, b , c = randomly select three individuals without replacement from the

population

IF(selected individuals are different): THEN

 Mutant vector = a + mutation factor*(b – c)

END IF

ELSE:

 Select again

END ELSE

II. CROSSOVER

Generate trial vector

 IF crossover point > CR: THEN

Replace elements between target vector and mutant vector and

create a trial vector

END IF

32: Solving GRN using DE

Evaluate the trial vector and calculate the fitness

III. SELECTION

IF fitness(trial_vector) < fitness(target vector): THEN

 fitness(target vector) = fitness(trial vector)

 target vector = trial vector

 IF fitness(trial vector) < fitness(best): THEN

 best = trial

 END IF

 END IF

RETURN best, fitness(best)

FUNCTION fitness(vector):

 Call generate_gene_data(weight, bias, time_constant)

 Fitness = (gene_original – gene_calculated)2

 Fitness / (no_of_gene)*time_point

 RETURN fitness

FUNCTION calculate_gene_data(weight, bias, time_constant):

 Calculate sum, apply sum to sigmoid function, subtract bias,

 add gene(j)*weight

 Calculate gene_org

33: Solving GRN using DE

3.4. Actual Code

#------------------------- Importing libraries --------------------------#

import numpy as np

import random

import matplotlib.pyplot as plt

np.random.seed(30)

random.seed(30)

#------------------------- Parameters initialization --------------------------#

no_gene = 4

no_param = 24

no_pop = 70

time_point = 150

delta = 0.01

CR = 0.8

mut = 0.4

its = 500

bounds = [(-20, 20)]*no_param

#------------------------- Gene Expression Data -------------------------#

gene_org = original gene data

#------------------------Initialization-------------------------#

gene_org = np.array(gene_org)

gene_cal = np.zeros(gene_org.shape)

gene_cal[0][0] = 0.951

gene_cal[1][0] = 0.22

gene_cal[2][0] = 0.62

gene_cal[3][0] = 0.79

Initializing the population with random values

pop = np.random.rand(no_pop, no_param)

34: Solving GRN using DE

#------------------------Differential Evolution-------------------------#

def de(pop):

 dimensions = len(bounds)

 min_b, max_b = np.asarray(bounds).T

 diff = np.fabs(min_b - max_b)

 # Population Normalization

 pop_denorm = min_b + pop * diff

 # Calculation fitness of the population

 fitness = np.asarray([func(ind) for ind in pop_denorm])

 best_idx = np.argmin(fitness)

 best = pop_denorm[best_idx]

 for i in range(its):

 print('iteration-> {}'.format(i),'cost-> {}'.format(func(best)))

 for j in range(no_pop):

 # Mutation

 idxs = [idx for idx in range(no_pop) if idx != j]

 a, b, c = pop[np.random.choice(idxs, 3, replace = False)]

 mutant = np.clip((a + mut * (b - c)), 0, 1)

 # Crossover

 cross_points = np.random.rand(dimensions) < CR

 if not np.any(cross_points):

 cross_points[np.random.randint(0, dimensions)] = True

 trial = np.where(cross_points, mutant, pop[j])

 trial_denorm = min_b + trial * diff

 # Evaluation

 f = func(trial_denorm)

35: Solving GRN using DE

 # Selection

 if f < fitness[j]:

 fitness[j] = f

 pop[j] = trial

 if f < fitness[best_idx]:

 best_idx = j

 best = trial_denorm

 yield best, fitness[best_idx]

#--------------------------- Cost Function ---------------------------#

def func(pop):

 w = np.array(pop[0:16])

 b = np.array(pop[16:20])

 T = np.array(pop[20:24])

 total_cost1 = 0

 calculate_gene_exp(w, b, T)

 total_cost1 = np.sum(np.power((gene_org - gene_cal),2))

 total_cost1 /= no_gene*time_point

 return total_cost1

#----------------------------- Calculating gene data ---------------------------#

def calculate_gene_exp(w, b, T):

 for t in range(1, time_point):

 k = 0

 for i in range(no_gene):

36: Solving GRN using DE

 gene_cal[i][t] = gene_cal[i][t-1]*(1-(delta/T[i]))

 sum = 0

 for j in range(no_gene):

 sum += gene_cal[j][t-1]*w[k]

 k += 1

 sum -= b[i]

 fsum = 1/(1 + np.exp(-sum))

 gene_cal[i][t] += fsum*(delta/T[i])

a = list(de(pop))

m = np.linspace(0, 150, 150)

plt.figure(1)

plt.plot(m, gene_cal[0],label='calculated'), plt.plot(m, gene_org[0], '--', label =

'original')

plt.legend()

plt.title('Gene 1 profile')

plt.show()

plt.plot(m, gene_cal[1], label='calculated'), plt.plot(m, gene_org[1], '--', label =

'original')

plt.legend()

plt.title('Gene 2 profile')

plt.show()

plt.plot(m, gene_cal[2], label='calculated'), plt.plot(m, gene_org[2], '--', label =

'original')

plt.legend()

plt.title('Gene 3 profile')

plt.show()

plt.plot(m, gene_cal[3], label='calculated'), plt.plot(m, gene_org[3], '--', label =

'original')

37: Solving GRN using DE

plt.legend()

plt.title('Gene 4 profile')

plt.show()

m = np.linspace(0, 150, 150)

plt.plot(m, gene_cal[0])

plt.title('Gene 1 profile')

plt.show()

plt.plot(m, gene_cal[1])

plt.title('Gene 2 profile')

plt.show()

plt.plot(m, gene_cal[2])

plt.title('Gene 3 profile')

plt.show()

plt.plot(m, gene_cal[3])

plt.title('Gene 4 profile')

plt.show()

print('parameters = {}'.format((np.round(a[-1][0]))), 'Cost = {}'.format((a[-

1][1])))

cr = cumulative error of each gene

cr1 = np.sum(np.fabs(gene_org[0]-gene_cal[0]))

cr2 = np.sum(np.fabs(gene_org[1]-gene_cal[1]))

cr3 = np.sum(np.fabs(gene_org[2]-gene_cal[2]))

cr4 = np.sum(np.fabs(gene_org[3]-gene_cal[3]))

print(cr1, cr2, cr3, cr4)

38: Solving GRN using DE

3.5. Experiments and Results

The experiment was carried out on AMD E1-1200 1.4Ghz APU powered laptop

using Jupyter Notebook with Python 3 kernel. The code is written in Python 3

language. We made use of the numpy, random and matplotlib libraries for

computation, random number generation and graph plotting. We chose python

because it is very easy to use yet very powerful.

We applied DE code to two different data set, one having 4 genes and 150 time

point data, second, having 8 genes and 50 time point data and calculated the

result.

We used three different activation functions in our code and applied to each

dataset. The three activation functions used by us are 1. Sigmoid, 2. Hyperbolic

Tangent (tanh), 3. Rectified Linear Unit (ReLU).

4 GENE 150 TIME POINT DATASET

Sigmoid activation function:

We applied differential evolution (DE) code with sigmoid activation function

𝑓(𝑥) = 1 (1 + 𝑒−𝑥)⁄ on 4 gene 150 time point dataset and calculated the result.

The results are as follows:

I. Network and Weight values of the network:

Fig. 3.4.1. Connections between genes with weights

G1 G2

G4 G3

W01

W12
W00

W11

W20

W30

W03
W21

W32

W23

W31

W13

W02

W33

W22

W12

39: Solving GRN using DE

Table 1. Result after run using sigmoid function on 4 gene 150 time point data,

70 population

 Gene 1 Gene 2 Gene 3 Gene 4 𝑏𝑖 𝛤𝑖

Gene 1 -3.77 20.0 -7.61 3.08 -15.12 0.66

Gene 2 8.42 8.45 -1.98 7.00 -19.9 0.33

Gene 3 -18.26 -9.73 9.04 12.84 -14.83 0.34

Gene 4 -4.01 3.9 0.0 -12.25 -8.08 0.332

40: Solving GRN using DE

II. Gene profile graphs

41: Solving GRN using DE

Fig. 3.4.1. Expression profile (obtained and original) of gene 1, gene 2, gene 3,

gene 4 obtained using DE and sigmoid as an activation function

42: Solving GRN using DE

Fig. 3.4.2. Minimum cost function value in each step in DE using sigmoid

activation function after 500 iterations

III. Cumulative error of each gene after the complete run of DE using sigmoid

activation function.

Gene 1 = 0.005387648569680326

Gene 2 = 0.0024540599978749578

Gene 3 = 0.04065428762069223

Gene 4 = 0.05334962900011064

43: Solving GRN using DE

Tangent Hyperbolic (tanh) activation function:

Second, we applied differential evolution (DE) code with tangent hyperbolic

(tanh) activation function 𝑓(𝑥) =
(𝑒𝑥 − 𝑒−𝑥)

(𝑒𝑥 + 𝑒−𝑥)⁄ on 4 gene 150 time

point dataset and calculated the result.

The results are as follows:

I. Network and Weight values of the network:

Fig. 3.4.1. Connections between genes with weights

Table 3. Result after run using tanh function on 4 gene 150 time point data, 70

population

 Gene 1 Gene 2 Gene 3 Gene 4 bi Γi

Gene 1 19.0 -16.0 -15.29 14.33 -20.0 0.65

Gene 2 8.77 20.0 17.83 -5.83 -18.37 0.33

Gene 3 17.47 4.48 2.78 -7.79 18.30 -1.97

Gene 4 7.715 4.20 -0.831 -20.0 -1.91 0.90

G1 G2

G4 G3

W01

W12
W00

W11

W20

W30

W03
W21

W32

W23

W31

W13

W02

W33

W22

W12

44: Solving GRN using DE

II. Gene profile graphs

45: Solving GRN using DE

Fig. 3.4.1. Expression profile (obtained and original) of gene 1, gene 2, gene 3,

gene 4 obtained using DE and tanh as an activation function

46: Solving GRN using DE

Fig. 3.4.2. Minimum cost function value in each step in DE using tanh

activation function after 2000 iterations

III. Cumulative error of each gene after the complete run of DE using tanh

activation function.

Gene 1 = 0.005049140885144965

Gene 2 = 0.009772150626521758

Gene 3 = 0.7326788134764473

Gene 4 = 0.39660406731284326

47: Solving GRN using DE

Rectified Linear Unit (ReLU) activation function:

Third, we applied differential evolution (DE) code with rectified linear unit

(ReLU) activation function 𝑓(𝑥) = {
𝑥 𝑖𝑓 𝑥 > 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑜𝑟 𝑚𝑎𝑥(0, 𝑥) on 4 gene

150 time point dataset and calculated the result.

The results are as follows:

I. Network and Weight values of the network:

Fig. 3.4.1. Connections between genes with weights

Table 3. Result after run using ReLU activation function on 4 gene 150 time

point data, 70 population

 Gene 1 Gene 2 Gene 3 Gene 4 bi Γi

Gene 1 -17 -9 19 -2 -9 16

Gene 2 12 -20 10 11 -17 6

Gene 3 5 -5 18 -4 14 -1

Gene 4 19 3 -5 -12 10 0.33

G1 G2

G4 G3

W01

W12
W00

W11

W20

W30

W03
W21

W32

W23

W31

W13

W02

W33

W22

W12

48: Solving GRN using DE

II. Gene profile graphs

49: Solving GRN using DE

Fig. 3.4.1. Expression profile (obtained and original) of gene 1, gene 2, gene 3,

gene 4 obtained using DE and ReLU as an activation function

50: Solving GRN using DE

Fig. 3.4.2. Minimum cost function value in each step in DE using ReLU

activation function after 2000 iterations

III. Cumulative error of each gene after the complete run of DE using sigmoid

activation function.

Gene 1 = 1.219748937526846

Gene 2 = 1.620647139444918

Gene 3 = 2.2344797549153337

Gene 4 = 0.6278830194131982

51: Solving GRN using DE

8 GENE 50 TIME POINT DATASET

Sigmoid activation function:

First, we applied differential evolution (DE) code with sigmoid activation

function 𝑓(𝑥) = 1 (1 + 𝑒−𝑥)⁄ on 8 gene 50 time point dataset and calculated the

result.

The results are as follows:

I. Weight values of the network:

 Gen

e 1

Gene

2

Gene

3

Gene

4

Gene

5

Gene

6

Gene

7

Gene

8

𝑏𝑖 𝛤𝑖

Gen

e 1

-

27.9

5.60 -20.7 30.0 -17.5 -27.8 -30.0 30.0 28.7

1

-3.54

Gen

e 2

3.83 -1.31 12.5

5

-19.9 29.8

5

-26.9 -29.5 -10.0 -28.8 0.00

1

Gen

e 3

-

27.5

25.1 -29.0 2.04 -29.2 29.2

3

-1.34 -27.4 -23.1 0.00

2

Gen

e 4

-

26.5

1.55 -16.0 -22.9 -16.7 27.8

4

-27.9 3.58 -7.87 -4.40

Gen

e 5

4.61 22.4

8

-26.0 28.8

9

28.1

3

-19.9 22.4

4

-22.1 -28.8 2.53

Gen

e 6

-

29.9

8.79 -13.5 -19.5 -27.7 27.7 -7.79 16.7

9

-28.2 -0.28

Gen

e 7

-

20.8

3.48 26.8

7

19.4

5

18.5

4

15.4

6

-30.0 26.5

1

-4.78 0.00

1

Gen

e 8

-

29.4

14.4

9

-0.21 -28.5 -26.4 -28.6 27.7

3

22.4

4

29.2

0

14.1

7

52: Solving GRN using DE

II. Gene profile graphs:

53: Solving GRN using DE

54: Solving GRN using DE

55: Solving GRN using DE

Fig. 3.4.1. Expression profile (obtained and original) of gene 1, gene 2, gene 3,

gene 4, gene 5, gene 6, gene 7, gene 8 obtained using DE and sigmoid as an

activation function

56: Solving GRN using DE

Fig. 3.4.2. Minimum cost function value in each step in DE using sigmoid

activation function after 2000 iterations

III. Cumulative error of each gene after the complete run of DE using sigmoid

activation function.

Gene 1 = 1444.6383413566189

Gene 2 = 5399.367133105187

Gene 3 = 942.014392573654

Gene 4 = 6195.347531207003

Gene 5 = 4690.470643825132

Gene 6 = 617.47679739405

Gene 7 = 471.1232009093766

Gene 8 = 536.7045559935261

57: Solving GRN using DE

Tangent Hyperbolic (tanh) activation function:

Second, we applied differential evolution (DE) code with tangent hyperbolic

(tanh) activation function 𝑓(𝑥) =
(𝑒𝑥 − 𝑒−𝑥)

(𝑒𝑥 + 𝑒−𝑥)⁄ on 8 gene 50 time

point dataset and calculated the result.

The results are as follows:

I. Weight values of the network:

 Gene

1

Gene

2

Gene

3

Gene

4

Gen

e 5

Gene

6

Gene

7

Gene

8

𝑏𝑖 𝛤𝑖

Gen

e 1

-21.3 -24.4 -4.76 -22.5 -

18.3

-16.8 -13.5 22.4

0

-19.0 -2.48

Gen

e 2

6.0 -13.3 28.0

1

23.4

7

-

27.1

-2.45 -17.1 -20.1 27.4

7

-5.91

Gen

e 3

-27.3 -18.5 26.0

4

21.1

9

-

18.3

-24.8 3.50

7

-16.5 -24.9 -

0.00

3

Gen

e 4

-6.12 -28.0 -0.78 19.0

2

-

25.2

-29.0 -30.0 -29.9 21.9

5

-3.43

Gen

e 5

28.4

3

27.5

6

8.52 4.98 -

23.0

-20.5 -28.0 7.74 -10.5 2.47

Gen

e 6

-23.8 8.14

7

26.1

4

29.2

8

-

5.67

28.7

2

-8.20 12.2

0

-17.2 0.41

Gen

e 7

1.76 -5.24 13.0

0

-8.52 -

1.77

29.0

7

-14.6 -25.4 24.0

3

-

0.00

1

Gen

e 8

-24.9 23.8

5

-30.0 -11.5 -

3.67

29.5

8

-18.6 14.8

4

27.2

3

-14.8

58: Solving GRN using DE

I. Gene profile graphs:

59: Solving GRN using DE

60: Solving GRN using DE

61: Solving GRN using DE

Fig. 3.4.1. Expression profile (obtained and original) of gene 1, gene 2, gene 3,

gene 4, gene 5, gene 6, gene 7, gene 8 obtained using DE and tanh as an

activation function

62: Solving GRN using DE

Fig. 3.4.2. Minimum cost function value in each step in DE using tanh

activation function after 2000 iterations

III. Cumulative error of each gene after the complete run of DE using tanh

activation function.

Gene 1 = 1439.4910149880902

Gene 2 = 8131.501435219638

Gene 3 = 844.267210270187

Gene 4 = 6207.163716012898

Gene 5 = 4690.7166396743705

Gene 6 = 617.3660965917309

Gene 7 = 472.0692689359811

Gene 8 = 537.707899707553

63: Solving GRN using DE

Rectified Linear Unit (ReLU) activation function:

Third, we applied differential evolution (DE) code with rectified linear unit

(ReLU) activation function 𝑓(𝑥) = {
𝑥 𝑖𝑓 𝑥 > 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑜𝑟 𝑚𝑎𝑥(0, 𝑥) on 8 gene

50 time point dataset and calculated the result.

The results are as follows:

I. Weight values of the network:

 Gene

1

Gene

2

Gene

3

Gene

4

Gene

5

Gene

6

Gene

7

Gene

8

𝑏𝑖 𝛤𝑖

Gen

e 1

29.9

3

-25.4 23.2

2

-29.0 2.21 -29.0 23.4

9

-25.1 -29.8 5.35

Gen

e 2

18.5

2

24.2

5

15.1

0

7.39 -30.0 29.9

5

-0.94 -29.9 -8.78 -0.10

Gen

e 3

-29.4 5.47 -27.3 -3.13 14.2

6

-1.99 -14.8 -26.8 -5.44 2.40

8

Gen

e 4

2.79 -0.67 3.30 29.1

0

-17.0 16.7

1

-27.1 -30.0 -23.1 -0.09

Gen

e 5

-26.9 3.04 28.3 21.3 2.03 -30.0 29.9 -29.2 27.4

0

-0.66

Gen

e 6

-9.09 -6.75 -23.1 -30.0 -6.68 20.7

6

16.1

5

15.0

3

-27.7 -0.92

Gen

e 7

-23.4 -23.3 8.75 30 -28.1 11.0

9

28.9

9

28.8

3

20.6

4

-22.8

Gen

e 8

3.01 -10.8 29.7

2

-6.21 -21.3 -21.4 28.6

3

-27.8 -28.9 -28.8

64: Solving GRN using DE

II. Gene profile graphs:

65: Solving GRN using DE

66: Solving GRN using DE

67: Solving GRN using DE

Fig. 3.4.1. Expression profile (obtained and original) of gene 1, gene 2, gene 3,

gene 4, gene 5, gene 6, gene 7, gene 8 obtained using DE and ReLU as an

activation function

68: Solving GRN using DE

Fig. 3.4.2. Minimum cost function value in each step in DE using ReLU

activation function after 3000 iterations

III. Cumulative error of each gene after the complete run of DE using ReLU

activation function.

Gene 1 = 1704.2664858294645

Gene 2 = 2177.1760460114638

Gene 3 = 881.4329431142887

Gene 4 = 2537.2964561386193

Gene 5 = 2424.934737389529

Gene 6 = 689.3671569037579

Gene 7 = 691.4115267879777

Gene 8 = 668.2582379742862

69: Solving GRN using DE

3.6. Conclusion

Recurrent neural network-based models, using time series gene expression data

from microarray experiments, provide a promising way to investigate gene

regulatory mechanisms and understand gene interactions. The only information

available for inference of gene regulatory network is the gene expression time

series data, which are also erroneous, and there is no guideline regarding the

structure of a particular gene regulatory network. Hence, the result obtained is not

100% accurate, but considering the challenges, and limited availability of

information, our model provides a good result.

Due to the large number of model parameters and the small number of data sets

available, the system of equations in GRN identification problem is highly

underdetermined and ambiguous. Therefore, multiple solutions exist, which fit

the given data, but show only little resemblance with the original target system.

70: Solving GRN using DE

References

[1] P. D'haeseleer, S. Liang, R. Somogyi, “Genetic network inference: from

co-expression clustering to reverse engineering,” Bioinformatics vol.16,

no.8, pp.707- 726, 2000.

[2] Kozlov, K., & Samsonov, A. (2010). DEEP—differential evolution

entirely parallel method for gene regulatory networks. The Journal of

Supercomputing, 57(2), 172–178.doi:10.1007/s11227-010-0390-6

[3] Xu, R., Venayagamoorthy, G. K., & Wunsch, D. C. (2007). Modeling of

gene regulatory networks with hybrid differential evolution and particle

swarm optimization. Neural Networks, 20(8), 917–

927.doi:10.1016/j.neunet.2007.07.002

[4] Briti Sundar Mondal, Arup Kumar Sarkar, Mahmudul Hasan, M., &

Noman, N. (2010). Reconstruction of Gene Regulatory Networks using

Differential Evolution. 2010 13th International Conference on Computer

and Information Technology

(ICCIT).doi:10.1109/iccitechn.2010.5723898

[5] Akutsu T, Miyano S, Kuhara S, Identi¯cation of genetic networks from a

small number of gene expression patterns under the Boolean network

model, Pac Symp Biocomput 4:17–28, 1999.

[6] Perrin BE, Ralaivola L, Mazurie A, Bottani S, Mallet J, D'Alche-Buc F,

Gene networks inference using dynamic Bayesian networks,

Bioinformatics 19(2):II138–II148, 2003.

[7] Liu LZ, Wu FX, Zhang WJ, Inference of biological S-system using the

separable estimation method and the genetic algorithm, IEEE/ACM Trans

Comput Biol Bioinform 9(4):955–965, 2012.

[8] Mandal, S., Saha, G., & Pal, R. K. (2017). Recurrent neural network-

based modeling of gene regulatory network using elephant swarm water

search algorithm. Journal of Bioinformatics and Computational Biology,

15(04), 1750016.doi:10.1142/s0219720017500160.

71: Solving GRN using DE

[9] Chiang JH, Chao SY, Modeling human cancer-related regulatory

modules by GA-RNN hybrid algorithms, BMC Bioinformatics 8(91):1–

13 2007.

[10] Xu R, Wunsch IID, Frank R, Inference of genetic regulatory networks

with recurrent neural network models using particle swarm optimization,

IEEE/ACM Trans Comput Biol Bioinform 4(4):681–692, 2007.

[11] Palafox L, Noman N, Iba H, Study on the use of evolutionary technique

for inference in gene regulatory networks, Natural Computing and

Beyond, Springer, Tokyo, pp. 82–92, 2013.

[12] Khan A, Mandal S, Pal RK, Saha G, Construction of gene regulatory

networks using recurrent neural networks and swarm intelligence,

Scienti¯ca 2016(1060843):1–14, 2016, doi: 10.1155/2016/1060843.

[13] Mandal S, Khan A, Saha G, Pal RK, Large scale recurrent neural

network based modeling of gene regulatory network using Cuckoo

Search-Flower Pollination Algorithm, Adv Bioinformatics

2016(5283937):1–9, 2016, doi: 10.1155/2016/5283937.

[14] Datta, D., Sinha Choudhuri, S., Konar, A., Nagar, A., & Das, S. (2009).

A recurrent fuzzy neural model of a gene regulatory network for

knowledge extraction using differential evolution. 2009 IEEE Congress

on Evolutionary Computation. doi:10.1109/cec.2009.4983307

[15] Datta, D., Konar, A., & Janarthanan, R. (2009). Extraction of

interaction information among genes from gene expression time series

data. 2009 World Congress on Nature & Biologically Inspired Computing

(NaBIC). doi:10.1109/nabic.2009.5393607

[16] Das, P., Rakshit, P., Konar, A., & Janarthanan, R. (2011). A recurrent

fuzzy neural model of a gene regulatory network for knowledge extraction

using Artificial Bee Colony optimization algorithm. 2011 International

Conference on Recent Trends in Information

Systems.doi:10.1109/retis.2011.6146837

CHAPTER 4

CONCLUSION AND

FUTURE WORKS

73: Conclusion and Future Works

4.1. Conclusion

The study of gene regulatory networks (GRNs) structure is important in

understanding cellular function. GRNs are typically represented by graphs in

which the nodes represent the genes and the edges show the regulatory or

interaction between genes. There are many methods for inference of GRNS. Here,

in this thesis we used model based method. We have chosen RNN model to infer

Gene Regulatory Network (GRN), and to find the optimal weights and bias of the

network we have used Differential Evolution as an optimization algorithm with

different activation functions, such as Sigmoid, tanh and ReLU. Given the

similarity between RNNs and gene networks, we believe that RNNs will play an

important role in exploring the mystery of gene regulation relationships. As to

the RNNs model, it can be further extended to include factors like time delay,

which is an important property of genetic regulatory networks, but unfortunately,

not well addressed yet. Also, RNNs can also take into account more complex

interactions, such as interactions between triplets of variables rather than pairs.

The performance of DE with the three activation function is compared. The result

from all three activation functions shows that sigmoid function converge faster

than the rest two and takes less iteration to provide close to accurate result. This

method infer GRNs with high accuracy and can identify direction of interaction.

However, this is time consuming and require many parameters to be set up, and

thus cannot be used for large-scale networks. This method works well for small

networks, but large scale networks are still out of the scope of the method in the

current form because of the high dimensionality of the model.

74: Conclusion and Future Works

4.2. Future Works

This study has demonstrated that Differential Evolution is able to infer RNN

model of a gene regulatory network with ease provided the dataset is small. For

future study we could use better optimization algorithms such as Particle swarm

optimization, Bat algorithm etc., to provide better insight into gene networks.

Currently, one of the major limiting factors for genetic regulatory network

inference is the paucity of reliable gene expression time series data, which

restricts the applications of current computational methods to only synthetic

data, or small-scale real networks, with only several genes or gene clusters.

Also, it is equally

important to combine prior information about the regulatory networks of study

into the model so as to remove some biologically impossible connections.

These results are generally simplified versions of the network. If more

knowledge can be incorporated in the cost function, then the model will be able

to provide more accurate results. Our next goal is to incorporate a few more

constraints in our cost function to make it more accurate. Being able to predict

gene expressions more accurately provides a way to explore how drugs affect a

system of genes as well as for finding which genes are interrelated in a process.

To increase the robustness and redundancy of current models and further

improve the search capability of the training algorithms are also important and

interesting directions for further research.

