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2: INTRODUCTION 

 

1.1. GENE 

  

A gene is a sequence of nucleotides in DNA or RNA that codes for a molecule 

that has a function. A gene is the basic physical and functional unit of heredity.  

Some genes act as instructions to make molecules called proteins. However, 

many genes do not code for proteins. In humans, genes vary in size from a few 

hundred DNA bases to more than 2 million bases. The Human Genome 

Project estimated that humans have between 20,000 and 25,000 genes.  

 

Fig 1.1. Figure shows gene is a region of DNA 

Every person has two copies of each gene, one inherited from each parent. Most 

genes are the same in all people, but a small number of genes (less than 1 percent 

of the total) are slightly different between people. Alleles are forms of the same 

gene with small differences in their sequence of DNA bases. These small 

differences contribute to each person’s unique physical features. 

During gene expression, the DNA is first copied into RNA. The RNA can   

be directly functional or be the intermediate template for a protein that performs 

a function. The transmission of genes to an organism's offspring is the basis of 

the inheritance of phenotypic trait. These genes make up different DNA 

sequences called genotypes. Genotypes along with environmental and 

developmental factors determine what the phenotypes will be. Most biological 

traits are under the influence of polygenes (many different genes) as well 

as gene–environment interactions. Some genetic traits are instantly visible, such 

as eye color or number of limbs, and some are not, such as blood type, risk for 

specific diseases, or the thousands of basic biochemical processes that 

constitute life. 

https://ghr.nlm.nih.gov/primer/basics/noncodingdna
https://ghr.nlm.nih.gov/primer/hgp/description
https://ghr.nlm.nih.gov/primer/hgp/description
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Genes can acquire mutations in their sequence, leading to different variants, 

known as alleles, in the population. These alleles encode slightly different 

versions of a protein, which cause different phenotypical traits. Usage of the term 

"having a gene" (e.g., "good genes," "hair color gene") typically refers to 

containing a different allele of the same, shared gene. Genes evolve due to natural 

selection / survival of the fittest and genetic drift of the alleles. 

The structure of a gene consists of many elements of which the actual protein 

coding sequence is often only a small part. These include DNA regions that are 

not transcribed as well as untranslated regions of the RNA. 

Flanking the open reading frame, genes contain a regulatory sequence that is 

required for their expression. First, genes require a promoter sequence. The 

promoter is recognized and bound by transcription factors that recruit and 

help RNA polymerase bind to the region to initiate transcription. The recognition 

typically occurs as a consensus sequence like the TATA box. A gene can have 

more than one promoter, resulting in messenger RNAs (mRNA) that differ in how 

far they extend in the 5' end. Highly transcribed genes have "strong" promoter 

sequences that form strong associations with transcription factors, thereby 

initiating transcription at a high rate. Others genes have "weak" promoters that 

form weak associations with transcription factors and initiate transcription less 

frequently. Eukaryotic promoter regions are much more complex and difficult to 

identify than prokaryotic promoters.  

Additionally, genes can have regulatory regions many kilobases upstream or 

downstream of the open reading frame that alter expression. These act 

by binding to transcription factors which then cause the DNA to loop so that the 

regulatory sequence (and bound transcription factor) become close to the RNA 

polymerase binding site. For example, enhancers increase transcription by 

binding an activator protein which then helps to recruit the RNA polymerase to 

the promoter; conversely silencers bind repressor proteins and make the DNA 

less available for RNA polymerase.  

The transcribed pre-mRNA contains untranslated regions at both ends which 

contain a ribosome binding site, terminator and start and stop codons. In 

addition, most eukaryotic open reading frames contain untranslated introns 

which are removed before the exons are translated. The sequences at the ends of 

the introns dictate the splice sites to generate the final mature mRNA which 

encodes the protein or RNA product. 

https://en.wikipedia.org/wiki/Population
https://en.wikipedia.org/wiki/Phenotypical
https://en.wikipedia.org/wiki/Evolution
https://en.wikipedia.org/wiki/Promoter_(genetics)
https://en.wikipedia.org/wiki/Transcription_factors
https://en.wikipedia.org/wiki/RNA_polymerase
https://en.wikipedia.org/wiki/Consensus_sequence
https://en.wikipedia.org/wiki/TATA_box
https://en.wikipedia.org/wiki/MRNA
https://en.wikipedia.org/wiki/Eukaryote
https://en.wikipedia.org/wiki/Promoter_(genetics)
https://en.wikipedia.org/wiki/Prokaryote
https://en.wikipedia.org/wiki/DNA_binding_site
https://en.wikipedia.org/wiki/Enhancer_(genetics)
https://en.wikipedia.org/wiki/Activator_(genetics)
https://en.wikipedia.org/wiki/Silencer_(DNA)
https://en.wikipedia.org/wiki/Repressor
https://en.wikipedia.org/wiki/Pre-mRNA
https://en.wikipedia.org/wiki/Untranslated_regions
https://en.wikipedia.org/wiki/Ribosome_binding_site
https://en.wikipedia.org/wiki/Terminator_(genetics)
https://en.wikipedia.org/wiki/Start_codon
https://en.wikipedia.org/wiki/Stop_codons
https://en.wikipedia.org/wiki/Open_reading_frame
https://en.wikipedia.org/wiki/Introns
https://en.wikipedia.org/wiki/Exons
https://en.wikipedia.org/wiki/Splice_site
https://en.wikipedia.org/wiki/Mature_mRNA
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Many prokaryotic genes are organized into operons, with multiple protein-coding 

sequences that are transcribed as a unit. The genes in an operonare transcribed as 

a continuous messenger RNA, referred to as a polycistronic mRNA. The 

term cistron in this context is equivalent to gene. The transcription of an operon's 

mRNA is often controlled by a repressor that can occur in an active or inactive 

state depending on the presence of specific metabolites. When active, the 

repressor binds to a DNA sequence at the beginning of the operon, called 

the operator region, and represses transcription of the operon; when the repressor 

is inactive transcription of the operon can occur. The products of operon genes 

typically have related functions and are involved in the same regulatory network. 

1.2. Functions of Gene 

The chromosomes within our cells contain an enormous amount of information. 

It is estimated that humans have somewhere around 30,000 genes. Each gene 

codes for an RNA molecule that is either used directly or used as a guide for the 

formation of a protein such as the insulin shown earlier. Information in our cells 

generally flows in a predictable order from the storage form of the information 

(DNA) through the working form (RNA) into the final product (protein). 

The process in which particular sections of DNA (genes) are used to produce 

RNA is known as transcription. The set of genes that are 'on' at any given time is 

critical. The variable environment in which we live means that different genes 

need to be 'on' at different times. For example, if a meal contains large amounts 

of lactose, a sugar found in milk, then our bodies respond by turning on 

(transcribing) the genes that  lead to the production of enzymes that break down 

lactose. If a different sugar or nutrient is present, the correct genes need to be 

turned on to process it. 

1.3. Central Dogma 

The central dogma of molecular biology describes the two-step process, 

transcription and translation, by which the information in genes flows into 

proteins: DNA → RNA → protein. It was first proposed in 1958 by Francis Crick, 

discoverer of the structure of DNA. 

The central dogma suggests that DNA contains the information needed to make 

all of our proteins, and that RNA is a messenger that carries this information to 

the ribosomes. The ribosomes serve as factories in the cell where the information 

https://en.wikipedia.org/wiki/Operon
https://en.wikipedia.org/wiki/Operon
https://en.wikipedia.org/wiki/Messenger_RNA
https://en.wikipedia.org/wiki/Messenger_RNA#Monocistronic_versus_polycistronic_mRNA
https://en.wikipedia.org/wiki/Repressor
https://en.wikipedia.org/wiki/Operon#General_structure_of_an_operon
https://en.wikipedia.org/wiki/Transcription_(genetics)
https://en.wikipedia.org/wiki/Operon
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is translated from a code into the functional product. The process by which the 

DNA instructions are converted into the functional product is called gene 

expression. 

The central dogma states that the pattern of information that occurs most 

frequently in our cells is: 

• From existing DNA to make new DNA (DNA replication) 

• From DNA to make RNA (transcription) 

• From RNA to make new proteins (translation) 

 

 
Fig.1.3. Flow of information between DNA, RNA, protein  

 

Transcription 

The goal of transcription is to make an RNA copy of a gene. This RNA can direct 

the formation of a protein or be used directly in the cell. All cells with 

a nucleus contain the same exact genetic information. As discussed, only a small 

percentage of the genes are actually being used to make RNA at any given time 

in a particular cell. The transcription process is very tightly regulated in normal 

cells. 

• Genes must be transcribed at the correct time. 

• The RNA produced from a gene must be made in the correct amount. 
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• ONLY the required genes should to be transcribed. 

• Turning transcription off is just as important as turning it on. 

You can picture this as a sophisticated production line, like you would find in a 

factory. You would want the assembly line working when you needed the product 

and shut down when you no longer needed the product. 

Translation 

After the messenger RNA (mRNA) is produced through the transcription process 

just described, the mRNA is processed in the nucleus and then released into the 

cytosol. 

The mRNA is then recognized by the ribosomal subunits present in the cytosol 

and the message is 'read' by the ribosome to produce a protein. The information 

for the direction of protein formation is encoded in the sequence of nucleotides 

that make up the mRNA. Groups of three nucleotides (called codons) are 'read' 

by the ribosome and lead to the addition of a particular amino acid into the 

growing polypeptide (protein). 

After the protein is formed it acquires its active folded state and is able to perform 

its functions in the cell. The proper folding, transportation, activity and eventual 

destruction of proteins are all highly regulated processes. 

Replication 

Finally, as the final step in the Central Dogma, to transmit the genetic information 

between parents and progeny, the DNA must be replicated faithfully. Replication 

is carried out by a complex group of proteins that unwind the super helix, unwind 

the double-stranded DNA helix, and, using DNA polymerase and its associated 

proteins, copy or replicate the master template itself so the cycle can repeat DNA 

→ RNA → protein in a new generation of cells or organisms. 

Exceptions to the central dogma 

The central dogma is not really a dogma in the traditional sense of the word, like 

all scientific theories it is modified as we learn more details of the processes. The 

biggest revolution in the central dogma was the discovery of retroviruses, which 

transcribe RNA into DNA through the use of a special enzyme called reverse 

transcriptase has resulted in an exception to the central dogma; RNA → DNA → 

RNA → protein. Also, some virus species are so primitive that they use only RNA 
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→ proteins, having not developed DNA. With the discovery of prions, a new 

exception to the central dogma has been discovered, Protein → Protein. That is, 

proteins directly replicating themselves by making conformational changes in 

other proteins. Although retroviruses, certain primitive viruses, and prions may 

violate the central dogma, they are technically not considered "alive", and thus 

the rule that "all cellular life follows the central dogma" still holds true. 

1.4. Gene Regulatory Network (GRN)  

A gene regulatory network (GRN) is a collection of molecular regulators that 

interact with each other and with other substances in the cell to govern the gene 

expression levels of mRNA and proteins. These play a central role 

in morphogenesis, the creation of body structures, which in turn is central 

to evolutionary developmental biology.  

 

 

Fig. 1.4. Structure of a gene regulatory network 

 

The regulator can be DNA, RNA, protein and complexes of these. The 

interaction can be direct or indirect (through transcribed RNA or translated 

protein). In general, each mRNA molecule goes on to make a specific protein (or 

set of proteins). In some cases this protein will be structural, and will accumulate 

at the cell membrane or within the cell to give it particular structural properties. 

In other cases the protein will be an enzyme, i.e., a micro-machine that catalyzes 

a certain reaction, such as the breakdown of a food source or toxin. Some proteins 

though serve only to activate other genes, and these are the transcription 

https://en.wikipedia.org/wiki/Gene_expression
https://en.wikipedia.org/wiki/Gene_expression
https://en.wikipedia.org/wiki/MRNA
https://en.wikipedia.org/wiki/Morphogenesis
https://en.wikipedia.org/wiki/Evolutionary_developmental_biology
https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/RNA
https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Protein#Structural_proteins
https://en.wikipedia.org/wiki/Enzyme
https://en.wikipedia.org/wiki/Transcription_factors
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factors that are the main players in regulatory networks or cascades. By binding 

to the promoter region at the start of other genes they turn them on, initiating the 

production of another protein, and so on. Some transcription factors are 

inhibitory.  

In single-celled organisms, regulatory networks respond to the external 

environment, optimizing the cell at a given time for survival in this environment. 

Thus a yeast cell, finding itself in a sugar solution, will turn on genes to make 

enzymes that process the sugar to alcohol. This process, which we associate with 

wine-making, is how the yeast cell makes its living, gaining energy to multiply, 

which under normal circumstances would enhance its survival prospects. 

In multicellular animals the same principle has been put in the service of gene 

cascades that control body-shape. Each time a cell divides, two cells result which, 

although they contain the same genome in full, can differ in which genes are 

turned on and making proteins. Sometimes a 'self-sustaining feedback loop' 

ensures that a cell maintains its identity and passes it on. Less understood is the 

mechanism of epigenetics by which chromatin modification may provide cellular 

memory by blocking or allowing transcription. A major feature of multicellular 

animals is the use of morphogen gradients, which in effect provide a positioning 

system that tells a cell where in the body it is, and hence what sort of cell to 

become. A gene that is turned on in one cell may make a product that leaves the 

cell and diffuses through adjacent cells, entering them and turning on genes only 

when it is present above a certain threshold level. These cells are thus induced 

into a new fate, and may even generate other morphogens that signal back to the 

original cell. Over longer distances morphogens may use the active process 

of signal transduction. Such signaling controls embryogenesis, the building of 

a body plan from scratch through a series of sequential steps. They also control 

and maintain adult bodies through feedback processes, and the loss of such 

feedback because of a mutation can be responsible for the cell proliferation that 

is seen in cancer. In parallel with this process of building structure, the gene 

cascade turns on genes that make structural proteins that give each cell the 

physical properties it needs. 

 

 

 

 

https://en.wikipedia.org/wiki/Transcription_factors
https://en.wikipedia.org/wiki/Promoter_(biology)
https://en.wikipedia.org/wiki/Epigenetics
https://en.wikipedia.org/wiki/Chromatin
https://en.wikipedia.org/wiki/Morphogen
https://en.wikipedia.org/wiki/Diffusion
https://en.wikipedia.org/wiki/Morphogens
https://en.wikipedia.org/wiki/Signal_transduction
https://en.wikipedia.org/wiki/Embryogenesis
https://en.wikipedia.org/wiki/Body_plan
https://en.wikipedia.org/wiki/Feedback
https://en.wikipedia.org/wiki/Cancer
https://en.wikipedia.org/wiki/Protein#Structural_proteins
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1.5. Importance of Gene Regulatory Network (GRN) 

GRNs provide the fundamental control mechanism directing developmental 

process. Gene expression is regulated sequence-specifically by the interaction of 

transcription factors with cis-regulatory DNA modules. Thus, the control 

operations which assign diverse cellular functions are those determining when 

and where transcription factor encoding genes will be expressed. By encoding the 

cis-regulatory inputs of every regulatory gene, GRNs specify the interactions 

among regulatory genes that are responsible for the expression of particular sets 

of transcription factors. These transcription factors in turn also control cohorts of 

genes encoding many other kinds of protein, here referred to as effector genes, 

that is, differentiation genes and morphogenesis genes. Cells manifest their fates 

in development by the programmed activation of distinct suites of effector genes, 

directly determining their biological properties, the final specific readout of 

developmental GRNs. Thus ultimately the expression of all genes in the genome 

is linked by interactions within GRNs. 

Regulatory genes have the special feature that they play dual roles in the GRN, 

in that their expression is at once the output of the upstream regulatory genes 

which provide their transcriptional inputs, and at the same time they provide 

inputs to other target genes within the same network. Thus, the set of transcription 

factors present in a given time and place determines the new set of transcription 

factors to be expressed, which then in turn establishes the expression of another 

regulatory condition. The continuous changes of regulatory gene expression in 

developmental time can be regarded as the major driver of developmental 

progression. Development is powered by changes in states of regulatory gene 

activity and as a consequence of these changes, new cell fates are established in 

the construction of the body plan. Development is ultimately controlled by GRNs, 

and these constitute the primary machinery of control in Metazoa. 

 

1.6. GRN as an optimization problem 

Estimating the true gene regulatory network (GRN), when the number of genes 

is much greater than the number of samples, it has aroused considerable interest 

in the computational biology community. Several scientists and researchers have 

presented different approaches to this difficult problem and have advanced the 

field. However, many unsolved tasks in this area remain, including identifying 
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high correlated covariates, noisy data, and reasonable prior knowledge necessary 

to accomplish GRN inferring and model estimation. 

 

Fig.1.5. Process of gene regulatory network 

 

The past 30 years has seen several developments concerned the learning structure 

of GRNs. The complex relationships between such components motivated us to 

identify a multivariate approach. Inferring gene networks is usually known as the 

process of identifying gene interactions from gene expression data through 

computational analysis. The entire inferring process can be summarized as a task 

of predicting connectivity among genes. Essentially, it involves learning the 

structure of a graph. However, in many domains, problems such as the large 

numbers of variables, small samples sizes, and possible presence of unmeasured 

causes, remain major impediments to practical applying these developments. 

To accomplish this task and infer the structure of GRNs from high throughput 

microarray data, several techniques have been developed for the mathematical 

modeling of GRNs from expression data, notably differential equation, the vector 

autoregressive, dynamic Bayesian networks, Boolean networks, and the 

information-theoretic method. In addition, other methods based on regression, 

such as least absolute shrinkage and selection operator (Lasso), or partial least 

squares (PLS) and supervised learning, have shown positive results. Although 

standard linear modeling approaches enable analysis of a modeled system, they 

are not effective in large-scale network discovery. This is because the number of 

candidate parameters and models is extremely high, and thus searching efficiently 

and reliably with tight control on many false positives is difficult. By contrast, by 
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using ordinary differential equations to model transcriptional changes in terms of 

environmental and transcription factor influence, time-series network 

identification (TSNI) constructs a local regulatory network of genes that are 

affected by an external perturbation. Dynamic regulatory events miner (DREM) 

uses a Hidden Markov Model (HMM) based algorithm to identify transcription 

factors that control divergence points in gene expression profiles in order to 

reconstruct dynamic regulatory networks. Friedman et al. (Friedman, 2004) were 

among the first to suggest using dynamic Bayesian networks (DBNs) to model 

regulatory networks that change over time, as such models can capture time 

dependent structures such as feedback loops that are impossible to express using 

traditional probabilistic networks. 

1.7. Organization of Thesis 

The paper is organized as follows. In Chapter 1 we provides definitions of Gene, 

functions of gene, GNR, importance of GNR. Chapter 2 provides overview of 

Differential Evolution (DE) algorithm and pseudo code, important steps, 

applications of DE. In Chapter 3 we used DE algorithm with different activation 

functions such as Sigmoid, tanh, ReLU to optimize Gene Regulatory Network. 

And experiments and results are done in Chapter 3. Finally, the thesis is 

summarized and concluded in Chapter 4. 
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2.1. Introduction 

Differential evolution (DE) is a stochastic, population-based search strategy 

developed by Storn and Price in 1995.[2][3] While DE shares similarities with other 

evolutionary algorithms (EA), it differs significantly in the sense that distance 

and direction information from the current population is used to guide the search 

process. Furthermore, the original DE strategies were developed to be applied to 

continuous-valued landscapes. 

DE is used for multidimensional real-valued functions but does not use 

the gradient of the problem being optimized, which means DE does not require 

the optimization problem to be differentiable, as is required by classic 

optimization methods such as gradient descent and quasi-newton methods. DE 

can therefore also be used on optimization problems that are not even continuous, 

are noisy, change over time, etc.[1] 

 

 

Fig.2.1. Differential evolution optimizing 2-D Ackley function 

 

DE optimizes a problem by maintaining a population of candidate solutions and 

creating new candidate solutions by combining existing ones according to its 

simple formulae, and then keeping whichever candidate solution has the best 

score or fitness on the optimization problem at hand. In this way the optimization 

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Differentiable_function
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Quasi-newton_methods
https://en.wiktionary.org/wiki/continuous
https://en.wikipedia.org/wiki/Differential_evolution#cite_note-elediadereview-1
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problem is treated as a black box that merely provides a measure of quality given 

a candidate solution and the gradient is therefore not needed. 

A basic variant of the DE algorithm works by having a population of candidate 

solutions (called agents). These agents are moved around in the search-space by 

using simple mathematical formulae to combine the positions of existing agents 

from the population. If the new position of an agent is an improvement then it is 

accepted and forms part of the population, otherwise the new position is simply 

discarded. The process is repeated and by doing so it is hoped, but not guaranteed, 

that a satisfactory solution will eventually be discovered. 

As in genetic algorithms, design parameters in a d-dimensional search space are 

represented as vectors, and various genetic operators are operated over their bits 

of strings. However, unlike genetic algorithms, differential evolution carries out 

operations over each component (or each dimension of the solution). Almost 

everything is done in terms of vectors. For example, in genetic algorithms, 

mutation is carried out at one site or multiple sites of a chromosome, whereas 

in differential evolution, a difference vector of two randomly chosen population 

vectors is used to perturb an existing vector. Such vectorized mutation can be 

viewed as a more efficient approach from the implementation point of view. This 

kind of perturbation is carried out over each population vector and thus can be 

expected to be more efficient. Similarly, crossover is also a vector-based, 

component-wise exchange of chromosomes or vector segments. 

Apart from using mutation and crossover as differential operators, DE has explicit 

updating equations. This also makes it straightforward to implement and to design 

new variants. 

2.2. Different steps of Differential Evolution 

Variation from one generation to the next is achieved by applying crossover 

and/or mutation operators. If both these operators are used, crossover is usually 

applied first, after which the generated offspring are mutated. For these 

algorithms, mutation step sizes are sampled from some probability distribution 

function. DE differs from these evolutionary algorithms in that mutation is 

applied first to generate a trial vector, which is then used within the crossover 

operator to produce one offspring, and mutation step sizes are not sampled from 

a prior known probability distribution function. In DE, mutation step sizes are 

influenced by differences between individuals of the current population. 

 

https://en.wikipedia.org/wiki/Candidate_solutions
https://en.wikipedia.org/wiki/Candidate_solutions
https://en.wikipedia.org/wiki/Formula
https://www.sciencedirect.com/topics/computer-science/search-space
https://www.sciencedirect.com/topics/computer-science/genetic-operator
https://www.sciencedirect.com/topics/computer-science/differential-evolution
https://www.sciencedirect.com/topics/computer-science/population-vector
https://www.sciencedirect.com/topics/computer-science/population-vector
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                          Main stages of Differential Evolution 

 

1. Initialization 

A good uniform random initialization method is used to construct the initial 

population, the initial individuals will provide a good representation of the entire 

search space, with relatively large distances between individuals. Over time, as 

the search progresses, the distances between individuals become smaller, with all  

individuals converging to the same solution. 

Evaluation of all the population and storing the fitness value of the same 

population in a vector. 

 

2. Mutation 

The DE mutation operator produces a trial vector for each individual of the 

current population by mutating a target vector with a weighted differential. This 

trial vector will then be used by the crossover operator to produce offspring. For 

each parent, 𝑥𝑖(𝑡), generate the trial vector, 𝑢𝑖(𝑡), as follows: Select a target 
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vector, 𝑥𝑖1(𝑡), from the population, such that i ≠ i1. Then, randomly select two 

individuals, xi2 and xi3, from the population such that i ≠ i1 ≠ i2 ≠ i3 and i2, i3 ∼ 

U(1, ns). Using these individuals, the trial vector is calculated by perturbing the 

target vector as follows: 

    𝑢𝑖(𝑡) = 𝑥𝑖1(𝑡) + β*(𝑥𝑖2(𝑡) - 𝑥𝑖3(𝑡)) 

 

Where β ∈ (0, ∞) is the scale factor, controlling the amplication of the differential 

variation. 

 

3. Crossover 

The DE crossover operator implements a discrete recombination of the trial 

vector, 𝑢𝑖(𝑡), and the parent vector, 𝑥𝑖(𝑡), to produce offspring, 𝑥′𝑖(𝑡). Crossover 

is implemented as follows:  

            𝑥′𝑖𝑗(𝑡) = {
𝑢𝑖𝑗(𝑡), 𝑗 ∈ 𝐽

𝑥𝑖𝑗(𝑡),  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Where 𝑥𝑖𝑗(𝑡) refers to the jth element of the vector 𝑥𝑖(𝑡), and J is the set of element 

indices that will undergo perturbation (or in other words, the set of crossover 

points). Different methods can be used to determine the set, J, of which the 

following two approaches are the most frequently used: 

 

• Binomial crossover: The crossover points are randomly selected 

from the set of possible crossover points, {1, 2, . . ., 𝑛𝑥}, where 𝑛𝑥 

is the problem dimension. In this algorithm, 𝑝𝑟 is the probability that 

the considered crossover point will be included. The larger the value 

of 𝑝𝑟, the more crossover points will be selected compared to a 

smaller value. This means that more elements of the trial vector will 

be used to produce the offspring, and less of the parent vector. 

Because a probabilistic decision is made as to the inclusion of a 

crossover point, it may happen that no points may be selected, in 

which case the offspring will simply be the original parent, 𝑥𝑖(𝑡). 

This problem becomes more evident for low dimensional search 

spaces. To enforce that at least one element of the offspring differs 

from the parent, the set of crossover points, J, is initialized to include 

a randomly selected point, j∗ 
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• Exponential crossover: inclusion of a crossover point, it may 

happen that no points may be selected, in which case the offspring 

will simply be the original parent, xi(t). This problem becomes more 

evident for low dimensional search spaces. To enforce that at least 

one element of the offspring differs from the parent, the set of 

crossover points, J , is initialized to include a randomly selected 

point, j∗ 

 

4. Selection 

Selection is applied to determine which individuals will take part in the mutation 

operation to produce a trial vector, and to determine which of the parent or the 

offspring will survive to the next generation. With reference to the mutation 

operator, a number of selection methods have been used. Random selection is 

usually used to select the individuals from which difference vectors are 

calculated. For most DE implementations the target vector is either randomly 

selected or the best individual is selected. To construct the population for the next 

generation, deterministic selection is used: the offspring replaces the parent if the 

fitness of the offspring is better than its parent; otherwise the parent survives to 

the next generation. This ensures that the average fitness of the population does 

not deteriorate. 
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2.3. Pseudo Code of DE 

Begin 

 Initialize the population with random values between (0 and 1) 

 Denormalize the population 

  

 Evaluate the fitness value of the population. 

Choose the best candidate from the population according to the fitness 

value and store it in best. 

Best_vector 

Best_fitness 

 

 For i = 0 to num_its: 

  For j = 0 to no_pop: 

   Target_vector 

   Target_fitness 

# Mutation 

Select randomly three candidates a, b, c such that a != b != c 

and not equal to target candidate. 

   Create a mutant candidate using a, b, c.  

   Mutant = a + mutation_factor*(b – c) 

   

   #Crossover 

   If rand() < Crossover_point then: 

    Create a trial vector using mutant and target vector. 

   End If  

   Evaluate this trial vector and store the result in f. 

   

                      # Selection 

If f  < Target_fitness then: 

    Target = trial 

    Target_vector = f 

    If f < Best_fitness then: 

     Best = trial 

    End If 

   End IF 

  End For 

 End For 

 Return Best, Best_fitness 
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2.4. Applications of DE in Bioinformatics 

Bioinformatics is an interdisciplinary field that develops and improves methods 

for storing, retrieving, organizing and analyzing biological data. A major activity 

in bioinformatics is to develop software tools to generate useful biological 

knowledge. As an interdisciplinary field of science, bioinformatics combines 

biology, computer science, information engineering and statistics to analyze and 

interpret biological data. 

The term bioinformatics was coined by Paulien Hogeweg and Ben Hesper to 

describe "the study of informatic processes in biotic systems" and it found early 

use when the first biological sequence data began to be shared. Whilst the initial 

analysis methods are still fundamental to many large-scale experiments in the 

molecular life sciences, nowadays bioinformatics is considered to be a much 

broader discipline, encompassing modelling and image analysis in addition to the 

classical methods used for comparison of linear sequences or three-dimensional 

structures. 

 

 
 

Fig.2.4. Different fields that make up Bioinformatics 

The actual process of analyzing and interpreting data is referred to 

as computational biology. Important sub-disciplines within bioinformatics and 

computational biology include: 
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• Development and implementation of computer programs that enable efficient 

access to, use and management of, various types of information 

• Development of new algorithms (mathematical formulas) and statistical 

measures that assess relationships among members of large data sets. For 

example, there are methods to locate a gene within a sequence, to predict 

protein structure and/or function, and to cluster protein sequences into 

families of related sequences. 

The primary goal of bioinformatics is to increase the understanding of biological 

processes. What sets it apart from other approaches, however, is its focus on 

developing and applying computationally intensive techniques to achieve this 

goal. Examples include: pattern recognition, data mining, machine 

learning algorithms, and visualization. Major research efforts in the field 

include sequence alignment, gene finding, genome assembly, drug design, drug 

discovery, protein structure alignment, protein structure prediction, prediction 

of gene expression and protein–protein interactions, genome-wide association 

studies, the modeling of evolution and cell division/mitosis. 

The Evolutionary Algorithms (EA) works on the principle of exploration and 

exploitation. The exploration starts from a random population. Later stages of 

process where the search is concentrated in a particular area, exploitation of search 

space yields the optimal solution.  Compared to other global optimization 

techniques, evolutionary algorithms (EA) are easy to implement and very often 

they provide satisfactory solutions. A population of candidate solutions is 

initialized. New solutions are created by applying operators on the chosen 

parameters. The fitness or worthiness of the resulting solutions is evaluated and 

suitable selection strategy is then applied for the continuation of those solutions in 

the next iteration.   

 

The general procedure for an evolutionary algorithm is as follows: 

1. Given a population of individuals 

2. Environmental pressure causes natural selection 

3. Rise in fitness 

4. For a fitness function, randomly create a set of candidate solutions 

5. Based on fitness, some better candidates are chosen to seed the next 

generation.  

6. Recombination – A procedure on two or more candidates which gives rise 

to two or more candidates. 

https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Biological_Data_Visualization
https://en.wikipedia.org/wiki/Sequence_alignment
https://en.wikipedia.org/wiki/Gene_finding
https://en.wikipedia.org/wiki/Genome_assembly
https://en.wikipedia.org/wiki/Drug_design
https://en.wikipedia.org/wiki/Drug_discovery
https://en.wikipedia.org/wiki/Drug_discovery
https://en.wikipedia.org/wiki/Protein_structural_alignment
https://en.wikipedia.org/wiki/Protein_structure_prediction
https://en.wikipedia.org/wiki/Gene_expression
https://en.wikipedia.org/wiki/Protein%E2%80%93protein_interactions
https://en.wikipedia.org/wiki/Genome-wide_association_studies
https://en.wikipedia.org/wiki/Genome-wide_association_studies
https://en.wikipedia.org/wiki/Evolution
https://en.wikipedia.org/wiki/Cellular_model
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7. Due to recombination, the newly formed candidates are entirely based on 

fitness. 

8. The newly formed candidates replace the less fit individuals 

9. The process is iterated. 

 

In bioinformatics, if the problem is protein sequencing, the population would be 

set of proteins. The objective function would be maximizing the set of proteins 

that match with the DNA database.   

Most of the bioinformatics applications are of multi-objective optimization 

problems. Algorithms like FASTLSA and FASTA can be easily applied with 

evolutionary procedure and they compare two sequences and the selection 

procedure can be decided the evolutionary way. 

Most of the bioinformatics applications are of multi-objective optimization 

problems. Algorithms like FASTLSA and FASTA can be easily applied with 

evolutionary procedure and they compare two sequences and the selection 

procedure can be decided the evolutionary way. 

 

2.5. Conclusion 

Differential evolution (DE) is such a method that since its inception in 1995, DE 

has earned a reputation as a very effective global optimizer. While DE is not a 

panacea, its record of reliable and robust performance makes it one of the best 

optimizer. 

While DE may not always be the fastest method, it is usually the one that produces 

the best result, although the number of cases in which it is also faster is 

significant. DE also proves itself to be robust, both in how control parameters are 

chosen and in the regularity with which it finds the true optimum. 

In addition, when compared to one-point optimizers, DE is relatively immune to 

differences in initial populations. Because it is a direct search method, DE is 

versatile enough to solve problems whose objective functions lack the analytical 

description needed to compute gradients. DE is a good first choice when 

approaching a new and difficult global optimization problem is defined with 

continuous or discrete parameters. 

 

 

 



23: DIFFERENTIAL EVOLUTION 

 

References 

[1] Rocca, P.; Oliveri, G.; Massa, A. (2011). "Differential Evolution as 

Applied to Electromagnetics". IEEE Antennas and Propagation 

Magazine. 53 (1): 38–49. doi:10.1109/MAP.2011.5773566. 

[2] Storn, R.; Price, K. (1997). “Differential evolution – a simple and efficient 

heuristic for global optimization over continuous spaces”, Journal of 

Global Optimization. 11 (4): 341-359. Doi:10.1023/A:1008202821328 

[3] Storn, R. (1996). "On the usage of differential evolution for function 

optimization". Biennial Conference of the North American Fuzzy 

Information Processing Society (NAFIPS). pp. 519–523. 

[4] https://en.wikipedia.org/wiki/Differential_evolution 

[5] https://pablormier.github.io/2017/09/05/a-tutorial-on-differential-

evolution-with-python/# 

[6] https://www.ebi.ac.uk/training/online/course/bioinformatics-terrified-

2018/what-bioinformatics 

[7] http://www.nust.edu.pk/INSTITUTIONS/Centers/RCMS/ap/pg/MSBioin

formatics/Pages/default.aspx 

https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109%2FMAP.2011.5773566
https://doi.org/10.1023%2FA%3A1008202821328
https://en.wikipedia.org/wiki/Differential_evolution
https://pablormier.github.io/2017/09/05/a-tutorial-on-differential-evolution-with-python/
https://pablormier.github.io/2017/09/05/a-tutorial-on-differential-evolution-with-python/
https://www.ebi.ac.uk/training/online/course/bioinformatics-terrified-2018/what-bioinformatics
https://www.ebi.ac.uk/training/online/course/bioinformatics-terrified-2018/what-bioinformatics
http://www.nust.edu.pk/INSTITUTIONS/Centers/RCMS/ap/pg/MSBioinformatics/Pages/default.aspx
http://www.nust.edu.pk/INSTITUTIONS/Centers/RCMS/ap/pg/MSBioinformatics/Pages/default.aspx


 

 

CHAPTER 3 

 
 

SOLVING GRN USING 

DIFFERENTIAL 

EVOLUTION 

 

 
 

 

 



25: Solving GRN using DE 
 

3.1. Introduction 

Inference of genetic regulatory networks from time series gene expression data 

has attracted attention, due to its importance in revealing fundamental cellular 

processes, investigating functions of genes, and understanding complex relations 

and interactions between genes. Large-scale gene expression data provide us with 

genome-wide information about the genetic regulatory networks that control 

basic biological processes such as development, disease, and the cell cycle. Time-

series 

gene expression data of such measurements allow us to visualize this dynamics 

directly as changing intensity patterns on gene chips. The goal of reverse 

engineering [1] techniques is to capture the pattern of regulatory excitation and 

inhibition amongst a set of genes and reconstruct their underlying genetic 

network.  

Many types of linear or nonlinear mathematical models have been already 

proposed to infer gene regulatory networks from the time series microarray data 

i.e. a reverse engineering problem. Boolean networks [5], Dynamic Bayesian 

network [6], S-system [7], etc. were very popular methods to infer GRN. However 

in this project we have used Recurrent Neural Network (RNN) which is a closed 

loop Neural Network with a delayed feedback variable. It is very suitable to 

model the dynamics of genes and infer GRN from the temporal data. Generally, 

RNN along with an optimization technique is used to infer the GRN where the 

objective function of optimization is the training error. In a recurrent neural 

network, the current state of a neuron is determined by the previous states of all 

or most of the neurons in the network. As a result, the model provides dynamic 

aspect, which is most essential for the gene regulatory network. The weight 

between neurons gives the numeric interaction values between genes. Thereby, if 

it is possible to find those weight values between neurons from the time series 

data available for genes, then the real interaction between genes can be revealed. 

We have implemented differential evolution algorithm (DE) for the 

reconstruction of GNR based on RNN. Though there are many techniques 

available to train recurrent neural network, such as back propagation through 

time, Genetic Algorithm (GA)[9], Particle Swarm Optimization (PSO)[10], K-

means Population-Based Incremental Learning (KPBIL)[11], Bat Algorithm 

(BA)[12], hybridized Cuckoo Search (CS)-Flower Pollination Algorithm (FPA)[13], 

we have chosen DE because of its fast convergence rate and simplicity. 
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Traditional gradient descent-based methods are easily stuck in local minima and 

the computation of the derivatives is also not always possible. Here, the 

performance of the evolutionary computation technology-based method, known 

as differential evolution (DE) in training RNNs is investigated. 

3.2. Proposed Methodology 

A. Model used in the framework: 

To the dynamic aspect of recurrent neural network, we have chosen the 

differential equation (1) as our model, where each gene expression is 

differentiated with respect to time. 

 

𝛤𝑖
𝑑𝑒𝑖

𝑑𝑡
  = ∫( ∑ 𝑤𝑗𝑖  𝑒𝑗(𝑡)𝑁

𝑗=1 − 𝑏𝑖 ) − 𝑑𝑖𝑔𝑖    (1) 

 

Let 𝑒𝑖 is the expression of ith gene, 𝛤𝑖 is the time constant, 𝑤𝑗𝑖 be a weight from 

neuron j to neuron i in the neural net representation of a recurrent neural network ;  

𝑤𝑗𝑖 can be positive, negative or zero depending on whether jth gene is activating, 

inhibiting gene i or doesn’t have any effect on it at all,  ‘𝑏𝑖’, ‘𝑑𝑖’, and ‘N’ represent 

the bias term for ith gene, decay constant for 𝑒𝑖, and total number of genes present 

in the network, f(z)=1/(1+𝑒−𝑧), tanh and ReLU are the nonlinear functions used 

to get the output of each gene. Here, z is the combined effect of all genes on ith 

gene. To incorporate the discrete feature in our model with respect to time we 

have changed (1) as follows: 

 

𝛤𝑖
𝑑𝑒𝑖

𝑑𝑡
  = ∫( ∑ 𝑤𝑗𝑖  𝑒𝑗(𝑡)𝑁

𝑗=1 − 𝑏𝑖  ) −  𝑑𝑖𝑔𝑖 

 

𝛤𝑖
𝑒𝑖(𝑡+ 𝛥𝑡)− 𝑒𝑖(𝑡)

 𝛥𝑡
 = ∫( ∑ 𝑤𝑗𝑖  𝑒𝑗(𝑡)𝑁

𝑗=1 − 𝑏𝑖  ) −  𝑑𝑖𝑔𝑖 

 

𝑒𝑖(𝑡 +  𝛥𝑡) =  
𝛥𝑡

𝛤𝑖
 ∫(∑ 𝑤𝑗𝑖  𝑒𝑗(𝑡) −  𝑏𝑖  𝑁

𝑗=1 ) +  𝑒𝑖(𝑡) (1 −  
 𝛥𝑡

𝛤𝑖
𝑑𝑖)  (2) 

 

Equation (2) demonstrates how expression of a particular gene changes with time 

in response to the other genes present in the network. 
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B. Synthesis of gene expression data 

 

Here we attempted to generate artificial gene expression time series data to test 

the accuracy of our method. Using the model in equation (2), we have generated 

time series data using the parameter values of TABLE I of a 4-gene network. 

 

TABLE - I 

 Gene 1 Gene 2 Gene 3 Gene 4 bi Γi 

Gene 1 20.0 -20.0 0.0 0.0 0.0 10.0 

Gene 2 15.0 -10.0 0.0 0.0 -5.0 5.0 

Gene 3 0.0 -8.0 12.0 0.0 0.0 5.0 

Gene 4 0.0 0.0 8.0 -12.0 0.0 5.0 

 

The interpretation of the above weight values are as follows. From TABLE I we 

can see that box (1, 2) = - 20.00, the meaning is that gene1 has -20.00 unit of 

effect 

on gene2. We have chosen the same set of values as in paper [1] to compare the 

accuracy of our model. The generated time series data for the genes are shown in 

Fig.1 

   

  
Fig.3.2. Expression profile of Gene1, Gene 2, Gene 3 and Gene 4 respectively. 
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It can be seen from Fig. 3.2 that nearly after150 points, the expression of all the 

genes get saturated, therefore this is the region from where we can extract 

maximum information. Because of this reason we have used 150 data points for 

each gene profile. 

 C. The cost function used 

Accuracy of gene regulatory network (GRN) design mainly depends on two 

issues (i) how well we can measure the accuracy of the existing connection values 

of the network, and (ii) how well we can measure the accuracy of the skeletal 

structure (network topology) of the simulated network. Handling both issues 

simultaneously is a tough job, because we do not have any knowledge except the 

available gene expression time series data, which is also limited. To meet the first 

issue, we evaluated the accuracy of the produced gene expression of our 

simulated network 

by comparing it with the gene expression produced using the network parameters 

of TABLE I with the hope that if the network parameters of our simulated 

network is closer to the parameters of TABLE I then the difference (error) 

between these two set of gene expression will be less. That error has been 

calculated using the equation (3). 

 

𝐶1 =  
1

TNM
 ∑ ∑ ∑ {[𝑒𝑜𝑟𝑔

𝑛 (𝑡)]
𝑚

−  [𝑒𝑐𝑎𝑙
𝑛 (𝑡)]𝑚}

2
𝑁

𝑛

𝑇

𝑡=1

𝑀

𝑚=1

 (3) 

 

Here M is the number of time series used; T is the number of data point in each 

time series data, and N is the number of gene present in the network. [𝑒𝑜𝑟𝑔
𝑛 (𝑡)]

𝑚
 

is 

the original expression of nth gene at tth time instance in mth time series, and 

[𝑒𝑐𝑎𝑙
𝑛 (𝑡)]𝑚 is the calculated expression of the same using our simulated network. 

The study of genetics reveals that in a gene regulatory network it is unlikely that 

all the genes interact with each other; rather few genes are involve in regulation 

of a gene. Considering this practical phenomenon, we designed the cost function 

given by equation (4). 

 

𝐶2 = 𝑐 ∑ ∑
|𝑤𝑗𝑖|

|1 +  𝑤𝑗𝑖|
  (4)

𝑁

𝑗=1

𝑁

𝑖=1
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Here wji is the connection value between gene j, and gene i, and c is a constant. 

Choosing proper value of c is also tricky. An appropriate value will lead to a good 

solution or it may mislead the system, its value should be such that C2 can’t 

override C1. Our final cost function is shown in equation (5). 

 

𝐶 = 𝐶1 + 𝐶2 

 

𝐶 =  
1

TNM
 ∑ ∑ ∑ {[𝑒𝑜𝑟𝑔

𝑛 (𝑡)]
𝑚

−  [𝑒𝑐𝑎𝑙
𝑛 (𝑡)]𝑚}

2
𝑁

𝑛

𝑇

𝑡=1

𝑀

𝑚=1

+  𝑐 ∑ ∑
|𝑤𝑗𝑖|

|1 +  𝑤𝑗𝑖|
  (5)

𝑁

𝑗=1

𝑁

𝑖=1
 

 

 

Using this cost function, we will select the solution with the smallest cost value 

as the final solution i.e. if cost of solution1 is less than that of solution2 then 

solution1 is our final solution. 

 

D. Differential Evolution (DE) 

 

Consider a population of size N 

The population matrix can be shown as: 

 

𝑥𝑛,𝑖
𝑔

=  [𝑥𝑛,1
𝑔

, 𝑥𝑛,2
𝑔

, 𝑥𝑛,3
𝑔

, … … . , 𝑥𝑛,𝐷
𝑔

] 

Where g is the generation, n = 1, 2,3, 4,…….,N and D parameters 

The steps of Differential Evolution are as follows: 

 

1. Initialization 

Initial population is generated randomly between lower and upper bound. 

𝑥𝑛,𝑖 =  𝑥𝑛,𝑖
𝐿 + 𝑟𝑎𝑛𝑑() ∗ (𝑥𝑛,𝑖

𝑈 −  𝑥𝑛,𝑖
𝐿 )   i = 1, 2, 3,.., D and n = 1, 2, 3,..,N 

Where 𝑥𝑖
𝑈 is the upper bound of the variable 𝑥𝑖 

Where 𝑥𝑖
𝐿 is the lower bound of the variable 𝑥𝑖 

 

2. Mutation 

From each parameter vector, select three other vectors 𝑥𝑟1𝑛
𝑔

, 𝑥𝑟2𝑛
𝑔

 𝑎𝑛𝑑 𝑥𝑟3𝑛
𝑔

 

randomly. 

Add the weighted difference of two of the vectors to the third 

 

𝑣𝑛
𝑔

=  𝑥𝑟1𝑛
𝑔

+ 𝐹(𝑥𝑟2𝑛
𝑔

−  𝑥𝑟3𝑛
𝑔

)            𝑛 = 1, 2, 3, … . , 𝑁 
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𝑣𝑛
𝑔

 is called donor vector 

F is generally taken between 0 and 1 

 

3. Recombination 

A trial vector 𝑈𝑛,𝑖
𝑔+1

 is developed from the target vector, 𝑥𝑛,𝑖
𝑔

,  and the donor 

vector, 𝑉𝑛,𝑖
𝑔+1

 

 

𝑈𝑛,𝑖
𝑔+1

=  {
𝑉𝑛,𝑖

𝑔+1
     𝑖𝑓 𝑟𝑎𝑛𝑑( )  ≤  𝐶𝑝 𝑜𝑟 𝑖 =  𝐼𝑟𝑎𝑛𝑑        𝑖 = 1, 2, 3, … , 𝐷   

𝑥𝑛,𝑖
𝑔

    𝑖𝑓 𝑟𝑎𝑛𝑑( )  >  𝐶𝑝 𝑎𝑛𝑑 𝑖 ≠  𝐼𝑟𝑎𝑛𝑑        𝑛 = 1, 2, 3, … , 𝑁
 

 

𝐼𝑟𝑎𝑛𝑑 is a integer random number between [1, D] 

𝐶𝑝 is the recombination probability 

 

4. Selection 

The target vector 𝑥𝑛,𝑖
𝑔

 is compared with the trial vector 𝑢𝑛,𝑖
𝑔+1

 and the one with 

the lowest function value is selected for the next generation. 

𝑥𝑛
𝑔+1

=  {
𝑈𝑛,𝑖

𝑔+1
            𝑖𝑓 𝑓(𝑈𝑛

𝑔+1
)  < 𝑓(𝑥𝑛

𝑔
)

𝑥𝑛
𝑔

                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

n = 1, 2, 3, …, N 
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3.3 Pseudo Code 

 

INITIALIZE LIBRARIES 

INITIALIZE PARAMETERS 

Crossover ratio = CR 

Mutation = mut 

No of iteration = its 

No of gene, No of parameters (NP), Upper and Lower bound 

Initialize gene_cal 

 

INITIALIZE POPULATION 

Randomly initialize a population of NP individuals with each individual 

uniformly distributed in range [Upper, Lower] 

 

FUNCTION DE (population): 

Fitness = array of fitness of all population 

Best = best individual having lowest fitness 

Fitness(best) = fitness of the best individual 

 

FOR I in range(NP): do 

 I. MUTATION:  

select a target vector 

a, b , c  = randomly select three individuals without replacement from the 

population 

IF(selected individuals are different): THEN 

 Mutant vector = a + mutation factor*(b – c) 

END  IF 

ELSE:  

 Select again 

END ELSE 

 

II. CROSSOVER 

Generate trial vector 

 IF crossover point > CR: THEN 

Replace elements between target vector and mutant vector and 

create a trial vector 

END IF 
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Evaluate the trial vector and calculate the fitness 

 

III. SELECTION 

IF fitness(trial_vector) < fitness(target vector): THEN 

  fitness(target vector) = fitness(trial vector) 

  target vector = trial vector 

  IF fitness(trial vector) < fitness(best): THEN 

   best = trial 

  END IF 

 END IF 

 

RETURN best, fitness(best) 

 

FUNCTION fitness(vector): 

 Call generate_gene_data(weight, bias, time_constant) 

 Fitness = (gene_original – gene_calculated)2 

 Fitness / (no_of_gene)*time_point 

 RETURN fitness 

 

FUNCTION calculate_gene_data(weight, bias, time_constant): 

 Calculate sum, apply sum to sigmoid function, subtract bias, 

 add gene(j)*weight 

 Calculate gene_org 
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3.4. Actual Code 

 

#------------------------- Importing libraries --------------------------# 

import numpy as np 

import random 

import matplotlib.pyplot as plt 

np.random.seed(30) 

random.seed(30) 

 

#------------------------- Parameters initialization --------------------------# 

no_gene = 4 

no_param = 24 

no_pop = 70 

time_point = 150 

delta = 0.01 

CR = 0.8 

mut = 0.4 

its = 500 

bounds = [(-20, 20)]*no_param 

 

#------------------------- Gene Expression Data -------------------------# 

 

gene_org = original gene data 

 

#------------------------Initialization-------------------------# 

 

gene_org = np.array(gene_org) 

gene_cal = np.zeros(gene_org.shape) 

 

gene_cal[0][0] = 0.951 

gene_cal[1][0] = 0.22 

gene_cal[2][0] = 0.62 

gene_cal[3][0] = 0.79 

 

# Initializing the population with random values 

pop = np.random.rand(no_pop, no_param) 
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#------------------------Differential Evolution-------------------------# 

 

def de(pop): 

     

    dimensions = len(bounds) 

    min_b, max_b = np.asarray(bounds).T 

    diff = np.fabs(min_b - max_b) 

     

    # Population Normalization 

    pop_denorm = min_b + pop * diff 

     

    # Calculation fitness of the population 

    fitness = np.asarray([func(ind) for ind in pop_denorm]) 

    best_idx = np.argmin(fitness) 

    best = pop_denorm[best_idx] 

     

    for i in range(its): 

         

        print('iteration-> {}'.format(i),'cost-> {}'.format(func(best))) 

         

        for j in range(no_pop): 

             

            # Mutation 

            idxs = [idx for idx in range(no_pop) if idx != j] 

            a, b, c = pop[np.random.choice(idxs, 3, replace = False)] 

            mutant = np.clip((a + mut * (b - c)), 0, 1) 

             

            # Crossover 

            cross_points = np.random.rand(dimensions) < CR 

            if not np.any(cross_points): 

                cross_points[np.random.randint(0, dimensions)] = True 

             

            trial = np.where(cross_points, mutant, pop[j]) 

            trial_denorm = min_b + trial * diff 

             

            # Evaluation 

            f = func(trial_denorm) 
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            # Selection 

            if f < fitness[j]: 

                fitness[j] = f 

                pop[j] = trial 

                if f < fitness[best_idx]: 

                    best_idx = j 

                    best = trial_denorm 

         

        yield best, fitness[best_idx] 

 

 

#--------------------------- Cost Function ---------------------------# 

def func(pop): 

     

    w = np.array(pop[0:16]) 

    b = np.array(pop[16:20]) 

    T = np.array(pop[20:24]) 

    total_cost1 = 0 

         

    calculate_gene_exp(w, b, T) 

     

    total_cost1 = np.sum(np.power((gene_org - gene_cal),2)) 

     

    total_cost1 /= no_gene*time_point 

     

    return total_cost1 

 

 

#----------------------------- Calculating gene data ---------------------------# 

def calculate_gene_exp(w, b, T): 

     

    for t in range(1, time_point): 

         

        k = 0 

        for i in range(no_gene): 
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            gene_cal[i][t] = gene_cal[i][t-1]*(1-(delta/T[i])) 

            sum = 0 

            for j in range(no_gene): 

                sum += gene_cal[j][t-1]*w[k] 

                k += 1 

             

            sum -= b[i] 

             

            fsum = 1/(1 + np.exp(-sum)) 

             

            gene_cal[i][t] += fsum*(delta/T[i]) 

 

a = list(de(pop)) 

 

m = np.linspace(0, 150, 150) 

 

plt.figure(1) 

plt.plot(m, gene_cal[0],label='calculated'), plt.plot(m, gene_org[0], '--', label = 

'original') 

plt.legend() 

plt.title('Gene 1 profile') 

plt.show() 

 

plt.plot(m, gene_cal[1], label='calculated'), plt.plot(m, gene_org[1], '--', label = 

'original') 

plt.legend() 

plt.title('Gene 2 profile') 

plt.show() 

 

plt.plot(m, gene_cal[2], label='calculated'), plt.plot(m, gene_org[2], '--', label = 

'original') 

plt.legend() 

plt.title('Gene 3 profile') 

plt.show() 

 

plt.plot(m, gene_cal[3], label='calculated'), plt.plot(m, gene_org[3], '--', label = 

'original') 
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plt.legend() 

plt.title('Gene 4 profile') 

plt.show() 

 

m = np.linspace(0, 150, 150) 

 

plt.plot(m, gene_cal[0]) 

plt.title('Gene 1 profile') 

plt.show() 

 

plt.plot(m, gene_cal[1]) 

plt.title('Gene 2 profile') 

plt.show() 

 

plt.plot(m, gene_cal[2]) 

plt.title('Gene 3 profile') 

plt.show() 

 

plt.plot(m, gene_cal[3]) 

plt.title('Gene 4 profile') 

plt.show() 

 

print('parameters = {}'.format((np.round(a[-1][0]))), 'Cost = {}'.format((a[-

1][1]))) 

 

# cr = cumulative error of each gene 

cr1 = np.sum(np.fabs(gene_org[0]-gene_cal[0])) 

cr2 = np.sum(np.fabs(gene_org[1]-gene_cal[1])) 

cr3 = np.sum(np.fabs(gene_org[2]-gene_cal[2])) 

cr4 = np.sum(np.fabs(gene_org[3]-gene_cal[3])) 

print(cr1, cr2, cr3, cr4) 
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3.5. Experiments and Results 

The experiment was carried out on AMD E1-1200 1.4Ghz APU powered laptop 

using Jupyter Notebook with Python 3 kernel. The code is written in Python 3 

language. We made use of the numpy, random and matplotlib libraries for 

computation, random number generation and graph plotting. We chose python 

because it is very easy to use yet very powerful.  

We applied DE code to two different data set, one having 4 genes and 150 time 

point data, second, having 8 genes and 50 time point data and calculated the 

result. 

We used three different activation functions in our code and applied to each 

dataset. The three activation functions used by us are 1. Sigmoid, 2. Hyperbolic 

Tangent (tanh), 3. Rectified Linear Unit (ReLU). 

 

4 GENE 150 TIME POINT DATASET 

Sigmoid activation function: 

We applied differential evolution (DE) code with sigmoid activation function 

𝑓(𝑥) =  1 (1 + 𝑒−𝑥)⁄  on 4 gene 150 time point dataset and calculated the result. 

The results are as follows: 

I. Network and Weight values of the network: 

 

 

 

 

 

 

 

  

 

 

 

 
Fig. 3.4.1. Connections between genes with weights 
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Table 1. Result after run using sigmoid function on 4 gene 150 time point data, 

70 population 

 

 Gene 1 Gene 2 Gene 3 Gene 4 𝑏𝑖 𝛤𝑖 

Gene 1 -3.77 20.0 -7.61 3.08 -15.12 0.66 

Gene 2 8.42 8.45 -1.98 7.00 -19.9 0.33 

Gene 3 -18.26 -9.73 9.04 12.84 -14.83 0.34 

Gene 4 -4.01 3.9 0.0 -12.25 -8.08 0.332 
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II. Gene profile graphs 
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Fig. 3.4.1. Expression profile (obtained and original) of gene 1, gene 2, gene 3, 

gene 4 obtained using DE and sigmoid as an activation function 
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Fig. 3.4.2. Minimum cost function value in each step in DE using sigmoid 

activation function after 500 iterations  

 

 

 

III. Cumulative error of each gene after the complete run of DE using sigmoid 

activation function. 

 

Gene 1 = 0.005387648569680326 

Gene 2 = 0.0024540599978749578 

Gene 3 = 0.04065428762069223 

Gene 4 = 0.05334962900011064 
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Tangent Hyperbolic (tanh) activation function: 

Second, we applied differential evolution (DE) code with tangent hyperbolic 

(tanh) activation function 𝑓(𝑥) =  
(𝑒𝑥 − 𝑒−𝑥)

(𝑒𝑥 + 𝑒−𝑥)⁄  on 4 gene 150 time 

point dataset and calculated the result. 

 

The results are as follows: 

I. Network and Weight values of the network: 

 

 

 

 

 

 

  

 

 

 

 
Fig. 3.4.1. Connections between genes with weights 

 

 

 

Table 3. Result after run using tanh function on 4 gene 150 time point data, 70 

population 

 

 Gene 1 Gene 2 Gene 3 Gene 4 bi Γi 

Gene 1 19.0 -16.0 -15.29 14.33 -20.0 0.65 

Gene 2 8.77 20.0 17.83 -5.83 -18.37 0.33 

Gene 3 17.47 4.48 2.78 -7.79 18.30 -1.97 

Gene 4 7.715 4.20 -0.831 -20.0 -1.91 0.90 
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II. Gene profile graphs 
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Fig. 3.4.1. Expression profile (obtained and original) of gene 1, gene 2, gene 3, 

gene 4 obtained using DE and tanh as an activation function 

 

 



46: Solving GRN using DE 
 

 
 

Fig. 3.4.2. Minimum cost function value in each step in DE using tanh 

activation function after 2000 iterations  

 

 

 

III. Cumulative error of each gene after the complete run of DE using tanh 

activation function. 

 

Gene 1 = 0.005049140885144965 

Gene 2 = 0.009772150626521758 

Gene 3 = 0.7326788134764473 

Gene 4 = 0.39660406731284326 
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Rectified Linear Unit (ReLU) activation function: 

Third, we applied differential evolution (DE) code with rectified linear unit 

(ReLU) activation function 𝑓(𝑥) =  {
𝑥     𝑖𝑓 𝑥 > 0  
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  𝑜𝑟 𝑚𝑎𝑥(0, 𝑥) on 4 gene 

150 time point dataset and calculated the result. 

 

The results are as follows: 

I. Network and Weight values of the network: 

 

 

 

 

 

 

  

 

 

 

 
Fig. 3.4.1. Connections between genes with weights 

 

 

 

Table 3. Result after run using ReLU activation function on 4 gene 150 time 

point data, 70 population 

 

 Gene 1 Gene 2 Gene 3 Gene 4 bi Γi 

Gene 1 -17 -9 19 -2 -9 16 

Gene 2 12 -20 10 11 -17 6 

Gene 3 5 -5 18 -4 14 -1 

Gene 4 19 3 -5 -12 10 0.33 
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II. Gene profile graphs 
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Fig. 3.4.1. Expression profile (obtained and original) of gene 1, gene 2, gene 3, 

gene 4 obtained using DE and ReLU as an activation function 
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Fig. 3.4.2. Minimum cost function value in each step in DE using ReLU 

activation function after 2000 iterations 

 

 

 

III. Cumulative error of each gene after the complete run of DE using sigmoid 

activation function. 

 

Gene 1 = 1.219748937526846 

Gene 2 = 1.620647139444918 

Gene 3 = 2.2344797549153337 

Gene 4 = 0.6278830194131982 
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8 GENE 50 TIME POINT DATASET 

Sigmoid activation function: 

First, we applied differential evolution (DE) code with sigmoid activation 

function 𝑓(𝑥) =  1 (1 + 𝑒−𝑥)⁄  on 8 gene 50 time point dataset and calculated the 

result. 

 

The results are as follows: 

I. Weight values of the network: 
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II. Gene profile graphs: 

 

 
 

 

 

 

 



53: Solving GRN using DE 
 

 
 

 

 

 

 
 

 

 



54: Solving GRN using DE 
 

 
 

 

 

 

 
 

 

 

 

 



55: Solving GRN using DE 
 

 

 
 

 

 

 

 
Fig. 3.4.1. Expression profile (obtained and original) of gene 1, gene 2, gene 3, 

gene 4, gene 5, gene 6, gene 7, gene 8 obtained using DE and sigmoid as an 

activation function 
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Fig. 3.4.2. Minimum cost function value in each step in DE using sigmoid 

activation function after 2000 iterations 

 

 

 

III. Cumulative error of each gene after the complete run of DE using sigmoid 

activation function. 

 

Gene 1 = 1444.6383413566189 

Gene 2 = 5399.367133105187 

Gene 3 = 942.014392573654 

Gene 4 = 6195.347531207003 

Gene 5 = 4690.470643825132 

Gene 6 = 617.47679739405 

Gene 7 = 471.1232009093766 

Gene 8 = 536.7045559935261 
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Tangent Hyperbolic (tanh) activation function: 

Second, we applied differential evolution (DE) code with tangent hyperbolic 

(tanh) activation function 𝑓(𝑥) =  
(𝑒𝑥 − 𝑒−𝑥)

(𝑒𝑥 + 𝑒−𝑥)⁄  on 8 gene 50 time 

point dataset and calculated the result. 

 

The results are as follows: 

I. Weight values of the network: 
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I. Gene profile graphs: 
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Fig. 3.4.1. Expression profile (obtained and original) of gene 1, gene 2, gene 3, 

gene 4, gene 5, gene 6, gene 7, gene 8 obtained using DE and tanh as an 

activation function 
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Fig. 3.4.2. Minimum cost function value in each step in DE using tanh 

activation function after 2000 iterations 

 

 

 

III. Cumulative error of each gene after the complete run of DE using tanh 

activation function. 

 

Gene 1 = 1439.4910149880902 

Gene 2 = 8131.501435219638 
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Gene 8 = 537.707899707553 
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Rectified Linear Unit (ReLU) activation function: 

Third, we applied differential evolution (DE) code with rectified linear unit 

(ReLU) activation function 𝑓(𝑥) =  {
𝑥     𝑖𝑓 𝑥 > 0  
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  𝑜𝑟 𝑚𝑎𝑥(0, 𝑥) on 8 gene 

50 time point dataset and calculated the result. 

 

The results are as follows: 

I. Weight values of the network: 
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II. Gene profile graphs: 
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Fig. 3.4.1. Expression profile (obtained and original) of gene 1, gene 2, gene 3, 

gene 4, gene 5, gene 6, gene 7, gene 8 obtained using DE and ReLU as an 

activation function 
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Fig. 3.4.2. Minimum cost function value in each step in DE using ReLU 

activation function after 3000 iterations 

 

 
III. Cumulative error of each gene after the complete run of DE using ReLU 

activation function. 

 

Gene 1 = 1704.2664858294645 

Gene 2 = 2177.1760460114638 

Gene 3 = 881.4329431142887 

Gene 4 = 2537.2964561386193 

Gene 5 = 2424.934737389529 

Gene 6 = 689.3671569037579 

Gene 7 = 691.4115267879777 

Gene 8 = 668.2582379742862 
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3.6. Conclusion 

Recurrent neural network-based models, using time series gene expression data 

from microarray experiments, provide a promising way to investigate gene 

regulatory mechanisms and understand gene interactions. The only information 

available for inference of gene regulatory network is the gene expression time 

series data, which are also erroneous, and there is no guideline regarding the 

structure of a particular gene regulatory network. Hence, the result obtained is not 

100% accurate, but considering the challenges, and limited availability of 

information, our model provides a good result. 

 

Due to the large number of model parameters and the small number of data sets 

available, the system of equations in GRN identification problem is highly 

underdetermined and ambiguous. Therefore, multiple solutions exist, which fit 

the given data, but show only little resemblance with the original target system. 
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4.1. Conclusion 

The study of gene regulatory networks (GRNs) structure is important in 

understanding cellular function. GRNs are typically represented by graphs in 

which the nodes represent the genes and the edges show the regulatory or 

interaction between genes. There are many methods for inference of GRNS. Here, 

in this thesis we used model based method. We have chosen RNN model to infer 

Gene Regulatory Network (GRN), and to find the optimal weights and bias of the 

network we have used Differential Evolution as an optimization algorithm with 

different activation functions, such as Sigmoid, tanh and ReLU. Given the 

similarity between RNNs and gene networks, we believe that RNNs will play an 

important role in exploring the mystery of gene regulation relationships.  As to 

the RNNs model, it can be further extended to include factors like time delay, 

which is an important property of genetic regulatory networks, but unfortunately, 

not well addressed yet. Also, RNNs can also take into account more complex 

interactions, such as interactions between triplets of variables rather than pairs.  

The performance of DE with the three activation function is compared. The result 

from all three activation functions shows that sigmoid function converge faster 

than the rest two and takes less iteration to provide close to accurate result. This 

method infer GRNs with high accuracy and can identify direction of interaction. 

However, this is time consuming and require many parameters to be set up, and 

thus cannot be used for large-scale networks. This method works well for small 

networks, but large scale networks are still out of the scope of the method in the 

current form because of the high dimensionality of the model.  
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4.2. Future Works 

This study has demonstrated that Differential Evolution is able to infer RNN 

model of a gene regulatory network with ease provided the dataset is small. For 

future study we could use better optimization algorithms such as Particle swarm 

optimization, Bat algorithm etc., to provide better insight into gene networks. 

Currently, one of the major limiting factors for genetic regulatory network 

inference is the paucity of reliable gene expression time series data, which 

restricts the applications of current computational methods to only synthetic 

data, or small-scale real networks, with only several genes or gene clusters. 

Also, it is equally 

important to combine prior information about the regulatory networks of study 

into the model so as to remove some biologically impossible connections. 

These results are generally simplified versions of the network. If more 

knowledge can be incorporated in the cost function, then the model will be able 

to provide more accurate results. Our next goal is to incorporate a few more 

constraints in our cost function to make it more accurate. Being able to predict 

gene expressions more accurately provides a way to explore how drugs affect a 

system of genes as well as for finding which genes are interrelated in a process. 

To increase the robustness and redundancy of current models and further 

improve the search capability of the training algorithms are also important and 

interesting directions for further research. 


