B. ETCE 1st year 1st sem. 2019 (Old) Mathematics-I G

Time: Three hours Full Marks: 100

Group-A (Answer any five questions)

- 1. (i) If $y = a\cos(\log x) + b\sin(\log x)$ then prove that $x^2y_{n+2} + (2n + 1)$ $1)xy_{n+1} + (n^2 + 1)y_n = 0.$ (ii) If a function f is such that its derivative f' is continuous in [a, b] and derivable in (a, b) then prove that there exists a number c(a < c < b)such that $f(b) = f(a) + (b-a)f'(a) + \frac{1}{2}(b-a)^2 f''(c)$ 5 2. (i) Show that $\frac{x}{\sin x}$ increases monotonically from x=0 to $x=\frac{\pi}{2}$. 5 (ii) Show that $\frac{x}{1+x} < \log(1+x) < x$ for all x > 0. 5 3. (i) Find the maximum value of $\sin x(1 + \cos x)$. 5 (ii) Show that of all rectangles of given area, the square has the smallest perimeter. 5
- 4. (i) Determine $\lim_{x\to 0} \frac{x-\log(1+x)}{1-\cos x}$.
 - (ii) Find the asymptotes of the curve $x^3 + y^3 3axy = 0$.
- 5. Prove that $\sin x = x \frac{x^3}{3!} + \frac{x^5}{5!} \frac{x^7}{7!} + \dots$ Justify the convergence of the series.
- 6. (i) Prove that $\lim_{n\to\infty} \frac{\{(n+1)(n+2)\dots(2n)\}^{\frac{1}{n}}}{n} = \frac{4}{e}$.
 - (ii) Examine the convergence of the series $x + \frac{x^2}{2} + \frac{x^3}{3} + \dots, x > 0$. 5

[Turn over

- 7. (i) Let $f_n(x) = x^2 e^{-nx}$, $x \in [0, \infty)$. Show that $f_n(x)$ is uniformly convergent on $[0, \infty)$.
 - (ii) Prove that the series $\sum \frac{1}{n^3 + n^4 x^2}$ is uniformly convergent for all real x

Group-B (Answer any five questions)

8. Evaluate $\lim_{x\to 0} \lim_{y\to 0} f(x,y)$, $\lim_{y\to 0} \lim_{x\to 0} f(x,y)$ and $\lim_{(x,y)\to(0,0)} f(x,y)$, if they exist, for the following functions:

(i)
$$f(x,y) = \frac{x-y}{x+y}$$
, $x+y \neq 0$
 $= 0$, $x+y=0$
(ii) $f(x,y) = \frac{xy}{x^2+y^2} + y\sin\frac{1}{x}$, $xy \neq 0$
 $= 0$, $x = 0$, $y = 0$

5 + 5

9. (i) Verify whether f is continuous at (0,0), where

$$f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}, (x,y) \neq (0,0)$$
$$= 0, (x,y) = (0,0)$$

5

(ii) If u = f(x, y) and $x = r \cos \theta$, $y = r \sin \theta$ then prove that

$$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = \left(\frac{\partial u}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial u}{\partial \theta}\right)^2.$$

5

10. (i) Verify whether f is continuous at (0,0), where

$$f(x,y) = \frac{x^2y^3}{x^2 + y^2}, (x,y) \neq (0,0)$$
$$= 0, (x,y) = (0,0)$$

- (ii). Find the directional derivative of the function $f(x,y,z) = \log(x^2 + 2y^2 + z^2)$ at the point (2,1,1) in the direction of (-1,2,3).
- 11. (i) If $\sin u = \frac{x^2 + y^2}{x + y}$ then prove that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \tan u.$$

(ii) Find the equation of the tangent plane to the surface defined by $z = \sqrt{x^2 + y^2}$ at the point P(1,2).

5

5

12. (i) If $u = \cos x$, $v = \sin x \cos y$, $w = \sin x \sin y \cos z$ then show that

$$\frac{\partial(u,v,w)}{\partial(x,y,z)} = -\sin^3 x \sin^2 y \sin z.$$

(ii) If $z = \frac{\sin u}{\cos v}$, $u = \frac{\cos y}{\sin x}$, $v = \frac{\cos x}{\sin y}$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

13. Find and classify the extreme values (if any) of the function defined as :

$$f(x,y) = 4x^2 - xy + 4y^2 + x^3y + xy^3 - 4$$

14. Find the maxima amd minima of $x^2 + y^2 + z^2$ subject to the conditions $ax^2 + by^2 + cz^2 = 1$ and lx + my + nz = 0.