B.E. Electronics and Tele-Communication Engineering 2019 (Old)

First Year Second Semester

Electron Device

Fu	dl Marks: 100 Time: Th	ree hours
	The figures in the margin indicate full marks.	
	(All parts of the same question must be answered together)	
1.	Fill in the blanks:	10
a)	A semiconductor of band gap suits better for high temperature operation.	
b)	The breakdown voltages of Zener diodes are always than those in Backward diodes.	
c)	The natural direction of orientation that the molecules in a liquid crystal follow is called .	
d)	The semiconductor used in a blue LED should have a band gap compared to that in a red LED.	
e)	An FET does not suffer from the problem of Thermal runaway, as it relies on the carriers.	
f)	In a BJT, if the base doping be lowered, its gain will, the Early voltage will	
g)	PUT is the full form of	
g) h)	The combination of an LED and a Photodetector is called	
i)	A PIN diode is than a conventional photodiode.	
2.	Answer any TWO:	2x15
a.i)	Derive the <i>Junction laws</i> for a step p - n junction.	7
ii)	Sketch the energy band diagrams for a p-n junction at Equilibrium, under Forward bias and under Reverse bias.	8
b) _	Describe the two primary breakdown mechanisms occurring in a reverse biased p - n junction. Also describe what is the other breakdown that may take place in a diode and how does it occur?	12+3
c.i)	What is the <i>Ideal diode approximation</i> ? Write down the <i>I-V</i> relation for an ideal diode (no derivation). Describe how the relation gets modified in case of a real diode?	2+2+3
	[Ti	urn over

ii)	Develop the energy band diagram of a junction formed between a Metal (work function φ_m) and an <i>n</i> -type semiconductor (work function φ_{sn}), where $\varphi_m > \varphi_{sn}$. Explain the nature of the resulting junction.	8
3.	Answer any TWO	2x20
a.i)	With the help of appropriate band diagrams, explain the origins of different current components and the overall <i>I-V</i> characteristic of a Tunnel diode.	12
ii)	Explain the Input and Output characteristics of a BJT in CE configuration.	8
b.i)	What is <i>Gradual channel approximation</i> ? Use it to derive the general <i>I-V</i> relationship for a JFET. Also explain its <i>I-V</i> characteristic.	1+8+5
ii)	Draw the schematic structures and <i>I-V</i> characteristics of DIAC, SCR and TRIAC.	6
c.i) ii)	Explain the operation of a CMOS inverter. Why it is named CMOS? Why a VMOS is called Power FET? Describe its structure and operation.	8+2 2+8
4.	Answer any ONE:	10
a)	Draw and explain the equivalent circuits of <i>p-n</i> junction diode and Schottky diode. Modify the above circuits under Forward and Reverse biased conditions.	6+4
b)	Define h-parameters and draw the general h-parameter equivalent circuit for a BJT. Modify the circuit while the transistor is used in CE configuration.	8+2
5.	Answer any ONE:	10
a)	Explain why the efficiency of a basic LED is poor and how can it be improved.	
b)	Discuss various approaches for reducing the switching time for a semiconductor diode.	