B. E. ELECTRONICS AND TELE-COMMUNICATION ENGINEERING EXAMINATION 2019 (Old)

$(1^{st} \text{ year}, 1^{st} \text{ Semester})$ PHYSICS IB

Time: Three hours Full Marks: 100

Answer any five

GROUP A

- 1. (a) What do you mean by microstates and macrostate of a system. Give one example in each case. Discuss the concept of ensemble in statistical mechanics. What is the difference between canonical and microcanonical ensemble 6 + 3+2(b) Discuss the concept of phase space. What do you mean by equation of state of the system. Derive the general expression for an equation of state of a canonical ensemple. 3 + 2 + 4(a) explain various type of thermodynamic equilibrium when two systems are interacting each other. 5 (b) Calculate the probability P_r that the canonical system is in the energy state E_r and hence define the partition function.
 - (c) Use general expression of entropy to derive the expression for entropy of a canonical ensemble.
 - (d) Calculate the partition function of a one dimensional simple harmonic oscillator
- 3 (a) Explain the term postulate of equal apriori probability.
 - 5 (b) Calculate the canonical partition function of an ideal classical gas
 - (c) calculate the equation of state, entropy of an ideal gas from the partition function. 6
 - (d) What is Gibb's paradox? How was the paradox resolved? 6
- 4. (a) What is a reversible engine? Find an expression for the efficiency of Carnot's engine.
 - (b) What is the maximum work a Carnot engine can perform per kilo calorie of heat which absorbs heat at 247°C and exhaust heat at 117°C?
 - (c) Compute the entropy change of a system consisting of 1.00 kg of ice at 0°C which melts to water reversibly at the same temperature. Latent heat of melting 79.6 cal/gm. 10+5+5
- 5. (a) Distinguish among reversible, irreversible and cyclic process.

- (b) State and explain the First law of thermodynamics
- (c) Show that for isothermal process, work done depends upon path.
- (d) Show that $C_p C_v = R$. 5+5+5+5
- 6. (a) Convert a rectangle in P-V diagram to T-S diagram 3
 - (b) If a real gas undergoes an adiabatic change, prove that

$$(P + \frac{a}{V^2})(V - b)^{\frac{R + C_v}{C_v}} = constant$$
 (1)

Where symbols have their usual meaning.

10

7

- (c) Derive four Maxwells thermodynamic relations.
- 7. (a) Show that the Gravitational field is conservative.
 - (b) Prove that the torque about the origin of a coordinate system is equal to the time rate of change of angular momentum.
 - (c) A particle of mass 2 moves in a force field depending on time t given by $\vec{F} = 24t^2\hat{i} + (36t 16)\hat{j} 12t\hat{k}$ Assuming that at t = 0 the particle is located at $r_0 = 3\hat{i}\hat{j} + 4\hat{k}$ and has velocity $v_0 = 6\hat{i} + 15\hat{j} 8\hat{k}$, find
 - (i) the velocity
 - (ii) the position at any time t
 - (iii) the torque about the origin at any time t
 - (iv) the angular momentum about the origin at any time t
- 8. (a) A force \vec{F} acting on a particle in the XY plane is given by $\vec{F} = (x^2 + y^2)\hat{i} + cxy\hat{j}$, where c is a constant. For what value of c, the force \vec{F} is conservative. find the work done by the force in moving a particle along the path from (0,0) to (0,2) and then from (0,2) to (3,2).
 - (b) Define unit vectors in cylindrical coordinate system. Express the vector $\vec{A} = 2z\hat{i} 3x\hat{j} + y\hat{k}$ in cylindrical coordinates (ρ, ϕ, z) and identify A_{ρ} , A_{ϕ} and A_{z} . 3+5
 - (c) A point moving in a plane has co-ordinates x=3, y=4 and has components of speed $\dot{x}=5$ cm/s, $\dot{y}=8$ cm/s at some instant of time. Find the components of speed in polar coordinate systems, r, θ along the directions \hat{r} and $\hat{\theta}$ 5