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PREFACE 

 

 

 

 

 

 

The decoding of brain waves is one of the most important steps to implement and 

develop BCI systems. The thesis makes an honest attempt to develop new and 

upcoming applications of brain signal analysis in next generation BCI research. Three 

typical applications of BCI in real world systems are proposed.  The first application 

deals with Granger Causality based brain connectivity analysis for primary color 

stimuli. The second application is concerned with  the dynamical system based 

causality analysis technique, Convergent Cross Mapping, to study the effective brain 

connectivity for a color perception problem. The last topic includes a convolutional 

neural network (CNN) based technique to decode human decision making system. 

Each topic is discussed with sufficient details, narrating the problem-description, 

approach, analysis, experiments and main results obtained at the end of the experiment.  
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Chapter 1

Introduction to Brain Computer

Interface
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Abstract

A brain-computer interface is the mode of direct communication between

a wired brain and an external device. Since its inception in the 1970s, it

has been widely used by researchers all over the world to understand human

behavior and psychology. The BCI community over the years has seen

substantial amount of work done on BCI technologies and many successful

BCI applications. However, continuous efforts to further optimize and improve

the capabilities, usability and robustness of these systems for use in humans

is still needed. This chapter sheds light on the state-of-the-art of BCI as an

emerging human-computer interaction technology.

1.1 Introduction

Individuals with healthy motor functions may take for granted the complicated

biological, chemical, and electrical processes that occur within their body in

order for them to easily communicate and interact with the outside world.

Although the processes are complex, healthy individuals are able to complete

them without much thought or effort. However, when certain neuron pathways

are severed or degeneration brought on by an injury or a disease occurs,

what once were simple tasks may become impossible or very cumbersome to

complete.

The research on BCIs began in the 1970’s at the University of California,

Los Angeles under the grant from the National Science Foundation. The

current goal of BCI research is to develop replacement communication and

control means for severely disabled people. For those who have lost all
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voluntary muscle control, referred to as locked-in syndrome, BCI technology

offers the only means of communication or environment control. Furthermore,

BCI has applications in facilitating those with cognitively intact but severe

motor impairments to write sentences, play video games, perform collaborative

work, and create arts, through brain signal processing and interpretation.

BCI systems consist of several sequential steps, which can be divided into

four categories: brain activity pattern generation, signal acquisition, feature

extraction, and classification. First, brain activity can be represented by

electrical activity, magnetic fields created by electrical activity, and blood

oxygenation, and it differs in spatial and temporal characteristics depending

on stimulus type, stimulus intensity, mental effort, and mental status. Second,

brain activity can be measured through various brain imaging techniques in

the signal acquisition phase. The appropriate technique should be chosen

according to the type of brain activity to be measured and the purpose of

the measurement, largely divided into invasive and noninvasive methods.

Third, in the feature extraction step, only the important and interesting

brain activities are extracted from the measured brain signals. Finally, the

extracted brain features are analyzed through various algorithms to classify

the user’s current intention and status.

1.2 Steps Involved in BCI

1.2.1 Data Acquisition

The main purpose of this step is to acquire signals from brain activities using

various types of sensors including electroencephalography (EEG), magne-
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toencephalography (MEG), electrocorticography (ECoG), electrical signal

acquisition in single neurons (intracortical neural recording - INR), functional

magnetic resonance imaging (fMRI), and functional near infrared spectroscopy

(fNIRS). These brain data acquisition methods are evaluated by a few dif-

ferent criteria. Typical criteria include manner of deploying sensors, type of

acquired signal, temporal resolution which is the ability to detect changes

within a certain of time interval [1], spatial resolution which is the ability to

detect source of changes in brain, and portability which is the ability to use

acquisition device across different environments. Based on the technique of

recording of brain data, neuroimaging methods are generally categorized by

invasiveness of the recording technique and into two categories, namely, (1)

noninvasive, and (2) invasive recording methods.

Noninvasive Recording Methods

A noninvasive recording technique uses sensors placed on the skin, such as

the scalp, or machinery that surrounds the cranium in whole. Two types of

noninvasive recording methods discussed in this section include (1) direct

measures that detect electrical (e.g., EEG) or magnetic activity (e.g., MEG)

of the brain, and (2) indirect measures of brain function reflecting brain

metabolism or hemodynamics of the brain (e.g., fMRI, fNIRS, and PET)

that do not directly characterize the neuronal activity. Unlike invasive

recording methods, these noninvasive techniques do not require surgery,

internal chemical or machine implantation, or needle insertion in order to

receive and record neural activity [2].

1. Electroencephalography : One of the most popular noninvasive neu-
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rophysiological recording techniques is electroencephalography, or EEG.

This method measures electrical activity in the brain through the use

of surface electrodes placed on the scalp [3]. The first human EEG

was recorded by Hans Berger, a German psychiatrist, in 1924. The

neurophysiological origin of EEG signals is the pyramidal neurons of

the cortex [4]. An electrical impulse is sent down the axon and into the

synapse every time neurons are fired during excitation. Since electrical

signals are not able to cross neuronal boundaries, a chemical reaction is

created between neurons. This chemical reaction is triggered by the elec-

trical impulse and causes an action potential. An action potential is the

process of neuron depolarization, followed by repolarization. Chemical

information can begin flowing through the synaptic left when a neuron

is at its resting polarization level. The flow causes the depolarization,

and repolarization is necessary before more chemical information can

flow through the synapse again . EEG measures the electrical current,

which Teplan explained as that flow during synaptic excitations of the

dendrites of many pyramidal neurons in the cerebral cortex. Because of

the distance and impedance of bone and skin between the electrodes

and the cerebral cortex, the EEG cannot accurately detect single neuron

excitations. Instead, the EEG picks up local current flows on groups

of active neurons within the cerebral cortex . Neural oscillations that

are observed in EEG signals are popularly called brainwaves, reflecting

different aspects when they occur in different locations in the brain.

These brain-waves are identified by frequency (in hertz or cycles per

second) and amplitude in the range of microvolts (V or 1/1,000,000 of
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a volt). Each brainwave has its own set of characteristics representing a

specific level of brain activity and mental states . For example, Delta

brain-waves reflect slow, loud, and functional mental states that prevail

during the late sleep , while the power decrease at the alpha band corre-

lates to the presence of mental imagery. In order to record EEG signals,

a head set consisting of an EEG cap with at least three electrodes (i.e.,

a ground, a reference, and a recording electrode) is needed (Fig. 1.1b).

Figure 1.1: (a) The 10/20 international system of electrode placement. (b)

An example montage based on the 10/10 system, which measures O1 and O2

with Oz bipolar method to elicit SSVEPs.
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In addition, an amplifier, an A/D converter, and a computing device

(such as a computer) are necessary. Electrodes are typically made of

silver, silver chloride, or gold and can be considered wet, which requires

conductive gel to be placed between electrode and scalp, or dry, where

the electrode is placed directly onto the skin. Measurements from all

electrodes are referred to one common electrode, called reference elec-

trode. The active and reference electrodes serve as the signal receptors

for potential difference comparisons. The ground electrode serves as

the baseline of brainwave signals that helps weed out irrelevant data

from the active and reference signals. Correct EEG electrode place-

ment is important to ensure proper location of electrodes in relation

to cortical areas so that they can be reliably and precisely maintained

from individual to individual. The international 10/20 system has been

an internationally recognized standard system for electrode positioning

with 21 electrodes for half a century. Under the 10/20 system, the

skull is divided into six areas from nasion to inion with interval rates

of 10 % ,20%, 20%, 20%, 20%, and 10% (Fp: frontopolar, F: frontal,

C: central, P: parietal, and O: occipital,respectively), and also divided

into the same ratios from left to right pre-auricular points (T3: tem-

poral, C3: central, Cz, C4, and T5, respectively). With the advent of

multichannel EEG acquisition systems and the concurrent development

of topographic and tomographic signal source localization methods,

however, the international 10/20 system has been extended to higher-

density electrode settings such as the 10/10 and 10/5 systems, allowing

more than 500 electrode positions. To accurately identify the location
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of scalp electrodes, anatomical landmarks should be determined for the

essential positioning of the electrodes: (1) the nasion, which is the point

between the forehead and the nose; (2) the inion, which is the lowest

point of the skull from the back of the head and is normally indicated by

a prominent bump; (3) the pre-auricular points anterior to the ear. The

numbers 10 and 20 refer to the fact that the distances between adjacent

electrodes are either 10% or 20% of the total frontback or rightleft

distance of the skull. Each site has a letter to identify the lobe (i.e.,

F, T, C, P, and O stand for Frontal, Temporal, Central, Parietal, and

Occipital, respectively), the Z(ero) to refer to an electrode placed on the

midline, and a number to identify the hemisphere location (i.e., odd and

even numbers referring to the left and right hemispheres, respectively).

Also note that the smaller the number, the closer the position is to the

midline. In Fig. 1.1 (a) For example, electrode O1 identifies the left

occipital, C4 identifies the right central, P3 identifies the left parietal,

and A1 identifies the left ear reference. Currently, EEGs are among

the most popular techniques for brain computer interfacing technology,

making up 68% of BCI research articles published in 2007, 2011 as

shown in Figure 1.2 [17]. It is noninvasive, inexpensive, and portable,

making it a popular device in current research. It does not, however,

provide high spatial quality information on the location of brain signal

activation. In addition, it is mathematically difficult to accurately

compute the distribution of currents within the brain that generated

these signals. This is referred to as the inverse problem.
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Figure 1.2: BCI research articles published in 2007–2011 from [17].

Invasive Recording Methods

Invasive recording methods are neuroimaging techniques in which the elec-

trodes make direct contact with brain tissue. These methods can provide

more accurate spatial and temporal information, but come at a greater risk

to the individual. Two types of invasive recording methods are, namely,

electrocorticography (ECoG) and intracortical neuron recording (INR).

1.2.2 Data Preprocessing

This step is very crucial to obtaining accurate BCIs. The acquired data

must be pre-processed for noise and artefacts that are crept into the signal

due to 50/60 Hz power supply interference, electrical noise from electronic

components and cable defects. Further, there are artefacts due to ocular and
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involuntary muscular activation. These artefact result in the recorded brain

data to have low signal-to-noise ratio (SNR) and hence must be dealt with in

a proper manner before going for further processes.

1.2.3 Feature Extraction

Feature extraction is a crucial step in the BCI scheme. Its task is to represent

the whole signal by using some shorter and more meaningful measures called

features [5] [6]. Until now, although there has been a lot of effort from

neuroscientists seeking to discover brain and neural operations inside it, the

overall knowledge of human-beings about the brain is still very limited. This

shortcoming makes brain signal more difficult than other signals such as voice

signal in feature extraction.

In this section, we describe a feature extraction procedure with an EEG-

based SSVEP BCI example. Assume that there is a robot that can move

four directions in a grid cell environment. A user can control the robot by

gazing at one of four flashing LED stimuli (i.e., flickering at 7, 13, 17, and

23 Hz) that correspond to directional commands (up, down, left, and right,

respectively). A starting position of the robot is randomly set and the user

moves the robot via a BCI system to hit a target position. The robot moves

one cell from its current location when the classification of BCI detects one of

the four SSVEP features. The classification is made only if the amplitude of

one of the frequencies exceeds a certain threshold within the most recent 5 s

of EEG data. Otherwise, the robot will not move and will stay at its current

position. EEG data record at a sampling rate of 512 Hz on the occipital area

(O1 and O2). The recorded EEG data are first filtered by a 5-Hz high-pass
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filter, a 75-Hz low-pass filter, and a 60-Hz notch filter. The filtered EEG

data are refined by the artifacts removal procedure, and subtract O1 channel

to O2 channel by using the bipolar reference method. Then, the EEG data

are transformed into the frequency domain by fast Fourier transform (FFT).

The time window for FFT is 5 s and a 1-s (512 data points) sliding time

window is used, so one decision can be made every second. For each time

window, the power values of the fundamental, second, and third harmonics

for each frequency are summed up. For example, the power value of 23, 46,

and 69 Hz will be summed up for the stimulus of 23 Hz. If the maximum

power sum value among four values is two times bigger than the average of

the others, then the robot will move one cell from its current location to the

corresponding direction of the maximum power frequency. Otherwise, the

robot stays in its current position. This procedure will continue until the

robot arrives at the target position.

1.2.4 Feature Classification Methods

In the context of biomedical signal processing, especially with application to

EEG signals, the classification of the data in feature spaces is often required.

For example, to detect whether there is a left or right finger movement in the

BCI area, the time, frequency and spatial features need to be classified. The

objective of classification is to draw boundary between two or more classes

and to label them based on their measured features. In a multi-dimenssional

feature space, this boundary takes the form of a separating hyperplane. There

have been several clustering and classification techniques developed within

the last few years. Some well known and successful methods are Linear
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Discriminant Analysis (LDA), Principal Component Analysis (PCA), Support

Vector Machine (SVM), Hidden Markov Model (HMM), k-nearest neighbours

(kNN) and Artificial Neural Network (ANN). Among them, LDA and SVM

are the two best classifiers [6].

1.3 Brain Signal Patterns for BCI Operation

Every BCI is created to respond to a certain type of brain signal. Figure

1.3 (a),1.3 (b), 1.4 (a), 1.4 (b) illustrate the most popular types of brain

signals used for operating BCIs. What follows is an overarching review of

the brain signal patterns in terms of their physiological bases, initial training

requirement for use, and the rate at which information is transferred from

brain to application. However, only neuroelectric signals, such as EEG, are

discussed in the following sections, because it not only can cover most of

brain patterns (P300, SSEP, and ERD/ERS) but also is the most studied

BCI system because of its simplicity in application [3].

1.3.1 P300 ERPs

The P300 wave is a typical event related potential (ERP) component elicited

in the process of decision making, which appeared just after 300 ms after

the event happened. It is considered to be an endogenous potential, as

its occurrence links not to the physical attributes of a stimulus, but to a

person’s reaction to it. More specifically, the P300 is thought to reflect

processes involved in stimulus evaluation or categorization. It is usually

elicited using the oddball paradigm, in which low-probability target items

are mixed with high-probability non-target (or "standard") items. When
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Figure 1.3: a) P300 ERP. b) Sensorimotor rhythm.

recorded by electroencephalography (EEG), it surfaces as a positive deflection

in voltage with a latency (delay between stimulus and response) of roughly 250

to 500 ms. The signal is typically measured most strongly by the electrodes

covering the parietal lobe. The presence, magnitude, topography and timing

of this signal are often used as metrics of cognitive function in decision making

processes. While the neural substrates of this ERP component still remain

hazy, the reproducibility and ubiquity of this signal makes it a common choice

for psychological tests in both the clinic and laboratory. To enable application

of P300 for a P300 based BCI, the data have to be initially processed to

reduce noise and enforce P-300-related information. A pattern recognition

algorithm has to be developed later in order to check the presence of P300

wave in the recorded ERP epochs and label them.
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Figure 1.4: a) Steady-state visual evoked potential. b) Slow cortical potential.

1.3.2 Steady-State Evoked Potentials

An EEG evoked potential (EP) is a distinctive pattern of positive and negative

voltage deflections that is time-locked to a specific sensory stimulus or event.

Visual evoked potentials (VEPs) are those evoked by sudden visual stimuli,

such as a light flash, the appearance of an image, or an abrupt change in

color or pattern. Steady State VEPs (SSVEPs) [8] are stable oscillations

in voltage that are elicited by rapid repetitive simulation such as a strobe

light, an LED, or a pattern reversing checkerbox presented on a monitor. The

successive stimulus presentations evoke similar responses, and the overlap of

these responses produces a steady state oscillation. The occipital region is the

area where this feature is generated more prominently. SSVEP is considered

as a concept with two different definitions. Ragan proposed that SSVEP is a
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direct response in the primary visual cortex. On the other hand, Silberstein et

al. assumed that the SSVEP includes indirect cortical responses via cortical-

loops, from the peripheral retina, while a cognitive task is performed. SSVEP

in this model has a complex amplitude and phase topography across the

posterior scalp with considerable inter-subject variability. Although the main

mechanism of SSVEP still is unknown, generally SSVEP is considered as a

continuous visual cortical response evoked by repetitive stimuli with a constant

frequency on the central retina. As a nearly sinusoidal oscillatory waveform,

the SSVEP usually contains the same fundamental frequency as the stimulus

and some harmonics of the fundamental frequency. For example, when the

retina is excited by a visual stimulus at presentation rates ranging from 3.5 Hz

to 75 Hz, the brain generates an electrical activity at the same and different

frequency of the visual stimulus. The flickering stimulus of different frequency

with a constant intensity can evoke the SSVEP in verity of amplitudes, ranging

from (5-12Hz) as low frequencies, (12-25 Hz) as medium ones and (25-50 Hz)

as high frequency bands. This type of stimulus is a powerful indicator in the

diagnosis of visual pathway function, visual imperceptions.

SSVEP, along with evoked potentials , event-related potential(ERP), and

sensorimotor rhythms, is widely adopted in current active and reactive BCIs.

The SSVEP signal is a frequency-coded brain response that is generated

as neurons of visual cortex synchronizing their firing to the frequency of

continuous, repetitive visual stimulation. The main characteristics of SSVEP

are frequency-locked and phase-locked. As the natural characteristics of

SSVEPs, electrodes placed at the occipital region over the visual cortex can

measure SSVEPs with high signal-to-noise ratio(SNR). SSVEP amplitudes
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are sensitive to frequencies of visual flickers with predominant resonance peak

at 30-80 Hz.

Due to the high signal-to noise (SNR) and relative immunity to artifacts,

SSVEP has been widely used in diverse research fields including brain com-

puter interface, visual attention, binocular rivalry and working memory. Using

various techniques like EEG, MEG and fMRI, the related studies reveal that

the SSVEP response is widely distributed over the occipital and other areas,

including parietal, temporal, frontal, and prefrontal area. And these studies

implicitly indicate that SSVEPs are the information integration of large- scale

brain networks spanning across different cortical areas driven by flickering.

Meanwhile, the pre-state EEG background has a large influence on cognitive

processes, thus SSVEP responses may also be related to this baseline state.

1.3.3 ERD/ERS

Commonly, the EEG of the visual cortex is associated with the alpha rhythm,

with its typical reactivity upon closing and opening the eyes. However,

other types of rhythmic activities can be present in the same cortical areas,

namely within the beta/gamma frequency range. With respect to the origin

of beta/gamma rhythmic activity, several experimental facts have led to the

interpretation that these rhythmic activities are primarily generated in the

motor cortex as well as somato-sensory motor cortex itself. These include the

fact that sensory stimuli, cognitive tasks, motor tasks etc. induce changes in

the EEG activity and accordingly these changes led to the oscillations in the

beta/gamma frequency range, that are easily recorded from different cortical

sites. These changes are basically event-related (ER), and reflect a decrease
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or an increase in the synchrony of the underlying neuronal populations.

Alternatively, there may be an increase in the power corresponding to a

certain frequency band known as Event-Related Synchronization (ERS) or

the decrease in the power corresponding to certain frequency band known as

Event-Related Desynchronization (ERD) [7]. After a voluntary movement,

the central cortex region exhibits a localized beta ERS. The exact frequency

of this rebound beta ERS can vary considerably with the subject and type of

movement. This beta ERS is observed not only after a real movement but

also after an imagined movement. Furthermore, ERS in the gamma frequency

band (around 35-40 Hz) can also be found over the central regions, preceding

the execution of a movement, in contrast with the beta ERS, which has its

maximum after the termination of the movement. When this form of ERS

occurs, the excitability of the corticospinal pathways decreases, as revealed by

means of transcranial magnetic stimulation [10]. This supports the hypothesis

that the postmovement beta ERS corresponds to a deactivated state of the

motor cortex. In contrast, the ERS in the gamma frequency band appears

to reflect a state of active information processing. A desynchronized EEG

means that in the underlying neural network or neuronal circuitry, small

patches of neurons or neuronal assemblies work in a relative independent or

desynchronized manner. In terms of information theory, a desynchronized

system represents a state of maximal readiness and a maximum of information

capacity. ERD can be followed by a beta rebound or beta ERS with a

maximum within 1s after movement-offset. This time period corresponds to

the occurrence of the post-movement beta ERS. This implies that the beta

ERS with frequencies around 20 Hz can be interpreted, at least under certain
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circumstances, as a correlate of a deactivated cortical network.

1.4 Feature Classification Methods

One important element in BCI operations is a data classifier, or a classifi-

cation algorithm, that aims at automatically determining a user’s intention

by classifying extracted brain features. Comprehensive reviews on the clas-

sification techniques used for BCIs have been given elsewhere(e.g., [5] [6]

[9]). Thus, this section is restricted to present three types of the commonly

employed classifiers to design EEG-based BCI systems and highlights their

most important properties for BCI applications: linear classifiers, artificial

neural network classifiers, and hidden Markov model classifiers.

1.4.1 Linear Classifiers

Linear classifiers are discriminant algorithms that use a linear function to

classify the data into mutually exclusive and exhaustive classes, assuming that

the data come from a Gaussian mixture model. Because of their structural

simplicity, competitive accuracy, and very fast training and testing, linear

classifiers are one of the most popular algorithms used to design BCI applica-

tions. Two main kinds of linear classifier are described: linear discriminant

analysis (LDA) and support vector machine (SVM).

Linear Discriminant Analysis

The goal of the LDA technique is to project the original data matrix onto

a lower dimensional space. To achieve this goal, three steps needed to be

performed. The first step is to calculate the separability between different
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classes (i.e. the distance between the means of different classes), which is

called the between-class variance or between-class matrix. The second step

is to calculate the distance between the mean and the samples of each class,

which is called the within-class variance or within-class matrix. The third step

is to construct the lower dimensional space which maximizes the between-class

variance and minimizes the within-class variance.

Support Vector Machine

SVM is similar to LDA in that it is a binary classification algorithm that uses

a discriminant hyperplane to distinguish two classes, but it is also different

from LDA in that the selected best hyperplane for an SVM means the one

with the largest margin (i.e., largest “gap” or “distance”) between the classes.

The data points that are closest to or on the separating hyperplane (a linear

decision surface) are called support vectors. SVMs have several advantages

because of theoretical reasons such as good generalization properties [10]

and relative insensitive to overtraining [11] and the curse of dimensionality

[12]. The disadvantages of SVMs include a poor performance if the number

of features is much greater than the number of samples, an expensive n-

fold cross-validation to calculate probability estimates, and a lower speed

of execution [10]. In addition to performing linear classification, SVMs can

efficiently classify nonlinearly separable data using what is called the kernel

trick. This method uses a kernel function K(x,y) to implicitly map the data

into another high-dimensional feature spaces. These RBF-based SVMs have

been successfully applied to various BCI applications (e.g., [13]). In addition,

SVMs have provided good empirical results for synchronous BCI problems
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(e.g., [13], motor imagery–based BCIs [14], P3 speller [15], and multiclass BCI

problems using the OVR strategy [16].

1.5 Scope of the Thesis

Aim 1

Granger causality based brain connectivity analysis for primary color stimuli

Objective 1

We provide a novel technique to determine the signal transduction pathway

for color perception problem in 2-step. First the brain lobes having phase

synchrony are identified by a frequency-domain analysis of the EEG signals

acquired from 19 channels covering the entire sculp. Next, Granger causality

is employed to determine the directional pathways on the basis of result ob-

tained by phase synchrony analysis. Experiments undertaken on 10 subjects

confirm that the color pathways in human beings are unique and distinct for

the 3 primary colors: red, green and blue. The results obtained here from

the research also supports the existing works reported on signal transduction

pathways for colored light. The proposed method of detecting signal transduc-

tion pathways during color perception has immense applications in diagnosis

of malfunctioning of one or more brain lobes residing on the pathway for

people suffering from color blindness.
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Aim 2

Brain connectivity analysis in color-perception problem using convergent cross

mapping technique

Objective 2

Traditionally, Granger Causality analysis is employed to handle the problem.

However, due to the applicability of Granger Causality analysis for purely

stochastic systems only, its suitability of applications in brain-connectivity

analysis is limited due to the presence of both deterministic and stochastic

characteristics in the human brain. Additionally, because of high parame-

ter sensitivity of Granger Causality technique, identifying the right set of

parameters itself poses an additional problem. Convergent cross mapping

overcomes the above limitations and thus has immense scope for exploitation

in brain-connectivity analysis. Here, we make an honest attempt to determine

brain-connectivity during subjective engagement in color perception using

convergent cross mapping technique. Experimental results envisage that the

proposed technique yields precise brain-connectivity in color percerption in

comparison to those obtained by the state-of-the-art techniques.

Aim 3

Decoding human decision making system using convolutional neural network
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Objective 3

Human behavior is a complex action which has provoked the thoughts of

many people for a long time. However, little is currently known about the

origin of cognition and the what defines a person’s personality from another.

In order to extract the features of a person’s personality, we must at first be

able to classify them based on their thought processes. In classical ethics, the

people can be broadly classified into two main categories, namely, categorical

and consequentialist. In this paper, we conduct several experiments where the

users are faced with ethical dilemmas and the obtained brain EEG signals are

used to classify them in the two categories using a novel modified Covolutional

Neural Network. The results show that it is possible to indeed classify the

people with extremely high accuracy with only their EEG signals. This

provides scope for a new direction of research which can be explored.
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Chapter 2

Granger Causality Based Brain

Connectivity Analysis For

Primary Color Stimuli
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Abstract

This chapter provide a novel technique to determine the signal transduction

pathway for color perception problem in 2-step. First the brain lobes having

phase synchrony are identified by a frequency-domain analysis of the EEG

signals acquired from 19 channels covering the entire scalp. Next, Granger

causality is employed to determine the directional pathways on the basis of

result obtained by phase-synchrony analysis. Experiments undertaken on 10

subjects confirm that the color pathways in human beings are unique and

distinct for the 3 primary colors: red, green and blue. The results obtained

here from the research also supports the existing works reported on signal

transduction pathways for colored light. The proposed method of detecting

signal transduction pathways during color perception has immense applica-

tions in diagnosis of malfunctioning of one or more brain lobes residing on

the pathway for people suffering from color blindness.

2.1 Introduction

Determining the signal transduction pathways in the brain is an interesting

arena of research in modern brain sciences. [1]-[2] Although there exist traces

of works on signal transduction pathways in the brain for different cognitive

processes, there is a scarcity of research results on color pathways in the

brain.[3]-[4] This paper proposes an interesting approach to determine the

color processing pathways in the brain of the subjects by acquiring the EEG

signals during the color processing phase of the subjects. The motivation
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is to determine whether for 3 basic colored lights brain follow the same or

distinct signaling pathways by neural transduction process.

In order to perform the present analysis, two basic steps are undertaken on

the acquired EEG signals after pre-processing and filtering. The steps include:

i) phase synchrony analysis [5]- [6] and ii) Granger causality analysis [7]-[8]

of the acquired EEG signals. The motivation of phase-synchrony analysis is

to identify the signals significantly close in phase-space for a selected interval

of time. In case two EEG signals acquired from electrodes E1 and E2 have

close/similar phase values at all the sampling points of the selected interval,

they are regarded to have a phase-synchrony. Naturally, at a given time point

during color processing by the subject, quite a few channels are expected to

show phase-synchrony. Although channels topographically close to each other

have high likelihood to have phase synchrony, it is occasionally noted that

channels spatially located far apart also have phase-synchrony. The charac-

teristic of having phase-synchrony in two or more channels spatially located

apart carries important message about direct neural transduction pathways

between distinct lobes. Although the phase-synchrony analysis provides the

neural basis of brain-lobe connectivity during the color perceptual-process,

it hardly can offer any information about direction of signal-flow between

pairs of lobes. Fortunately, there exist several approaches to determine the

directional connectivity between pairs of signal sources and sinks. A few

among them that need special mention includes Granger causality [7]-[8],

transfer-entropy [9] and cross-correlation [10] techniques. Granger causality

analysis aims at determining the influence of one stationary signal on a second

one. Transfer-entropy measures the information-transfer from one signal to

Page 2.3



Decoding of Brain Waves by Causality and Deep Learning Based Analysis
with External Perturbations

the other. Granger causality is preferred to other existing approaches of signal

directivity analysis for its high time-efficiency. This inspired the authors to

employ Granger causality analysis to label the directivity in the edges of the

unlabelled edged-graph obtained by phase-synchrony analysis. Ultimately, a

directed graph is obtained during the perceptual process of 3 basic colors:

red, green and blue. It is interesting to note that the graphs obtained by the

above process have dissimilarity, signifying the involvement of different lobes

at different time points during perception of the basic colors.

The significance of the present work is 2-fold. First, this paper demon-

strates a novel approach to determine the signal transduction pathways in

color perceptual processes. This might be utilized as a diagnostic tool to

determine the brain lobes unable to participate in the generic signal trans-

duction pathways used for analysis of color-perception. It also opens up a

new vista of knowledge that the signal transduction pathways for 3 basic

colors are distinct, thereby interpreting a parallel pathways for multi-colored

information processing.

2.2 Principles and Methodology

To determine the functional connectivity and signaling pathway for the color

perception problem in between the different lobe of the human brain, phase

synchrony and granger causality analysis is performed. The block diagram of

the overall system is represented in Fig. 2.1.
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Figure 2.1: Block diagram of overall system

2.2.1 Phase Computation of an EEG Signals

Given a time-domain signal x(t), we obtain Fourier transform of x(t) to gain

frequency-domain information. Finally

F{f(t)} = Re{t}+ j Im{t} (2.1)

where Re{t} and Im{t} are real. The phase information of F{f(t)} is given by

φ(t) = tan−1 Im{t}Re{t} Unfortunately, computing Fourier Transform at each time-

point t of a signal is tedious and computationally expensive. One approach to

address this drawback is to replace Fourier Transform by Hilbert Transform.

H(u)(t) =
1

π

∫ +∞

−∞

u(τ)

τ − t
dτ = Re{t}+ j Im{t} (2.2)

Here too, the phase φ(t) is obtained similarly as above. For a given time-

varying EEG signal x(t), we then obtain for a referred interval 0 ≤ t ≤ nT ,

where T is sampling interval of the EEG signal, and n is an integer identifying

the highest number of samples being used depending on the selected perception

problem.
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2.2.2 Phase Quantisation

Though the phase relationship between 2 brain lobe taking part in perceptional

process are in phase-synchrony, yet show difference in phase. This type

of problem arises because of presence of noise in the EEG signals due to

physiological artifacts(like eye blinking and undesirable motor noise, parallel

thoughts). The approach is to quantize the phase φ(t) into uniform levels to

overcome the problem. Let φ̂(t) be the quantized interval of , obtained by

φ̂(t) =
φ(t)

N
(2.3)

where ∗. denotes the results of integer division. The smaller the value of N,

the larger is the quantized φ(t)(φ̂(t)). at the cost of loss in phase information.

Again, the larger the value of N, the φ̂(t) is too small and finding similarity

between φ(t) and φ̂(t) is too small and finding similarity between φ̂1(t) and

φ̂2(t) of 2 channels would be difficult. A moderate value of N=37 is chosen to

have 10o quantized interval for the phase range [−180o, 180o]. Two channels,

having same φ̂(t) , i.e., φ̂1(t) = φ̂2(t) are perused to have phase-synchrony.

The definition of phase-synchrony for n channels also extends the definition

of 2 channels.

2.2.3 Finding Topological Connectivity

At the time t, suppose 6 channels C1, C5, C7, C9, C11 and C13 are in phase

synchrony, of which C7 has the highest activation, then we construct a graph

at time t.

At time point t+ T , let C7 has the highest activation and C1, C5, C9, C11

and C13 have phase symmetry, then the signaling behavior between time t
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and t+ T is such that there is a central node corresponding to the electrode

having the maximum activation, which is in turn connected to multiple nodes

having phase synchrony among them.

A percentage degree of correct scores evaluation of directed areas in the

graphs is computed by the following formulation. Let numbers of areas in

a graph are mismatched with those in the e-LORETA produced graph, and

then the percentage degree of graph mismatching is given by

Percentage Score =
D − d
D

× 100 (2.4)

Using the above score, we obtain Table II to determine relative performance

of the proposed technique with existing one.

2.2.4 Granger Causality Test

Granger Causality test[7]-[8] is widely used to understand relationship be-

tween multiple time series components. When two time-series are tested for

Granger’s causality, it is checked whether the first series have a causal effect

on the second series or vice versa. For example in our case, comparing the

values of the P3 and the Fp1 nodes, we take the null hypothesis H0: P3 do

not Granger-cause Fp1 and test it against the test parameters. We assume

that P3 would be the independent variable and Fp1, the dependent variable.

Granger causality test is a statistical concept of causality that is based on

prediction. According to Granger causality, if the signal P3, Granger-causes

(or G-causes) a signal Fp1, then past values of P3 should contain information

that helps predict the future values of Fp1, above and beyond the informa-

tion contained in past values of Fp1 alone. Its mathematical formulation is

based on linear regression modeling of stochastic processes. One of the most
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important constraints for using the Granger causality is that the time series

should be stationary i.e., one whose statistical properties such as the mean,

variance and autocorrelation are all constant over time. However, in our case

the EEG signals are not stationary and thus Granger causality test cannot

be applied directly. We can check for the stationarity of the time series using

the augmented Dickey–Fuller (ADF) test which tests the null hypothesis that

a unit root is present in the time series.[11] An important constraint in the

Granger Causality test(GCT) is that it is highly sensitive to the selection of

lags, because when the number of lags is changed, the result of the test may

also change. So, in our case, choose the lags are chosen based on the Akaike

Information Criterion (AIC) criterion in order to take a decision in a more

robust manner.

We are using the Vector Autoregression (VAR) [12]-[13] model which

works best on AIC criterion and a significant model can be found to perform

a more robust GCT. VAR are multivariate linear time series models which are

used to detect the joint dynamics of multiple time series signals. The Akaike

Information Criterion [14] - [15] is used to select the best model considering

multiple number of parameters, the number of observations and the squared

sum of errors. The AIC criterion is given as follows:

AIC = Nln(
SSerror
N

) + 2K (2.5)

Where N = number of observations; K = (1 + number of parameters we have

fit); SSerror= Sum of squares error for the model.

The causality for each electrode on all the others is compared to determine

its effect and if its causal. Then it is checked whether the signal flow is

unidirectional or bidirectional and in order to get these result, we use the
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method of testing of hypothesis. We do this for each possible combination of

electrode and thus get a total of
(
19
2

)
results. Let the two time series values

at the ith and jth electrodes be given as xi(t) and xj(t) respectively. It is said

that variable xi(t) Granger-causes variable xj(t) if and only if lagged values

of the combined effect of both the time series can predict more accurately

than just lagged values of one time series on itself. The testing method is

based on ordinary least squares (OLS) regressions and is done as follows.

1. The following equations are defined as follows:

xi(t) = α0 +
n∑

m=0

β1,mxj(t−m) + e1,t,

xj(t) = α1 +
n∑

m=0

β1,mxj(t−m) +
n∑

m=1

γmxi(t−m) + et

where et, e1,t are i.i.d. (independent and identically distributed) error

terms, α0 and α1 are constants, β1,m, βm and γm for m = 1...n are

coefficients.

2. The sum of squared residuals of both equations are calculated as follows:

E1 =
N∑
t=1

ê21,t,

E2 =
N∑
t=1

ê2t
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3. We determine the test statistic as follows:

T =
E1−E2

n
E2

N−2n−1

where N =sample size and

n =number of lags.

The test statistics has asymptotically F (n,N − 2n − 1) distribution.

Here, the p-value method is used as it is more robust and does not take

the critical values into account. Now,

p =
x̄− µ

σ√
n

,

where x̄ = sample mean,

µ =population mean,

σ =population standard deviation , and

n = number of samples.

4. Considering the null hypothesis when there is no Granger causality:

H0 : ci = 0, i = 1...n (2.6)

We test the validity of the the null hypothesis using the p-parameter

and reject it if it exceeds a certain level of significance. Then we

conclude that the variable xi(t) Granger causes the variable xj(t). For

the purpose of proper statistical inference, all of the variables included

in the regression must be stationary [16]. The coefficients will be biased

if a deterministic process like a time trend has an effect on the variables

and thus, the further statistical inference will be incorrect.
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2.3 Experiments and Results

The experimental framework, steps and main results obtained from the

software simulation are summarized here.

2.3.1 Experimental Framework

Ten healthy volunteers with normal eyesight have participated in the said

experiments. Among the 10 subjects, 8 are men and 2 are women in the

age group 22-30 years. They are requested to sit on a comfortable chair in

a rest condition without movement to eliminate possible contamination by

movement-related artifacts. Three primary colors (Red, Green, and Blue) are

used as the visual stimuli.

Figure 2.2: Presentation of Color Stimuli

Here we use 3 primary color(red,green and blue) as our visual stimuli.

After fixation cross for 3 second, a random primary color is shown in the

computer screen to the subject for 2 second. To avoid the distraction from

environmental object color and the residual effect of the previous colored light,

a time-gap of 20 second is maintained between two successive presentations

of color stimuli in dark room. Each experiment with one colored stimulus

presentation and EEG recordings for one subject together constitutes one

trial. Each trial is repeated 10 times over each subject. The sequence of
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presentation of the colored light was randomly selected in each trial from the

list: red, green and blue. Figure 2.2 illustrates one sequence of color stimuli.

2.3.2 EEG Data Acquisition

Experiments are conducted using a standard 21 channels Nihon Kohden EEG

data acquisition system having a sampling rate of 500 Hz to capture the EEG

signals from the scalp of the subjects with the help of Ag/AgCl electrodes.

The electrodes are placed at the Fp1, Fp2, F3, F4, F7, F8, C3, C4, P3, P4, O1,

O2, T3, T4, T5, T6, Fz, Cz and Pz locations according to the international

10/20 system for EEG recording. The Fpz electrode is used as the ground

and two earlobe electrodes A1 and A2 are used as the references for the right-

and the left-side electrodes respectively. Figure 2.3(a) and (b) Present the

experimental set up of colored stimuli.

Figure 2.3: (a). Experimental set up during EEG signal acquisition from

the scalp of subject . (b) Blue light projection on subject’s eyes in dark

environment,
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2.3.3 Experiment 1: EEG Pre-processing and Artifacts

Removal

It is known that optical stimulation has the best brain response at the alpha

lower band (8-10 Hz) and theta higher band (6-8 Hz) [17]. This inspired us to

filter the acquired EEG using an active band pass filter of pass band = (6-10)

Hz. Although there exist varieties of digital filter algorithms, we prefer elliptic

Figure 2.4: (a) Represent the raw EEG signal of Occipital lobe during three

basic color light (Red, Green and Blue), (b) filtered data of three colored light

filter of order 10 for its smooth round-off characteristics around the cut-off

frequencies. Fig. 2.4 (b) provides the results of illustrative filter output

2.3.4 Experiment 2: Phase Cluster for a Particular Time

Point

Results of phase clustering are shown in Figure 2.5. Here, the double circled

nodes represent the electrode with the highest activation. Single circles

represent lobes represent lobes having phase-synchrony with double circled

lobes. The first four figures in Figure 2.5 are explained in detail in Table-I.

Page 2.13



Decoding of Brain Waves by Causality and Deep Learning Based Analysis
with External Perturbations

Figure 2.5: Interconnection between multiple channels for various time points

of red color light using phase synchrony analysis
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2.3.5 Experiment 3. Directionality Between Channels

Using Granger Causality test

After Granger causality test (GCT) is finished, the directed graph obtained as

a response to the red and green color are shown in Figure 2.6, 2.7 respectively.

We can see that different graphs are obtained for distinct colors (red and

green).

From the output of the GCT, we get a causality matrix as depicted in

Figure 2.8, 2.9 and 2.10. Each cell in the matrix corresponds to the dependent

electrode (rows) and the independent electrode (columns). In the given matrix,

the purple colour indicates the causal electrodes, whereas the non-causal ones

are denoted by yellow. If an electrode is causal with respect to another

electrode , then the two electrodes are bidirectional for a given matrix. This

causality test is performed for each combination of two electrodes, and then

the graph is plotted.
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Figure 2.6: Directed graph for Red stimuli

Figure 2.7: Directed graph for Green stimuli
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Figure 2.8: Output after obtaining causality matrix performing GCT for Red

color
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Figure 2.9: Output after obtaining causality matrix performing GCT for

Green color
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Figure 2.10: Output after obtaining causality matrix performing GCT for

Blue color
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Thereafter, the causality matrix obtained by this method is combined

with the phase clusters obtained by the phase synchrony method

All the computation of GCT are done in RStudio, a software for R

programming. The required package for this GCT test is "VARS" and

"tseries", which need to be installed from the CRAN. It is already known that

GCT is only applicable for stationary time series data, so first we need to

check that the signal we are getting from each electrode are stationary or not.

To do so, ADF test takes place to check the null hypothesis. We can say that

a signal is stationary if we get p-value less than 0.05, by rejecting the null

hypothesis of ADF test. In Figure 2.11 its shown that p-value of electrode

"Fp1" is 0.211 which is larger than 0.05. so this is a non stationary data

Figure 2.11: ADF test for a non-stationary signal

Then we are taking the first difference of the signal from "FP1", and check

again if its stationary or not. We can see from the Figure 2.12 is that we get

p-value less than 0.5, so it can be said that it is now a stationary time series

data.

We repeat above two steps for each electrode to make the non stationary

data, into stationary, so that we can proceed for GCT. VAR automatically

choose the optimum lag value using AIC. Thus it’s easy to check the causality

between 2 electrode using VAR model. To compute the GCT between 2 time

series signals, we check the causality for each one. Figure 2.13 shows that only
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Figure 2.12: ADF test for a stationary signal

"F3" G-cause "Fp1" by rejecting the null hypothesis: F3 do not Granger-cause

FP1. SO, we can say that the causality between these 2 electrode is not

bidirectional.

Figure 2.13: GCT for 2 variable FP1 and F3

2.3.6 Performance Analysis

This experiment attempts to measure the percentage score for 3 basic colors

for undirected and directed pathways realized by 2 approaches each. From

the experimental results it is apparent in Table-II, that the proposed phase-

synchrony followed by Granger causality method yields better performance

than the rest with respect to percentage error metric.
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2.4 Conclusion

This chapter attempts to offer an interesting and useful solution to the well-

known problem of determining signal transduction pathways among the brain

lobes during color perception. A phase-synchrony method is employed to

determine the brain lobes having common phase relationships. To determine

the directed pathways in the graphs previously obtained by phase-synchrony

analysis, a Granger causality based analysis is undertaken. Experiments

results confirm that for 3 basic colors, the signal transduction pathways are

different. A comparative study analyis confirms the results obtained by the

proposed approach outperforms with respect to a defined percentage score

than the other reported approaches.
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Chapter 3

Brain Connectivity Analysis in

Color-Perception Problem Using

Convergent Cross Mapping

Technique
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Abstract

Traditionally, Granger Causality analysis is employed to handle the problem.

However, due to the applicability of Granger Causality analysis for purely

stochastic systems only, its suitability of applications in brain-connectivity

analysis is limited due to the presence of both deterministic and stochastic

characteristics in the human brain. Additionally, because of high parame-

ter sensitivity of Granger Causality technique, identifying the right set of

parameters itself poses an additional problem. Convergent cross mapping

overcomes the above limitations and thus has immense scope for exploitation

in brain-connectivity analysis. Here, we make an honest attempt to determine

brain-connectivity during subjective engagement in color perception using

convergent cross mapping technique. Experimental results envisage that the

proposed technique yields precise brain-connectivity in color percerption in

comparison to those obtained by the state-of-the-art techniques.

3.1 Introduction

The human brain comprises several billions of neurons, distributed in the

cortex. A cognitive task, such as perception, reasoning, learning, planning,

etc., involves several clusters of neurons distributed across the brain. These

clusters lie on the signal transduction pathways of the brain to successfully

execute the cognitive task. Color-perception is an important cognitive task,

aiming at understanding the structure/geometry of objects based on their

color content. When colored light reflected by a colored object is incident on

the retina of the human eye, the cone cells present in the retina get excited,
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resulting in electrical signals. These signals are carried by the optic nerves

terminated at the retina to different cortical regions for understanding and

recognition of the colored object. The motivation of the present research is

to detect the brain-connectivity on the signalling pathways when the brain is

engaged in color-perception.

One approach to experimentally determine brain-connectivity is to iden-

tify the causal dependence of the temporal signals acquired from different

electrodes mounted over the scalp. Electroencephalography (EEG) provides

the temporal activations of the local neurons in a brain lobe, and this can be

used as the primary resource for the present study. There exists quite a few

interesting techniques to determine the causal relationship between pairs of

time-varying signals. A few of these that need special mention include Granger

Causality [1][2] analysis, Probabilistic Relative Correlation Adjacency Matrix

(PRCAM)[3], transfer entropy [4], and the most recent one, called convergent

cross mapping [5]. Although, extensive works on Granger Causality based

analysis in determining brain-connectivity are available in the literature [6]

[2], the results reported are not free from errors for the following reasons.

First, Granger Causality analysis is restrictive to linear prediction model and

thus may not be convenient to predict non-linear mapping between pairs of

time-varying brain signals. Further, Granger Causality is only applicable

for stationary time series. Thus, it might result in errors when applied di-

rectly to non-stationary EEG signals without considering local stationarity.

Lastly, because of high parametric sensitivity of the Granger Causality model,

it is often difficult to rightly select the optimal model parameters for the

performance.
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The above limitations inspired the author to take into account of an

alternative technique to handle the same old problem. Convergent cross

mapping (CCM) is fortunately free from the above limitations and has

successfully been exploited in many time series causality analysis [7] [8] [9]

[10].

The promising success of CCM inspired the author to explore its possibility

in brain-connectivity analysis for subjective engagement in color-perception.

3.2 Principles and Methodology

This section aims at describing the Convergent Cross Mapping technique and

how it has been used in the brain connectivity analysis for the color-perception

problem in detail. The steps involved are as follows:

1. Acquire EEG data from healthy subjects with normal eyesight and no

background of color blindness.

2. Select the active brain regions for a stimulus using the e-Loreta software.

3. Consider the EEG data from the activated brain regions as obtained by

eLoreta.

4. Apply necessary filtering and pre-processing procedures on the selected

EEG data from the previous step for noise and artefact removal.

5. Apply Convergent Cross Mapping algorithm on the filtered EEG time

series.

6. From the directed causality matrices obtained from CCM calculations,

apply graph theory analysis to obtain effective information pathways in
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the brain.

The experimental workflow is illustrated in Fig. 3.1.

Figure 3.1: Block Diagram of Overall System

3.2.1 Experimental Framework

The experiment has been performed in the Artificial Intelligence Laboratory

at Jadavpur University. Ten healthy volunteers (6 male and 4 female) aged

between 24 ± 2 years with normal eyesight and no background of color

blindness have participated in the experiments. The primary colors (Red,

Green, and Blue) are used as visual stimuli.

For the light source, we used 15W RGB remote controlled bulbs connected

with a 110-220 V power source supply. In accordance with the pre-tested

tolerance levels of the subjects, the light sources are kept at a maximum

intensity level. Each subject is continuously exposed to one of the primary

coloured lights for 1 seconds. The subject is then asked to take a rest for

15 seconds in order to avoid the residual effect of the previous colored light.

Page 3.5



Decoding of Brain Waves by Causality and Deep Learning Based Analysis
with External Perturbations

Figure 3.2: Presentation of Color Stimuli

The structure of stimulus with timing details is depicted in Fig. 3.2. A single

trial comprises of the presentation of one colored stimulus and acquisition

of EEG data for one subject. Each trial is repeated over one subject for 10

times. The sequence of the colored stimulus being presented in each trial was

randomly selected.

3.2.2 Preparing the Data set for Color Perception

The experiments are conducted using a stand-alone 32 channel Nihon Kohden

EEG data acquisition system to capture the EEG signals from the scalp of

the subjects with the help of Ag/AgCl electrodes. The electrodes are placed

at the Fp1, Fp2, F3, F4, O1, O2, F7, F8, T7, T8, P7, P8, FT9, and FT10

locations in accordance to the standard 10/20 electrode placement system.

The sampling frequency of the recording was set at 500 Hz.

Due to the high computational cost of the Convergent Cross Mapping

(CCM) procedure and to reduce the processing time, the EEG data are down-

sampled from 500 Hz to 250 Hz, thereby resulting in a reduction of the trial

length by half.
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(a) (b)

3

(c)

Figure 3.3: eLORETA solutions for (a) red color, (b) green color and (c) blue

color stimuli

3.2.3 Active Brain Region Selection Using e-LORETA

In this experiment, we evaluate the electrical activity of the intra-cortical

distribution obtained from the EEG data using e-LORETA software [14] [16]

[15]. To determine the highly active brain regions for three different color

stimuli, we use linear inverse solution technique. As mentioned above, the

total experimental duration for color stimulus is one second (1 × 1000=1000

milliseconds). The entire sample values, obtained during 1 seconds, are divided

into 10 time frames in the e-LORETA software. Thus, the brain activation

in each time-frame of duration 0.01 seconds (100 milliseconds), evaluated by

the e-LORETA software is observed carefully. According to the activation

values of different time frames, we observe that occipital, pre-frontal, frontal

and temporal lobes have higher activation than the remaining ones for all

the three colors. The highest activation regions for red, green, and blue color

perception, obtained by e-LORETA, are depicted in Fig. 3.3(a) to (c).
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3.2.4 Data Pre-processing and Artefact Removal

The EEG signal obtained from the highest activity regions (occipital, pre-

frontal, frontal and temporal) are then passed through various signal pre-

processing steps to remove the noise or artefacts, that are crept into the signal

due to ocular and involuntary muscular activation. The signals are first band

pass filtered using an Infinite Impulse Response (IIR) Elliptical band pass

filter of order 10 and of suitable pass and stop band frequencies. To select

the required frequency band-width of the filter, Fourier transform of the EEG

signals is performed. It is found that the highest amplitudes of the Fourier

spectra for all the three basic colors (red, blue and green) lie between 5 and 15

Hz. Therefore, the bandwidth of the filter is chosen as 5 to 15 Hz. The band

pass filtered EEG signals are then further pre-processed using Independent

Component Analysis (ICA) [17] to remove the eye-blinking and muscular

artefacts. The 2D topological maps for red color stimulus obtained using ICA

are illustrated in Fig. 3.4.

Figure 3.4: 2D topological maps for red color stimulus obtained using ICA
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3.2.5 Convergent Cross Mapping

Convergent Cross Mapping (CCM)[5] is a recent technique used to determine

the cause-and-effect relationship between two time series variables. It seeks

to resolve the old problem "Causation does not imply correlation", i.e.,

the presence of correlation between two variables does not always necessarily

mean there exists a causal relationship between them, and vice-versa. Granger

Causality, which is another statistical causality testing technique, relies on the

key requirement of separability [5]. CCM, on the other hand, works on the

principle of reconstructing system states from two time series variables using

predetermined parameters, and then quantifying the relationship between

them using a nearest neighbor algorithm.

The ideas for CCM were developed following time-delay embedding theo-

rems, most notably from Takens’ Theorem [11]. As described by Takens[11],

an attractor manifold can be reconstructed from a set of observation variables

of a dynamical system. This reconstruction preserves not only the properties

of the dynamical system but also the topological structure of the original

attractor. In order to explain CCM, consider two discrete time series variables

X(t) and Y(t), where t denotes time, of length L (library length) from a dynam-

ical system having a common attractor manifold, M. Using Takens’ time-delay

embedding theorem, E -dimensional shadow manifolds MX and MY , with suc-

cessive delayed time steps τ , can be constructed for time series X(t) and Y(t)

respectively, where E is the embedding dimension. The shadow manifold MX

can be represented as: x(t) = < X(t), X(t-τ), X(t-2τ), ..., X(t-(E-1)τ) >,

where τ is positive, and x(t) are the points on the shadow manifold MX .

Generally, points on MX has a one-to-one correspondence to the original
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manifold M [5]. MY can be constructed similarly. Next, CCM aims to discover

the degree of correspondence between the local neighborhoods of MX and MY

[5] . Coincidental values of X(t) can be estimated from the shadow manifold

MY , and vice-versa.

To do so, a nearest-neighbor algorithm can be employed by considering

E+1 nearest neighbors. The number of nearest neighbors can be chosen using

the relation k≥E+1, where k denotes the number of nearest neighbors. Next,

the time indices (from closest to farthest) of the E+1 nearest neighbors to

x(t) on MX are indicated by t1, ..., tE+1. The construction of cross mapping

of Ŷ (t) for Y(t) can be done with the help of these time indices by:

Ŷ (t)|MX =
∑

wiY (ti) , (1)

where, i=1, ..., E+1

and, wi are the weights based on the distance of each E+1 nearest neighbors

from x(t), Y(ti) are the coincidental values of Y(t). The weights can be

estimated by

wi =
ui∑
uj
, (2)

where, j = 1, ..., E+1

ui = e−
d(x(t), x(ti))

d(x(t), x(t1))
, (3)

where d [a, b] is the Euclidean distance between vectors a and b. X̂(t)|MY

can be estimated similarly.
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(a) Time series X(t) and Y(t)

(b) Cross mapping index between X(t) and

Y(t) over increasing library lengths

Figure 3.5: CCM analysis of the example time series data X(t) and Y(t)

The indicator of the cross map skill is quantified by Pearson’s Correlation

Coefficient [12](Eq. 4), ρ (rho), between the estimated (Ŷ (t)|MX) and ob-
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served values of Y(t). The cross map skill ranges between 0 and 1. The causal

relationship is judged by checking if the increasing library length dictates an

increase in the cross mapping skill and converges it to a plateau. In practice,

the cross map skill is checked over increasingly large library lengths and the

optimal cross map estimation is taken at largest library length. The reason is

that with increasing library length, the distances between the E+1 nearest

neighbors decreases as the attractor manifold fills in, thus resulting in higher

correlation. [5]

Figure 3.6: Cross mapping skill between T8 and O1 over increasing library

size (library lengths)

ρ =
N

∑
XY − (

∑
X

∑
Y )√

[N
∑
x2 − (

∑
x)2][N

∑
y2 − (

∑
y)2]

. (4)

Fig. 3.5 (a) and (b) respectively illustrate two interacting example time series

given by
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Figure 3.7: Estimation of optimal values of E and τ(tau) for O1


X(t+ 1) = X(t)[3.77− 3.77X(t)− 0.05Y (t)]

Y (t+ 1) = X(t)[3.82− 3.82Y (t)− 0.32X(t)]

and the CCM analysis of the two example time series. Fig. 3.6 reveals

the CCM analysis between the experimental time series data T8 and O1

The Convergent Cross Mapping algorithm for estimating Ŷ (t)|MX can be

summarized in the following steps:

1. Consider two time series variables X(t) and Y(t) of length L,

2. Reconstruct an E-dimensional shadow manifold MX with successive

delayed time steps τ (tau),

3. The values of parameters E and τ (tau) for a time series have been

calculated following simplex projection [20], i.e., the value of the pa-

rameters are the ones that correspond to the values that best unfold
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(a)
(b)

(c)

(d)

Figure 3.8: (a) Directed weighted matrix WCCM for red stimulus obtained

by CCM calculations, (b) Directed weighted matrix WCCM for blue stimulus

obtained by CCM calculations, (c) Directed weighted matrix WCCM for

green stimulus obtained by CCM calculations, (d) Spanning arborescence of

maximum weight obtained for red stimulus by Edmonds’ algorithm
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the reconstructed attractor and give the highest forecasting (rho) (as

shown in Fig. 3.7 for the experimental EEG data O1),

4. Find E+1 nearest neighbors at each time index in MX ,

5. Create weight matrix by use of nearest neighbors,

6. Estimate Ŷ (t)|MX by use of weights,

7. Calculate correlation coefficient rho (ρ) between Y(t) and Ŷ (t)|MX .

3.2.6 Effective Connectivity Estimation by CCM Algo-

rithm

For each color stimulus, we construct a weighted matrix WCCM with elements

wij as the cross-mapped index from node (electrode) i to j. The obtained

connectivity network is directed since WCCM is not symmetric in general.

After considering an appropriate threshold value (experimentally chosen as

0.5) for the edge weights, we find the minimum spanning arborescence using

Chu-Liu/ Edmonds’ algorithm[18], which is the directed analogue of

minimum spanning tree. Prior to applying the algorithm on the thresholded

connectivity network, we subtract 1 from all the non-zero edge weights.

The reason for doing so is that by applying Edmonds’ algorithm we get a

minimum spanning arborescence. However, by subtracting 1 from all the

non-zero edge weights, we are essentially converting the relevant maximum

weights into minimum weights so that it appears in the minimum spanning

arborescence. The weights are then reversed after obtaining the minimum

spanning arborescence. The directed graph thus obtained gives information
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about the direction of maximum information flow. The source of the signals

is considered to originate at the occipital lobe, since the stimulus in our

experiment is visual. In this experiment, O2 is chosen as the root for this

algorithm. Lastly, from the obtained spanning tree we obtain the probable

signal transduction pathways which occur during the presentation of a colored

stimulus.

From Fig. 3.8(a), (b), and (c), we can observe the directed weighted

matrices for red, blue and green stimuli respectively, and figure (d) illustrates

the spanning arboresence of maximum weight obtained for red stimulus.

3.3 Conclusion

The section examines the scope of CCM in the context of brain connectivity

analysis of the well-known color-perception problem. Existing techniques

on brain-connectivity analysis highly rely on variants of Granger causality.

Unfortunately, Granger causality being a model-dependent technique, as

it assumes a linear vector-autoregressive model, is not suitable for brain

mapping because of the non-linearity of the EEG signals. CCM, however, is

a good choice for non-linear dynamics and thus is an unique technique for the

present application. Extensive experiments have been conducted to test the

performance of the proposed CCM based brain mapping. Experimental results

indicate that the CCM based prediction contains more precise connectivity

information, which could not be traced by its competitors.
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Chapter 4

Decoding Human Decision

Making System Using

Convolutional Neural Network
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Abstract

Human behavior is a complex action which has provoked the thoughts of

many people for a long time. However, little is currently known about the

origin of cognition and the what defines a person’s personality from another.

In order to extract the features of a person’s personality, we must at first be

able to classify them based on their thought processes. In classical ethics, the

people can be broadly classified into two main categories, namely, categorical

and consequentialist. In this paper, we conduct several experiments where the

users are faced with ethical dilemmas and the obtained brain EEG signals are

used to classify them in the two categories using a novel modified Covolutional

Neural Network. The results show that it is possible to indeed classify the

people with extremely high accuracy with only their EEG signals. This

provides scope for a new direction of research which can be explored.

4.1 Introduction

Human behavior has been an intriguing aspect of human cognition and much

has gone into the research of finding out why people behave in a particular

manner. Though, some great strides have been made in the field, however,

it is still unknown to mankind the reason for a particular behavior of man.

Many of the decisions happening daily in our culture fall within the category

of consequentialist ethics. Consequentialism is an ethical theory that judges

whether or not something is right by what its consequences are. For instance,

most people would agree that lying is wrong. But if telling a lie would

help save a person’s life, consequentialism says it’s the right thing to do.
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Consequentialism focuses decision making upon the potential outcomes of

an action; the outcome, coupled to some extent with intent, becomes the

standard for morality. Consequentialism focuses decision making upon the

potential outcomes of an action; the outcome, coupled to some extent with

intent, becomes the standard for morality.

In this chapter, we approach a technique to classify the human behavior

nature into two class according to their ethical decision making. By conse-

quentialism theory, human behavior can be broadly classified into 2 type;

consequential and catagorical. There are several methods exist to classify

the EEG signals[1][2][3]. Here we propose a Deep neural[4] network based

Convolutional Neural Network(CNN) architecture to complete the task. CNN

is basically deals with image data, and used in almost every type of image

dataset classification task and different research paper. Recent researches

shows that CNN can also be used to classify time series data. Several research

paper has been published recently on this topic[5]. So, here we are using

CNN as a EEG data classifier for this experiment. The main idea of this

work has been inheritated from[6] [7]. Our experiment shows that CNN

gives more accuracy in classification result than the conventional method i.e.,

KNN,SVM,MLP.

4.2 Principles and Methodology

Convolutional Neural Network(CNN)[8] is a powerful tool for image data

classification. Many image datasets (MNIST,Imagenet, CIFAR10, CIFAR100)

classification result shown that CNN outperformed the other classification

model by a significant margin. Though CNN is mainly a image based classifi-

Page 4.3



Decoding of Brain Waves by Causality and Deep Learning Based Analysis
with External Perturbations

cation model, recently researcher are using CNN for time series classification

also. Here in this chapter, we are going to explain the methodology of applying

CNN to classify the proposed task.

4.2.1 Our approach

In this section Method for classification the EEG data is discussed briefly.

The proposed model is shown in the Figure 4.1

Figure 4.1: Model Architecture of the experiment

Generating image from EEG data

Electroencephalogram(EEG), measures the signals generated from the differ-

ent brain regions, with the help of several electrodes placed around the cortex.

Although, EEG signals have spatial dimension, but most of the significant

features are extracted from the frequency domain. The reason behind this is

EEG has very high temporal resolution[9]. For decision making, the frequency

bands involved are mainly theta(4-8 Hz), alpha(8-14 Hz) and beta(14-30
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(a) 3D plot of electrode location (b) 2D projection of the electrode

locations

Hz)[10].So, we are taking Fast Fourier Transform(FFT) of the EEG signals in

three different frequency band ranges for each trial. Now we assign the value

of each electrode with the mean of the squared absolute value of three different

frequency bands. These values can be plotted within a 2D topographical map

to form an image[7]. With consecutive time windows, we can create temporal

evolution of the EEG signal in a form of sequential image.

EEG electrodes are placed in a 3D space in human scalp. So to generate a

2D image of the topographical map, we have to be careful about the relative

distance between the electrodes when projecting the 3D location in a 2D

plane. To do so, Azimuthal Equidistance Projection(AEP)[11] also known as

Polar Projection is employed here. The most important property of AEP is

that it preserves the distance and direction intact from the center as it was

in the 3D surface. Figure 1 shows the electrode location in 3D space and its

2D projection.

Akima interpolation[12] method is applied here to estimate the value

in between the two electrode to get a smooth image of topographical map.
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Repeating this procedure for three different frequency bands we are working

with, we get three different topographical images(3 channels) for a single

trial. These three images can be interpreted as the three channels(RGB) for

color images and given as input of a CNN. CNN is explained in the following

section.

Convolutional Neural Network

Here CNN is employed as a classifier to classify the images generated from

the EEG signals. These images are generated by processing the 15 channel

EEG data into a frame of one second window and then a 2D projection of

scalp is made from this frame. In a CNN, convolution, pooling, dropout, fully

connected layers exist. The model here in this experiment is implemented

using tensorflow and Keras[13] library in Python. In our model we use

4 convolution layers, 3 pooling layers and 2 dense layers. Rectifier linear

unit(ReLU) is used as an activation function in the convolution layer and

"softmax" in the output layer. We take all the images generated from the EEG

signals as input images. Then first Convolution operation is made by 32 filter

with dimentions of 3*3. This filter size is fixed for all the convolution layers

in this model with a stride of 1 pixel. We are using zero padding to keep the

dimension of the input image intact after the convolution operation. Next we

take another Convolution layer followed by a MaxPooling layer. The pooling

operation is here MaxPooling of 2*2 window size with a stride of 1 pixel. Next,

we take 2 more convolution layers followed by a maxpooling layer after each

convolution layer before adding a fully connected dense layer. The length of

convolution filter is increased every time it goes into deeper layer. The more
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we go deep into the network, image resolution becomes smaller and better

features are extracted. Finally, we create a dense layer of output dimension.

In this layer, we use "softmax" as the activation layer. Softmax layer give

the predicted class for a given input by checking the maximum probability

distribution from the output layer. We use categorical cross-entropy as a loss

function and adam optimizer[14] with learning rate 0.0001 to train the model.

To understand the operation of the layers better, a illustrated example is

summarized here. We are taking 3 channel RGB color image in this example.

Let, the dimensions of the image be (W1*H1*D1), where W1, H1 and D1 are

the width, height, and channel of the input image respectively. Now, the

parameter required to perform the operations are:

1. Number of filters K,

2. Filter size F,

3. The stride S,

4. The amount of zero padding P.

After convolution operation, it produces a volume of size (W2xH2xD2),

where,

W2 = (W1 − F + 2P )/S + 1, H2 = (H1 − F + 2P )/S + 1 and D2 = K.

Figure 4.3 shows the complete operation of the convolution layer in details.

It shows that the input image is convolved with the filter size of 3*3 with

a stride of 2, for the entire input image. Each element of the highlighted

area of input image(blue) is multiplied with the filter element(red) and then
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(a)

(b)

Figure 4.3: Convolution layer operation
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summed up along with the bias to produce the output value of the highlighted

element(green).

Next pooling layer is taking the output of the convolution layer as an

input and extracting the best feature by reducing the output image dimension.

We are using maxpool as the pooling layer operation. Figure 4.4 shows the

pooling layer operation briefly

4.2.2 Classification of Persons based on Decisions

According to the types of moral decision a person makes, he can be broadly

classified into two broad categories viz., Categorical and Consequential. While

on one hand, categorical decision making locates morality in certain duties

and rights, according to the consequentialist theory, people who fall in that

category locates morality in the consequences of the act.

Figure 4.4: MaxPool operation to downsample the image
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4.3 Experiments and Results

4.3.1 Participants

Eighteen healthy participants (8 female), aged 23.222.98 years and all at-

tending college or graduated. The subjects had no diagnosis of neurological

(ICD-10: G00-G99), psychiatric (ICD-10: F00-F99), and/or motor diseases

(ICD-10: M00-M99) and had normal or corrected-to-normal vision. Ethical

approval was obtained from the local Ethics Committee and participants

provided written consent prior to participation and the experiments were

conducted according to the Helsinki protocol[].

4.3.2 Data Acquisition

The recording was performed using a 72-channel Nihon Kohden system, with

a sampling frequency of 500 Hz, Germany) with 32 positioned electrodes

according to the 10- 20 system arranged in Fp1, Fp2, F7, F3, Fz, F4, F6,

FC5, FC3, FC1, FC2, FC4, FC6, T7, C3, Cz, C4, T8, CP5, CP3, CP1, CP2,

CP4, CP6, P7, P3, Pz, P4, P8, O1, Oz, O2. The reference was FCz, and the

ground was AFz.

4.3.3 Ethical Decision Task

The ethical questions were inspired from the first lecture of the Harvard

course on Justice by Prof Michael Sandel titled "THE MORAL SIDE OF

MURDER".
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Scenario 1

In the first scenario, we gave the subjects the classic runaway railroad problem.

In the scenario, there is a railway engine whose control is lost and is heading

towards a junction. The subject is put into a hypothetical situation where he

is an observer and has a lever in front of him which can change the course of

the runaway railway engine. Moreover, the situation also entails that if the

user does not switch the handle and the engine is let to run its free course,

it will kill 5 people who are there on the tracks. On the other hand, if the

lever is pulled, the tracks will change and as a result only 1 person will die.

The subject was then asked the first ethical question whether he would like

to pull the lever or let it be if such a situation ever arose.

Scenario 2

In the next scenario, the point of view of the subject is changed. In this case,

there is no lever which the subject has to pull and instead, he is watching the

runaway train from a bridge overhead and is accompanied by a huge man.

The situation is such that the subject knows that if he pushes that big man

to fall on the tracks, he would die but stop the train and save the lives of

the 5 people working on the tracks. The subject is then asked the question

whether he or she would be likely to push the man. This, though logically has

the same logic of killing one person to save five, has different results as the

person is the directly involved in killing somebody. After this, question, the

subject was farther asked what he would do if instead of pushing, he indeed

had a lever which he could pull to kill the person like the former case.
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4.3.4 Data preprocessing

Performance measure: The performance of each participant was calculated

after ocular correction and removal of trials with overt muscle movements.

Ocular correction

To eliminate interference from eye movement and blinks, we applied Inde-

pendent Component Analysis (ICA), using Brain Vision Analyzer 2.0 (Brain

Products GMDH, Germany). First the sampling rate was changed to 250 Hz,

and then the data were bandpass filtered between 1 and 50 Hz. The signal

was then segmented into 9.0s epochs (Figures 1B and C) representing blocks

of classifier training and those of the main task. Although only the trials of

the main task were used in further analysis, all blocks were segmented for

increasing the number of samples used in the ICA correlation. ICA analysis

then decomposes the data into 32 components which are visually analyzed

for those that resemble eye artefacts.

Removal of trials with muscle movement

To eliminate those trials where the participants moved, the signal of EEG

electrodes were segmented into periods of baseline and those of motor imagery.

These segments were then filtered with a high pass 7th order Butterworth

filter at 10 Hz and subsequently rectified (extraction module). The baseline

epochs were then examined using windows of 0.3 s, moving along the data with

steps of 0.15 s. From these windows a root mean square (RMS) baseline EEG

was calculated. Each trial was examined in the same way, and a mean and

standard deviation of baseline EEG RMS was calculated for each participant.
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The motor imagery periods were pre-processed in the same way as the baseline

to create RMS values. Trials where the RMS exceeded the baseline mean +

1.96 of the standard deviation were excluded as having muscle movement.

The average number of rejections 24.56±31.26 of 160 trials.

4.3.5 Results

In this section, we compare the result we achieve with the existing other

popular classification models like, KNN, SVM, MPL. Then we also compare

the result of our model with tuning the hyperparameter. The classification

accuracy of different model are illustrated in the table 4.1.

From Table 4.1 we can see that CNN classifier model gives the best accuracy

Table 4.1: Comparison of different classifier model

Classifier Training Accuracy Validation accuracy

KNN 58.6 52.34

SVM 72.91 68.8

MLP 76.47 70.26

CNN 82.45 78.39

among all the classifiers being tested. So we choose CNN as our primary

classifier model here. Now we can boost the performance of our model by

tuning the parameter of the model architecture. Comparison between these

modified CNN are given in the table 4.2.

Table 4.2 shows that the model without any pooling layer gives the best

accuracy. The size of the filter in this model is larger than the size where the
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Table 4.2: Comparison of tuned parameter model of CNN

Number of

filter
Filter size Pooling size Optimize Epoch Accuracy

32,80,200 3*3,3*3,3*3 None,2*2,2*2 SGD 300 78.9

32,80,200 3*3,3*3,3*3 None,2*2,2*2 Adam 300 84.56

32,80,200 3*3,3*3,3*3 None,2*2,2*2 SGD 400 87.88

32,80,200 3*3,3*3,3*3 None,2*2,2*2 Adam 400 88.54

32,80,200 4*4,4*4,4*4 None SGD 400 89.34

32,80,200 4*4,4*4,4*4 None Adam 400 91.67

model is trained with pooling layer. The optimizer choosen here is Adam and

this model gives us accuracy of 91.67%.

4.4 Conclusion

The human behavior can be classified into 2 class as discussed earlier in

this chapter. So, we make a approach to correctly classify those to type of

human mental state. EEG data has been taken during some ethical decision

making problem. According to theory of consequentialism, we can classify

human behaviour from the answer they have choose. So, we label the answer

according to that, and try to put that EEG data into a CNN based classifier.

Our method showed a great result to classify the data we get. Nearly 92%

accuracy has been achieved with our CNN based classifier model. Though

CNN is mainly an image based classifier, we can also use this model to

classify the time series EEG data by creating topographical image of the
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brain activation of different frequency band. This classifier gives also better

result than conventional classifier model.
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Conclusion
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The thesis makes an honest attempt at decoding different modalities of

brain signals. There are three original works that have been proposed here.

First, we study how applicable Granger Causality (GC) analysis is for the

identification of brain connectivity due to different cognitive taks. In this

case, primary color stimuli have been used to activate the brain regions and

to study the connectivity between different brain regions. However, due to

some limitations of Granger causality analysis in case EEG signals, we have

employed a dynamical theory based causality approach, named Convergent

Cross Mapping (CCM), which is more robust for non linear signals. Some of

the advantages of using CCM over GC are that GC analysis isn’t applicable for

non-stationary signals; GC also assumes a linear model, which isn’t necessarily

approapriate for analysing non linear brain signals. And finally, we study the

applicability of neural network based classifiers to infer ethical desicions. In

this case, a variant of Convolutional Neural Network (CNN) has been used to

successfully decode human decision making systems. Each topic is discussed

with sufficient details, narrating the problem description, approach, analysis,

experiments and main results obtained at the end of the experiment.
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