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Preface

Technological growth has always been on a rise, with nothing exceptional the

previous few decades. And in this era of AI where people debate over the

ethics of this progressing technology, it is important that we, as engineers,

direct our work towards technologies that present people a reason and hope

for a better future. With researchers throughout the world, working hard,

towards improving the quality of human life while at the same time devising

solutions to compensate their adversaries, . Utilizing the concepts of Fuzzy

Sciences, we tried to redefine the concepts of Fuzzy Chemistry, and then

designed a Fuzzy classifier along with its application in Brain Computer

Decoding.

Fuzzy Chemistry demonstrates a perfect blend of modern and traditional

sciences. Fuzzy logic enters as the basic element of foundational theory like

chemistry, rather than simply a tool to manage poorly defined situations with

a goal to be able to include the degree of uncertainty intrinsically contained

in general chemistry. Going deep into this we tried to provide an overview of

how fuzzy logic could be an important part of defining radius of an atom or

chirality of a molecule. Moreover, using our engineering expertise, we also

proposed a neuro-fuzzy PID controller for calculating the pH of a mixture of

acids and bases based on dynamical approach.

Next, exploring the domain of brain-computer decoding, we first tried to

perform the classification of individual fingers of a particular hand using both

EEG and fNIRS using our proposed Interval Type-2 Fuzzy Classifier (IT2FS)

and then tried to evaluate the cognitive load test while driving through

state-of-the art virtual reality simulations.
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Through this thesis, and through our work, we try to It is important that

technology is used as a tool and a helping hand to necessity rather than mere

contributory in leisure.
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Chapter 1

Introduction to Fuzzy Logic

Abstract

A fuzzy Logic is an extended form of Boolean Logic proposed by Lotfi Zadeh

in 1965 which is based on mathematical theory of fuzzy is a generalization

of the classical propositional and predicate logic. In real world we usually

deal with some sort of uncertainty. Fuzziness is the uncertainty that arises

from linguistic concepts without clear borders. Generally fuzzy logic provides

flexibility for reasoning which enables to state true or false or gives digital

value 0 or 1. In natural language, many statements are vague, or fuzzy. For

example, classifying a certain objects ’large’ leaves us with an uncertainty of

how large this object really is. Fuzzy concepts is always modeled by a degree

of membership µ. Fuzziness in software applications is useful for making user

interactions more natural. For example, fuzziness in databases can lead to

more intuitive and simpler queries.

1
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1.1 Introduction

There is always a uncertainty to build a fuzzy system. This means that

the output should be no longer a crisp number since uncertainty has been

propagated to the output as a result of uncertain information and inputs.

Therefore the output should somehow represent this uncertainty. This is the

reason why ordinary fuzzy logic systems called Type 1 Fuzzy Logic Systems

gives away to Type-II fuzzy logic systems (T2FLSs) [1–4]. The idea of T2FS

proposed by Zadeh is an answer to the uncertainties because it features a

fuzzy membership triggered by so called fuzzy set. The viability of T2FS is

in practice hindered by its demanding computational cost, attributed by the

type reduction procedure from Type-2 to Type-1. Therefore this noise has led

to an interval Type-2 Fuzzy System(IT2FS) [2], which presents a simplified

version of the pure T2FS.The IT2FS is a special case of T2FS which assumes

a secondary grade of the type-2 membership functions to be unity to mitigate

the computational burden. Evolving Fuzzy System (EFS) is a research area

of growing interest for learning from data streams. Even so most EFS are

generally built upon the T1FS which possesses a crisp and certain membership.

The T1FS is not robust with uncertainties in the data representation which

can be viewed in the inexact, inaccurate and uncertain characteristics of real

world data streams. The four main sources of uncertainty as follows :

• The linguistic words which are used in both antecedent and consequents

of the fuzzy rules means differs from person to person

• There are some consequents derived from the insights of different experts,
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may vary for person

• The measuring devices which provide the inputs to fuzzy systems intro-

duces noise to the inputs

1.2 Membership Functions

The grade of membership [3] µA(x) maps the object or its attribute x to posi-

tive real numbers in the interval [0, 1]. Because of its mapping characteristics

like a function, it is called membership function.

A membership function µA(x) is characterized by the following mapping:

µA(x) : x→ [0, 1], x ∈ X where x represents the real number describing an

object or its attribute, X is the universe of discourse, and A is a subset of X

There are four typical membership functions that are commonly used, viz.,

triangular, Gaussian (bell-shaped), S-function and γ-Function, π-Function .

1.2.1 The γ-Function

Considering two parameters α and β

γ(µ;α, β) =


0, ifµ ≤ α.

(µ− α)/(β − α), ifα < µ ≤ β.

1, ifµ > β.

(1.1)

1.2.2 The S-Function

This is mainly defined by its lower limit α its upper limit γ, and the value

β which is the point of inflection, i.e., β = (α + γ)/2 such that α < β < γ.
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Figure 1.1: The membership curve for the γ function

Figure 1.2: Membership curve for S-function

This function has most applications in fuzzy logic. It is defined as

S(µ;α, β, γ) =



0, ifµ ≤ α.

2[(µ− α)/(γ − α)]2, ifα < µ ≤ β.

1− 2[(µ− α)/(γ − α)]2, ifβ < µ ≤ γ.

1, ifµ > γ.

(1.2)
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Figure 1.3: Triangular membership function

1.2.3 The Triangular Membership Function

This is also defined by the straight lines which is triangle in shape.

∆(µ;α, β, γ) =



0, ifµ ≤ α.

(µ− α)/(β − α), ifα < µ ≤ β.

(α− µ)/(β − α), ifβ < µ ≤ γ.

1, ifµ > γ.

(1.3)

1.2.4 The π-Function

It is better representation of fuzzy linguistic variables.

π(µ;α, β, γ, δ) =



0, ifµ ≤ α.

(µ− α)/(β − α), ifα < µ ≤ β.

1, ifβ < µ ≤ γ.

(γ − µ)/(δ − γ), ifγ < µ ≤ δ.

0, ifµ > δ.

(1.4)
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Figure 1.4: Membership curve of π function

Figure 1.5: Membership curve of Gaussian function

1.2.5 The Gaussian Membership Function

This function links between fuzzy systems and radial basis function (RBF)

neural networks. It is represented by

G(µ; c, x) = exp[−((µ− c)/x)2/
√

2] (1.5)

Here c is the centre and x is the width of membership function.

1.3 Operation on Fuzzy sets

There are mainly three types of operations on fuzzy sets as described in the

following subsections.
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1.3.1 Fuzzy T-Norm

The intersection of fuzzy set is defined by a T-norm [3] operator of two fuzzy

sets A and B with a same universe of discourse X as

µA∩B(x) = T (µA(x), µB(x)) (1.6)

T norm for the following conditions for membership values a, b, c and d and a

function T : [0, 1]× [0, 1]→ [0, 1] satisfies the below characteristics is known

as T-norm.

• Commutativity: T (a, b) = T (b, a)

• Boundary: T (0, 0) = 0, T (a, 1) = T (1, a) = a

• Monotonicity: T (a, b) ≤ T (c, d) if a ≤ c, b ≤ d

• Associativity: T (a, T (b, c)) = T (T (a, b), c)

1.3.2 Fuzzy S-Norm

The union of fuzzy set is defined by a S-norm [3] for two fuzzy sets A and B

under the same universe of discourse X.

µA∪B(x) = S(µA(x), µB(x)) (1.7)

T norm for the following conditions for membership values a, b, c and d and a

function T : [0, 1]× [0, 1]→ [0, 1] satisfies the below characteristics is known

as T-norm.
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• Commutativity: S(a, b) = S(b, a)

• Boundary: s(0, 0) = 0, S(a, 1) = S(1, a) = a

• Monotonicity: S(a, b) ≤ S(c, d) if a ≤ c, b ≤ d

• Associativity: S(a, S(b, c)) = S(S(a, b), c)

1.3.3 Fuzzy Complement

The fuzzy complement [3] of fuzzy set A maps the transformation of member-

ship function of A into the membership function of complement of A which is

represented by Ac under the common universe of discourse X. Any function

c : [0, 1]→ [0, 1] satisfies the below mentioned conditions

• c[µA(x)] = µAc(x)

• Boundary: c(0) = 1, c(1) = 0

• Non increasing condition: if a < b then c(a) ≥ c(b) (a and b are two

fuzzy membership)
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Figure 1.6: Type I Fuzzy Sets

1.4 Fuzzy Max-Min Composition Operation

The max-min composition [3] of two fuzzy relations A and B which is defined

on X × Y and Y × Z

C = AoB and µC = max[min(µA(a, b), µB(b, c))], a ∈ A, b ∈ B, c ∈ C

(1.8)

1.5 Type I Fuzzy sets

Type 1 fuzzy set has been proposed by Zadeh . This has many application

such as time series production. A type-1 fuzzy set [4] is a set in which the

membership function maps to the real unit interval [0,1].For a crisp set the

membership function is either 0 or 1.

1.6 Type II Fuzzy sets

Type-II Fuzzy Set (T2FS) can be of two types as discussed in the subsections

below.
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Figure 1.7: Foot of uncertainty of IT2FS

Figure 1.8: Interval Type II Fuzzy

1.6.1 Interval Type II Fuzzy

An interval Type-II fuzzy set (IT2FS) is general T2FSs for which the grade of

secondary membership is 1. In IT2FS [2,6] the main thing which is responsible

is footprint of uncertainty(FOU). When the secondary membership functions

belongs to the domain of a T2FS are interval Type-I membership functions,

then it is called interval Type-II fuzzy set (IT2FS).

1.6.2 Gaussian Type 2 fuzzy set

In this fuzzy set, the secondary membership function that belongs to the

domain of T2FS are Type 1 Gaussian Membership functions, and hence

known as Gaussian Type 2 fuzzy set [7]. The grade of membership function
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Figure 1.9: Gaussian Type-2 Fuzzy

belongs to [0,1].

1.7 Scope of the Thesis

It mainly deals with the approach of fuzzy in all the mentioned objectives

discussed in the following chapters with the aim to fulfill it. Firstly in the

dynamic approach for the mixture of acid and bases pH control by fuzzy

decision making. Secondly finger induced motor imagery by EEG and the

classifier is interval type II fuzzy set. Thirdly finger induced motor imagery

classification by fNIRS and the fuzzy approach has been introduced there.

Lastly Cognitive load test while driving in a virtual Reality environment by

EEG using a fuzzy classifier.
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Chapter 2

Fuzzy Chemistry and Fuzzy pH

controller

2.1 Introduction

Fuzzy theory allows the separation axiom scheme of set theory to be extended

to predicates to which a precise truth value cannot be assigned and the

membership is nothing but the way for specifying the predicate. In this view,

fuzzy theory is certainly a ”high” theory allowing the extension of classical

logic to fuzzy logic.

Actually, even in high disciplines like physics there are situations of this

kind (e.g., statistical and quantum mechanics), but they are more appro-

priately managed in terms of probability distributions whose features or

evolutions are assigned by physical laws. The major advantage of fuzzy

theory, the freedom in specifying the memberships, is not useful in these cases

that perhaps explains why it has had few applications in these domains.

At the current level of knowledge, chemistry may be viewed as a special

14



Fuzzy Chemistry and Fuzzy pH controller 2.15

chapter of physics devoted to the description of atomic assemblies (molecules,

radicals,...) in terms of their constituting nuclei and electrons in mutual

interaction. It is generally believed that a description of molecules in terms

of properties of their atomic constituents (general chemistry) is impossible.

This fact is especially disappointing because general chemistry has long

reach and large predictive power, even using the limited mathematical ap-

paratus of college algebra; this advantage is especially appreciated when its

mathematical apparatus is compared with that involved in the quantum me-

chanical description of molecules considered as formed by nuclei and electrons

extremely complex and requiring heavy calculations on large computers.

The logical structure of a formal theory of general chemistry, where the

properties of all molecules are deduced from those of the constituting atoms

and bonds (whose properties are assigned a priori), has been constructed.

This theory, however, admits the material world as a model (”the theory

represents the reality”) only if its mathematical structure is based on fuzzy

arithmetics. In this way fuzzy logic enters as the basic element of foundational

theory like chemistry, rather than simply a tool to manage poorly defined

situations.

In this chapter we first introduce the concept of fuzzy logic in chemistry

and then discuss in details its applicability in computing chemical properties

of atoms, chirality of compounds, and finally the design of fuzzy-controller

based on dynamical approach for the calculation of the pH of a chemical

reaction/system.
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2.2 Fuzzy Chemistry

All aspects of molecular shape and size are fully reflected by the molecular

electron density distribution [2]. A molecule is an arrangement of atomic nuclei

surrounded by a fuzzy electron density cloud. Within the Born-Oppenheimer

approximation, the location of the maxima of the density function, the actual

local maximum values, and the shape of the electronic density distribution near

these maxima are fully sufficient to deduce the type and relative arrangement

of the nuclei within the molecule. Consequently, the electronic density itself

contains all information about the molecule. As follows from the fundamental

relationships of quantum mechanics, the electronic density and, in a less

spectacular way, the nuclear distribution are both subject to the Heisenberg

uncertainty relationship. The profound influence of quantum-mechanical

uncertainty at the molecular level raises important questions concerning the

legitimacy of using macroscopic analogies and concepts for the description of

molecular properties [3].

Fuzzy set methods have been developed for a variety of applications,

initially mostly in engineering and technology [4-11]. However, many ap-

plications in the natural sciences quickly followed [12-28]. The Heisenberg

relationship and many other aspects of quantum mechanics can be interpreted

in terms of fuzzy sets. a2-16 A straightforward extension of these ideas to

some of the elementary concepts of chemistry suggests the following rather

natural, fuzzy set representations :

• Molecular nuclear configurations within the nuclear configuration space

and potential energy hypersurface model of conformational changes and

chemical reactions [17][18] in particular, the distribution and represen-
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tation of symmetry domains in the nuclear configuration space, [19] as

well as reaction mechanisms [18][20]

• Molecular symmetry and quasisymmetry, using the syntopy model and

related approaches [21-24]

• Fuzzy clustering of protein structural classes [25]

• Molecular chirality [26] and various other, more general symmetry

deficiencies [27]

• Electron density and related fuzzy Hausdorff distance problems [28],[29]

• Various more general molecular shape problems [30]-[40]

In some of the preceding representations, a natural interrelationship

between fuzziness and resolution is used, leading to resolution-based chirality,

symmetry and similarity measures. [1], [27]

Both global and local shape properties of molecules can be described using

a fuzzy set formalism. This approach is suitable for the description of various

functional groups, the local shape changes induced within various molecular

moieties by the rest of the molecule, and some effects of shape and shape

changes on chemical reactivity. In particular, the density domain approach to

chemical bonding [35-36] provides a quantum-chemical, topological descrip-

tion of functional groups and a consistent framework for a detailed shape

characterization of global and local features of molecules.

More recently, fuzzy electron density modeling of large molecules have been

improved to a level comparable to that achieved earlier for small molecules.

The additive fuzzy density fragmentation (AFDF) scheme of Mezey was
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described in a general form earlier. [36-37] The simplest version of this

scheme, the Mulliken-Mezey AFDF method, is the basis of the molecular

electron density lego assembler (MEDLA) technique of Walker and Mezey

for generating ab initio quality electron densities for macromolecules. [41-47]

The MEDLA method can be applied, virtually without any size limitation, to

truly large molecules. This newly available option provided by the MEDLA

technique extends the scope of the shape group method to ab initio quality

electron density shape analysis of proteins and supramolecular structures.

In this chapter however, we limit our discussion on fuzzy chemistry to

defining membership functions for atomic radius, bond length, bond energy,

and molecular chirality.

2.3 Membership Functions in Fuzzy Chem-

istry

In the natural interpretation of FC theory, C is the set of adducts (i.e., any

combination of bound atoms), and the molecular graphs (the terms of sort

GR satisfying the predicate M) are interpreted as molecules. Whereas, Y is

the set F(R) of fuzzy numbers defined on RLL, and the symbols +, ,... are

interpreted as the usual operators of fuzzy arithmetic [5]. Actually the axioms

of formal chemistry requires that the quantities of the theory must be added

and may be compared with 0. These properties suggest their belonging to an

ordered field. The most spontaneous choice, the real space R, is however not

satisfactory because with this assumption formal chemistry does not admit the

world of real molecules as a model. Rather, real-world chemistry is a model of
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formal chemistry if the quantities of formal chemistry are memberships rather

than reals; from this the choice of F(R) as S. Any function X :GRI-*NU iS

interpreted as a function that associates fuzzy quantities with molecules: I(O)

: ’10 P-* The shape of the membership function describing the fuzzy numbers

can be different for different functions. In particular for some functional

symbol (like m) it boils down to singleton characteristic function (i.e. to

crisp numbers). Table I summarizes the correspondence between objects of

FC theory and of its natural interpretation. The axiom allows defining the

mass, energy,... of a molecule starting from the properties of the building

blocks: atoms and bonds (which are the natural interpretation of balls and

sticks respectively). ”It is stressed that the fuzziness of formal chemistry

is not related to the fact that the quantities of real chemistry may have a

statistical distribution. Limiting for simplicity to the internuclear distance, it

is well known that the separation between two mutually bonded atoms has

a statistical distribution due to the interaction with the thermal embedding

(or even to the zero-point vibration). Fuzziness however, does not not refer

to this distribution; rather it takes into account of the fact that the average

separation between two assigned atoms in different molecules varies from

one molecule to another. 12Given the molecules A, B and C, we read ”A U

B = C” as ”A reacts with B to produce C” 13A concrete interpretation of

the axioms would require to specify all the parameters of the membership

function of the fuzzy numbers used to describe the properties of atoms and

bonds. In this paper we simply give some examples of these values, leaving

the complete description to future (wider) works.

To give an example of the application of FC, we show how to predict the
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heat generated by the following chemical reaction: H2 + F2- 2HF. The atoms

involved in this reaction are H (hydrogen) and F (fluorine). They are the

interpretation (in the natural model) of the balls b, = (1, 1, 0, 0) and bg =

(2, 7, 0, 0), respectivelyNote that, as shown in Figure 3, the transition from

the bag of molecules H2, F2 to the bag of molecules HF, HF is an allowed

one.The properties of these atoms are summarized in Table II, where the

indicated values are taken from [1]. In the model, the values of atomic radius,

self-energy and electronegativity are used as centers of the Gaussian fuzzy

numbers that interprets symbols r(bi) (see Figure 4, up), e(bi) (see Figure 5,

up) and g(bi), where i C 1, 9. The standard deviations of these Gaussian fuzzy

numbers are simply defined as 2 of their centers. Whereas 10 atomic weight

are used as crisp values (or Gaussian fuzzy numbers with standard deviation

equal to 0) that interprets symbols m(bi). From Axiom FC5 and Definition

7, to compute the energy change Ae of a reaction we need to compute the

energy of each bond involved in it. This is accomplished by using the values of

self-energy and electronegativity of the atoms forming the bond, as indicated

in Axiom FC3. In the reaction (2) the bonds to consider are H-H, F-F, and

H-F; their properties, computed from the properties of composing atoms, are

summarized in Table III. Figure 5 shows the self-energies of H and F, the

bond energies of H-H,F-F and F-H, and the Ae of the reaction H2 + F2 - 2

HF. The vertical line in the lower panel represents the heat of reaction of

the reaction. The energy change Ae is a Gaussian number (whose center

can be obtained following Table IV, upper panel), while the heat of reaction

is a crisp value calculated as in lower panel of Table IV. The value of the

heat of reaction belong to the support of the fuzzy number Ae. Thus, this
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example shows that by using the ’rules’ defined by the axioms and simple

fuzzy arithmetic it is possible to forecast the heat of reaction. At last, since

Ae ¿ 0, from Axiom FC7 it follows that H2 F2 -oHF HF.

2.4.1 Dynamic Approach for pH calculation

NaOH 
 Na+ +OH− (2.1)

CH3COOH 
 CH3COO
− +H+ (2.2)

d[NaOH]

dt
= −k1f [NaOH] + k1b[Na

+][OH−] (2.3a)

d[Na+]

dt
= k1f [NaOH]− k1b[Na+][OH−] (2.3b)

d[CH3COOH]

dt
= −k2f [CH3COOH] + k2b[CH3COO

−][H+] (2.3c)

d[CH3COO
−]

dt
= k2f [CH3COOH]− k2b[CH3COO

−][H+] (2.3d)

d[H+]

dt
= kwf − kwb[H+][OH−] + k2f [CH3COOH]− k2b[CH3COO

−][H+]

(2.3e)

d[OH−]

dt
= kwf − kwb[H+][OH−] + k1f [NaOH]− k1b[Na+][OH−] (2.3f)

2.4 Fuzzy pH controller
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HCl
 H+ + Cl− (2.4)

NH4OH 
 NH+
4 +OH− (2.5)

d[HCl]

dt
= −k3f [HCl] + k3b[H

+][Cl−] (2.6a)

d[Cl−]

dt
= k3f [HCl]− k3b[H+][Cl−] (2.6b)

d[NH4OH]

dt
= −k2f [NH4OH] + k2b[NH

+
4 ][OH−] (2.6c)

d[NH+
4 ]

dt
= k2f [NH4OH]− k2b[NH+

4 ][OH−] (2.6d)

d[H+]

dt
= kwf − kwb[H+][OH−] + k3f [HCl]− k3b[H+][Cl−] (2.6e)

d[OH−]

dt
= kwf − kwb[H+][OH−] + k2f [NH4OH]− k2b[NH+

4 ][OH−] (2.6f)

2.4.2 pH Controller Design

In this part, we work on the implementation of a fuzzy controller where we

regulate the pH concentration of the solution using a strong acid or strong

base in weak base or weak acid medium respectively. In this case, we use the

acid HCl and the alkali NH4OH to find the suitable pH value.
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Figure 2.1: pH-Controller

Since it is difficult to find out the transfer function from the dynamics of

the system given by the chemical equilibrium differential equations, we can

use a Mamdani or Takagi-Sugeno Fuzzy Controller for our system.

From the above equations we see that the variations of the concentrations

of [H+] and the [OH-] with the varying concentration of HCl and NH4OH.

Now since our optimal pH value is given as 7, [H+] = 100.7 = 5.011, and the

rate of change of pH should be ideally zero in a stable control system, thus

we have to take into the account the case When x1 is small and large and x2

is zero.
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2.5 Conclusion

Through this chapter we were able to implement the concepts of fuzzy logic

in different aspects of chemistry.
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Chapter 3

Introduction to Brain

Computer Interface

Abstract

Over the past decade, many laboratories have begun to explore brain–computer

interface (BCI) technology as a radically new communication option for those

with neuromuscular impairments that prevent them from using conventional

augmentative communication methods. BCIs provide these users with com-

munication channels that do not depend on peripheral nerves and muscles.

They have the potential to offer humans a new and innovative nonmuscular

modality through which one can communicate directly via their brain activity

with their environment. These systems rely on the acquisition and interpreta-

tion of the commands encoded in neurophysiological signals without using the

conventional muscular output pathways of the central nervous system (CNS).

Apart from this, it has become, over the decades, one of most reliable tool

for the scientific and detailed understanding of human psychology. Through

29
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this chapter we try to provide a detailed introduction to BCI, in terms of the

major steps involved in BCI, its signal acquisition methods, how its signal

quality could be improved and lastly some important feature selection and

classification techniques.

3.1 Introduction

Human-computer interaction has been a topical research concept since the

birth of the computer era. Methods of computer interaction have progressed

rapidly over the years from cards with punched holes to keyboards and

mice. Today there exist a multitude of innovative technologies that allow

humans to interface with computers for the purposes of data entry, control or

communication. Most of the efforts over the years have been dedicated to the

design of user-friendly and ergonomic systems to produce a more efficient and

comfortable means of communication. Interfaces such as voice recognition,

gesture recognition and other technologies based on physical movement have

received enormous research attention over the years and successful examples

of these technologies are being rolled out commercially as a consequence.

The past two decades have seen an explosion of scientific interest in a com-

pletely different and novel approach of interacting with a computer. Inspired

by the social recognition of people who suffer from severe neuromuscular

disabilities, an interdisciplinary field of research has been created to offer

direct human computer interaction via signals generated by the brain itself.

Brain-Computer Interface (BCI) technology, as it is known, is a revolutionary

communication channel that enables users to control computer applications

through thoughts alone. It is defined as A brain–computer interface is a
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communication system that does not depend on the brain’s normal output path-

ways of peripheral nerves and muscles [1]. The development of the cognitive

neuroscience field has been instigated by recent advances in brain imaging

technologies such as Electroencephalography (EEG), Magnetoencephalog-

raphy (MEG) and functional magnetic resonance imaging (fMRI). EEG is

an imperfect and distorted indicator of brain activity, yet the fact that it

can be acquired cheaply, is non-invasive and demonstrates direct functional

correlations with high temporal resolution makes it the only practical direct

braincomputer communication channel. It is a new and challenging medium

for us to exploit in a similar manner to the other communication modalities

such as voice or vision. The endless potential of tapping into human brain

signals may see the fantasies of science fiction writers becoming reality in the

future.

The growing field of BCI research is however in its infancy. First signs

of BCI research can be dated back to the early 1970s. The work of Dr. J.

Vidal and his military research group at UCLA is cited as the first successful

BCI implementation endeavour [2]. The current goal of BCI research is to

develop replacement communication and control means for severely disabled

people. For those who have lost all voluntary muscle control, referred to as

locked-in syndrome 1, BCI technology offers the only means of communication

1Locked-in Syndrome - Locked-in syndrome is a rare neurological disorder charac-
terized by complete paralysis of voluntary muscles in all parts of the body except for
those that control eye movement. It may result from traumatic brain injury, diseases
of the circulatory system, diseases that destroy the myelin sheath surrounding nerve
cells, or medication overdose. Individuals with locked-in syndrome are conscious and
can think and reason, but are unable to speak or move. The disorder leaves individ-
uals completely mute and paralyzed. There is no cure for locked-in syndrome, nor is
there a standard course of treatment. (Courtesy of the American National Institute of
Neurological Disorders and Stroke).

http://www.ninds.nih.gov/health_and_medical/disorders/lockedinsyndrome_doc.htm
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or environment control. Locked-in syndrome can be caused, for example,

by amyotrophic lateral sclerosis (ALS), 2 brainstem stroke, mitochondrial

disease, spinal-cord injury, traumatic-brain injury, 3 and even later-stage

cerebral palsy. Despite these sufferers being completely physically paralyzed

and unable to speak, they are however, cognitively intact and alert and thus

have a need to communicate. It is estimated that in the order of one million

people worldwide suffer from locked-in syndrome. It is this motivation that

has inspired researchers to explore the possibility of harnessing the intact

brain signals of these people as a means of communication.

BCI design represents a new frontier in science and technology that

requires multidisciplinary skills from fields such as neuroscience, engineering,

computer science, psychology and clinical rehabilitation to achieve the goal of

developing an alternative communication medium. Despite the technological

developments, there remain numerous obstacles to building efficient BCIs.

The biggest challenges are related to accuracy, speed and usability. Due to

these limitations, no BCI system has become commercially available as yet.

If a disabled person can move their eyes or even one muscle in a controlled

way, the interfaces based on eye-gaze or EMG switch technology are more

efficient than any of the BCIs that exist today. The maximum transfer rate

of current BCI systems is in the order of 25 bits/min. The standard dial-up

modem can transfer information at a rate of 56 kbps and even this is rapidly

2Amyotrophic lateral sclerosis (ALS) is a devastating neuromuscular disease that
strikes adults in the prime of their life. ALS attacks motor neurons which control the
movement to voluntary muscles, and progresses rapidly, leading to complete paralysis
followed by death within a 3 to 5 year period. 5,000 cases are diagnosed annually in the
United States (MDA).

3Traumatic Brain Injury (TBI) is an injury to the brain caused by trauma, i.e. a
blow to the head. Annually 80,000 to 90,000 TBI suffers in the US experience the onset
of long-term or lifelong disability associated with TBI.
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being replaced by megabit and even gigabit technology. The question that

remains to be answered by the scientific community is: what is the future of

BCI technology outside rehabilitative communication and control applications

for the severely disabled? Can the wider population expect to play games,

browse the internet and navigate other multimedia rich applications via

thought alone? The research carried out in this thesis explores the field of

BCI design and implementation in the hope of understanding the potential

of this technology.

3.2 History

The idea of being able to control a device through mere thought is not new.

In the scientific world, this idea was proposed by Jacques Vidal in 1973 in

an article entitled ’Toward Direct Brain–Computer Communications’ [3]. In

this article, the Belgian scientist, who had studied in Paris and taught at

UCLA, describes the hardware architecture and the processing he sought

to implement in order to produce a BCI through electroencephalographic

signals. In 1971, Eberhard Fetz had already shown that it was possible to

teach a monkey to voluntarily control motor cortex brain activity by providing

visual information according to discharge rate [4]. These two references show

that since that time, BCIs could be implemented in the form of invasive or

non-invasive brain activity measurements, that is, measurements of brain

activity at the neural or scalp levels. For a more comprehensive history of

BCIs, the reader may refer to the following articles: [5, 6].

Although BCIs have been present in the field of research for over 40 years,

they have only recently come to the media’s attention, often described in
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catchy headlines such as “writing through thought is possible” or “a man

controls a robot arm by thinking”. Beyond announcements motivated by

journalists’ love for novelty or by scientists and developers’ hopes of attracting

the attention of the public and of potential funding sources, what are the real

possibilities for BCIs within and outside research labs?

This thesis seeks to pinpoint these technologies somewhere between reality

and fiction, and between super-human fantasies and real scientific challenges.

It also describes the scientific tools that make it possible to infer certain

aspects of a person’s mental state by surveying brain activity in real time,

such as a person’s interest in a given element of his or her environment or the

will to make a certain gesture. This thesis also explores patients’ expectations

and feedback, the actual number of people using BCIs and details the material

and software elements involved in the process.

3.3 Steps involved in BCI

3.3.1 Data acquisition

The main purpose of this step is to acquire signals from brain activities using

various types of sensors including electroencephalography (EEG), magne-

toencephalography (MEG), electrocorticography (ECoG), electrical signal

acquisition in single neurons (intracortical neural recording - INR), functional

magnetic resonance imaging (fMRI), and functional near infrared spectroscopy

(fNIRS). These brain data acquisition methods are evaluated by a few dif-

ferent criteria. Typical criteria include manner of deploying sensors, type of

acquired signal, temporal resolution which is the ability to detect changes
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Table 3.1: Summary of brain data acquisition methods [8, 9]

Method Activity Temporal res Spatial res Deployment Portability

EEG Electrical 0.05 s 10 mm Non-invasive Portable

MEG Magnetic 0.05 s 5 mm Non-invasive Non-portable

ECoG Electrical 0.003 s 1 mm Invasive Portable

INR Electrical 0.003 s 0.05-0.1 mm Invasive Portable

fMRI Metabolic 1 s 1 mm Non-invasive Non-portable

fNIRS Metabolic 1 s 5 mm Non-invasive Portable

within a certain of time interval [7], spatial resolution which is the ability to

detect source of changes in brain, and portability which is the ability to use

acquisition device across different environments. Table 5.1 shows a summary

comparison of these data acquisition methods based on the above criteria. In

thesis our experiments were mainly based on EEG and fNIRS signals.

3.3.2 Pre-processing

This step is to clean and de-noise data acquired from the previous step

in order to enhance relevant information [10]. Besides the main event the

experiments would like to acquire, there are many types of artifacts from

both subjects participating in the experiment and the system. The system

artifacts are a 50/60 Hz power supply interference, electrical noise from

electronic components, and cable defects. The subject artifacts are body-

movement related to electrooculography(EOG), electromyography (EMG),

electrocardiography (ECG), and sweating. These artifacts make the recorded

EEG signal to have a low signal-to-noise ratio (SNR).
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3.3.3 Feature extraction

Feature extraction is a crucial step in the BCI scheme. Its task is to represent

the whole signal by using some shorter and more meaningful measures called

features [10, 11]. Until now, although there has been a lot of effort from

neuroscientists seeking to discover brain and neural operations inside it, the

overall knowledge of human-beings about the brain is still very limited. This

shortcoming makes brain signal more difficult than other signals such as voice

signal in feature extraction.

3.3.4 Classification

The task of the classification step is to assign an object represented by a

feature vector to a class. In a BCI system, classes are usually brain states or,

subject real or imaginary actions. One of the most important challenges of

BCI systems is that, due to difficulties in setting up experiments, sample data

used for the training phase is quite small compared with the feature vector size.

Thus, trained classifiers are easy to become overfit. Researchers have tried to

apply a number of classifiers [11], both linear and non-linear. Some well known

and successful methods are Linear Discriminant Analysis (LDA), Principal

Component Analysis (PCA), Support Vector Machine (SVM), Hidden Markov

Model (HMM), k-nearest neighbours (kNN) and Artificial Neural Network

(ANN). Among them, LDA and SVM are the two best classifiers [11].

3.3.5 Application interface

After correctly identifying brain state or brain activity, the results of the

classifier are converted into some command sets which will be sent to control
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devices. This step depends on the specific electronic device and application.

3.3.6 Feedback

Feedback is the last step helping users control their brain activity and in this

way this improve the BCI system’s performance. Usually, it provides the user

with feedback about brain states. In most BCI systems, the feedback step is

used in the training phase or offline phase [12].

An overview of a general BCI system framework is shown in Fig. 5.1

Figure 3.1: Overview of a general BCI system framework

3.4 Signal Acquisition Methods

BCIs require a neuroimaging or neurophysiological device to acquire and

transmit the brain signals from brain to computer. In general, neuroimaging

methods are categorized by invasiveness of the recording methods, but can be

further classified by spatial/temporal resolution, direct/indirect measurement,

and complexity/price. Each recording technique has strengths, weaknesses,

and specific uses that help researchers decide which device is relevant to
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their study. Fig 5.2 provides a pictorial classification of BCI systems whereas

Fig 5.3 visually compares different recording methods discussed in more detail

in the following sections.

Figure 3.2: classification of BCI systems

3.4.1 Noninvasive Recording Methods

A noninvasive recording technique uses sensors placed on the skin, such as

the scalp, or machinery that surrounds the cranium in whole. Two types

of noninvasive recording methods discussed in this section include (1) direct

measures that detect electrical (e.g., EEG) or magnetic activity (e.g., MEG)

of the brain, and (2) indirect measures of brain function reflecting brain

metabolism or hemodynamics of the brain (e.g., fMRI, fNIRS, and PET)

that do not directly characterize the neuronal activity. Unlike invasive

recording methods, these noninvasive techniques do not require surgery,
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Figure 3.3: Comparison of different signal acquisition methods

internal chemical or machine implantation, or needle insertion in order to

receive and record neural activity [13].

Electroencephalography

One of the most popular noninvasive neurophysiological recording techniques

is electroencephalography, or EEG. This method measures electrical activity

in the brain through the use of surface electrodes placed on the scalp [14].

The first human EEG was recorded by Hans Berger, a German psychiatrist,

in 1924.

The neurophysiological origin of EEG signals is the pyramidal neurons

of the cortex [15]. An electrical impulse is sent down the axon and into the

synapse every time neurons are fired during excitation. Since electrical signals

are not able to cross neuronal boundaries, a chemical reaction is created
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between neurons. This chemical reaction is triggered by the electrical impulse

and causes an action potential. An action potential is the process of neuron

depolarization, followed by repolarization. Chemical information can begin

flowing through the synaptic left when a neuron is at its resting polarization

level. The flow causes the depolarization, and repolarization is necessary

before more chemical information can flow through the synapse again (Nunez

1995). EEG measures the electrical current, which Teplan explained as “that

flow during synaptic excitations of the dendrites of many pyramidal neurons

in the cerebral cortex” [16]. Because of the distance and impedance of bone

and skin between the electrodes and the cerebral cortex, the EEG cannot

accurately detect single neuron excitations. Instead, the EEG picks up local

current flows on groups of active neurons within the cerebral cortex [16,17]

Neural oscillations that are observed in EEG signals are popularly called

“brainwaves,” reflecting different aspects when they occur in different locations

in the brain Table 5.1. These brain-waves are identified by frequency (in

hertz or cycles per second) and amplitude in the range of microvolts (µV

or 1/1,000,000 of a volt). Each brainwave has its own set of characteristics

representing a specific level of brain activity and mental states [18]. For

example, Delta brain-waves reflect slow, loud, and functional mental states

that prevail during the late sleep [19], while the power decrease at the alpha

band correlates to the presence of mental imagery [20].

In order to record EEG signals, a head set consisting of an EEG cap

with at least three electrodes (i.e., a ground, a reference, and a recording

electrode) is needed Fig. 3.4b. In addition, an amplifier, an A/D converter,

and a computing device (such as a computer) are necessary [9]. Electrodes
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Table 3.2: Different Categories of Brainwave Patterns

Brainwave Sample Pattern Frequency (Hz) Amplitude (µV)

Delta 0.5-4 100-200

Theta 4-8 5-10

Alpha 8-12 20-80

SMR 12-15 -

Beta 15-25 1-5

Gamma 25-60 0.5-2

are typically made of silver, silver chloride, or gold and can be considered wet,

which requires conductive gel to be placed between electrode and scalp, or dry,

where the electrode is placed directly onto the skin [21,22]. Measurements

from all electrodes are referred to one common electrode, called “reference”

electrode [23]. The active and reference electrodes serve as the signal receptors

for potential difference comparisons. The ground electrode serves as the

baseline of brainwave signals that helps weed out irrelevant data from the

active and reference signals.

Correct EEG electrode placement is important to ensure proper location of

electrodes in relation to cortical areas so that they can be reliably and precisely

maintained from individual to individual. The international 10/20 system has

been an internationally recognized standard system for electrode positioning

with 21 electrodes for half a century [24, 25]. Under the 10/20 system, the

skull is divided into six areas from nasion to inion with interval rates of

10%,20%, 20%, 20%, 20%, and 10% (Fp: frontopolar, F: frontal, C: central, P:

parietal, and O: occipital,respectively), and also divided into the same ratios
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from left to right pre-auricular points (T3: temporal, C3: central, Cz, C4,

and T5, respectively) [26]. With the advent of multichannel EEG acquisition

systems and the concurrent development of topographic and tomographic

signal source localization methods, however, the international 10/20 system

has been extended to higher-density electrode settings such as the 10/10 and

10/5 systems, allowing more than 500 electrode positions (for the effectiveness

of 10/20-derived systems. Fig. 3.4a and Fig. 3.4b demonstrate the 10/20

international system of electrode placement and an example montage based

on the 10/10 system, respectively. To accurately identify the location of

scalp electrodes, anatomical landmarks should be determined for the essential

positioning of the electrodes: (1) the nasion, which is the point between

the forehead and the nose; (2) the inion, which is the lowest point of the

skull from the back of the head and is normally indicated by a prominent

bump; (3) the pre-auricular points anterior to the ear. The numbers “10”

and “20” refer to the fact that the distances between adjacent electrodes are

either 10% or 20% of the total front–back or right–left distance of the skull.

Each site has a letter to identify the lobe (i.e., F, T, C, P, and O stand for

Frontal, Temporal, Central, Parietal, and Occipital, respectively), the Z(ero)

to refer to an electrode placed on the midline, and a number to identify the

hemisphere location (i.e., odd and even numbers referring to the left and

right hemispheres, respectively). Also note that the smaller the number, the

closer the position is to the midline. In Fig. 3.4a for example, electrode O1

identifies the left occipital, C4 identifies the right central, P3 identifies the

left parietal, and A1 identifies the left ear reference.

Currently, EEGs are among the most popular techniques for brain–computer
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(a)

(b)

Figure 3.4: (a) The 10/20 international system of electrode placement. (b)

An example montage based on the 10/10 system, which measures O1 and

O2 with Oz bipolar method to elicit SSVEPs.
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Figure 3.5: BCI research articles [27]

interfacing technology, making up 68% of BCI research articles published

in 2007–2011 as shown in Fig. 5.5 [27]. It is noninvasive, inexpensive, and

portable, making it a popular device in current research. It does not, however,

provide high spatial quality information on the location of brain signal acti-

vation. In addition, it is mathematically difficult to accurately compute the

distribution of currents within the brain that generated these signals. This is

referred to as the “inverse problem” [28].

Magnetoencephalography

MEG is another recording technique for non-invasively measuring the magnetic

fields generated by neuronal activity of the brain. When active neurons

generate electric currents, a miniscule magnetic field is created [29]. This

magnetic field is impossible to detect from the activation of a single neuron,

but when many neurons fire together, a larger and more easily detectable

magnetic field is created. MEG combines functional information from the
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magnetic field recordings with structural information from other anatomical

images, such as magnetic resonance imaging (MRI).

The hardware required includes the MEG scanner that is equipped with a

superconducting quantum interference device or SQUID that was invented

in the 1960s as a sensor of magnetic field changes. The principle features

of MEG are as follows: (1) a direct measure of brain function, (2) a very

high temporal resolution on the order of milliseconds, (3) an excellent spatial

resolution with millimeter precision, and (4) a noninvasive method that does

not require the injection of isotopes or exposure to x-rays or magnetic fields

(Uhlhaas 2015).

Despite MEGs having better spatial resolution and very similar temporal

resolution to EEG, they are used less in BCI research—accounting for only 2%

of relevant literature (Fig. 5.5). This is likely due to the non-portability and

high cost. In addition, MEG requires highly sensitive instrumentation and

sophisticated methods, such as a magnetically shielded room for eliminating

environmental magnetic interference [17].

Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging or functional MRI (fMRI) is a nonin-

vasive, functional neuroimaging method that indirectly measures neuronal

activity of the brain by identifying the hemodynamic response, known as the

blood oxygen level–dependent (BOLD) contrast.

The fMRI principle is based on the so-called neurovascular coupling

in which neuronal activation and metabolism with regional cerebral blood

flow (rCBF) and regional cerebral blood oxygenation (rCBO) are tightly
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coupled [31]. When neurons fire, the surrounding blood of the firing neurons

experiences a decrease in oxygenated blood, and then a rapid increase in rCBF

and oxygen metabolism (cerebral metabolic rate of oxygen, CMRO 2) as more

oxygenated blood and glucose flow to the area for use in energy consumption

[32]. The increased oxygen metabolism then converts the oxyhemoglobin in

the blood (oxy-Hb) to the deoxygenated blood (deoxy-Hb). On the other

hand, a disproportionately large increase in rCBF leads to a washout of

deoxy-Hb from the activation area, resulting in a decrease of deoxy-Hb and

an increase of oxy-Hb [31]. It has long been suggested that rCBF increases

exceed CMRO 2 increases by a factor of 2–10 [33]. Deoxygenated blood

transmits greater magnetic fields, interfering with the MRI’s magnetic field.

However, oxygenated blood creates less intense magnetic fields and therefore

interferes with the MRI less, allowing activated neuron areas to be viewable

owing to an increase in oxygenated blood flow [34].

fMRI data imagery is shown very close to the blood flow, within approxi-

mately 1 mm of accuracy and within approximately 1 s of oxygenated blood

flow increase [9]. That is, fMRIs offer highly accurate spatial information that

could be very useful for detailed BCI tasks, but their temporal resolution is

quite slow compared to techniques such as EEG or MEG. In addition, fMRI

does not measure neural activity directly, but allows for inference of neural

activity from measured blood volume and blood flow. Other downfalls include

size, and expense of use, making them ineffective and impractical for everyday

purposes. Research articles discussing fMRI-BCIs accounted for only 2% of

the literature (Fig. 5.5).
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Functional Near-Infrared Spectroscopy

Similar to fMRI, functional near-infrared spectroscopy (fNIRS) relies on

the changes in oxygenated and deoxygenated blood in the cerebral cortex.

Oxygenated and deoxygenated blood absorb light at different rates. For

example, deoxygenated blood absorbs more light below 800 nm light, while

oxygenated blood does above 800 nm [35,36]. fNIRS takes advantage of the

differences in light absorption to detect neuronal activity.

The hardware required for fNIRS includes an infrared light source, a

light detector, signal processing devices, and a computing device such as a

computer [9]. Through the use of an infrared light placed on the scalp and

a light detection device placed nearby, levels of neuronal activation can be

detected. The infrared light penetrates the scalp and bone and the upper

level of the cerebral cortex and, depending on the amount of oxygenated

or deoxygenated blood in the area, a certain amount of light is allowed to

pass through, and some light is reflected back out of the scalp [17]. This

penetrating light is identified by the light detector. As discussed in the

previous subsection, neuron firings cause oxygenated blood to rush to the

surrounding area, bringing glucose for energy. This shift in blood oxygen

levels causes the light to act differently, providing a change in the signal sent

to the light detector, which is then processed and recorded.

fNIRS BCIs are not nearly as popular as EEG systems. Research articles

focused on fNIRS BCIs accounted for just 3% of the relevant published

material (Fig. 5.5). Coyle and colleagues [37] found that fNIRS BCIs can

be accurately and simply commanded through motor imagery and proper

light and detector placement. Because of the latent nature of the blood
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flow response to neuron activated sites in the cerebral cortex, the temporal

resolution is slower in fNIRS than in EEG or invasive methods. In addition,

fNIRS signals are vulnerable to motion and pulse artifacts caused by physical

motions and heartbeats during the measurement, respectively [38]. Thus,

fNIRS should be pre-processed with elaborate artifact removal methods, such

as ICA and wavelet, to improve the signal-to-noise ratio (SNR) before feature

extraction. fNIRS is also limited to detecting changes in the surface areas

of the brain, as the infrared light can only penetrate so far. It is, however,

a portable and inexpensive option, making it a decent candidate for home

settings [39].

Positron Emission Tomography

PET is a noninvasive, three-dimensional (3D) radiation or nuclear medicine

imaging technique that is used to measure the functional processes within the

human body, including neural activity [40]. The PET principle is based on the

phenomenon of positron annihilation. That is, when a positron passes through

matter, two photons are simultaneously emitted in almost exactly opposite

directions. This method relies on a positron-emitting tracer atom that is

introduced into the bloodstream in a biologically active molecule, such as

fludeoxyglucose, which acts similarly to glucose in the body. Fludeoxyglucose

will concentrate in areas with higher metabolic needs. Over time, this tracer

molecule emits positrons, which are detected by a sensor. The spatial location

of the tracer molecule in the brain can be determined based on the emitted

positrons. This allows researchers to construct a 3D image of the areas of the

brain that have the highest metabolic needs, typically those that are most
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active [41].

In general, the arrangement of a PET machine consists of coincidence

detectors, scintillating crystals, and block detectors. However, most BCI

research utilizing PET is limited to clinical studies because of its disadvantages,

including its high cost and lower half-life of the radionuclide ( [13,42–44]).

3.4.2 Invasive Recording Methods

Invasive recording methods are neuroimaging techniques in which the elec-

trodes make direct contact with brain tissue. These methods can provide more

accurate spatial and temporal information, but come at a greater risk to the

individual. Two types of invasive recording methods — electrocorticography

(ECoG) and intracortical neuron recording (INR) — are discussed in this

section.

Electrocorticography

ECoG is also referred to as intracranial EEG, a method of recording electrical

impulses with electrodes that are placed on the brain in order to bypass

impeding material such as the scalp and skull. The physiology behind ECoG

is the same as that for EEG, but sensitivity in ECoG is greater because of the

close nature of the electrodes to the neurons. In order for the electrodes to

be placed on the surface of the cortex, surgery involving removing part of the

skull is required. A group of electrodes spaced about 1 cm apart from each

other are placed lightly on either the epidural or sub-dural layer of the brain.

The spacing and grouping of the electrodes are kept consistent through the

use of clear, flexible grid structure. Electrodes can be placed temporarily and
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patients can complete tasks while cognizant during the surgical procedure or

they can be placed permanently for use outside of the operating room.

ECoG offers higher temporal [45] and spatial resolution than EEG (e.g.,

tenths of millimeters vs. centimeters) [46], broader bandwidth (e.g., 0–500

Hz vs. 0–50 Hz) [47], higher characteristic amplitude (i.e., 50–100 µV vs.

10–20 µV) [23], and far less vulnerability to artifacts such as EMG (Ball et

al. 2009) or ambient noise [23]. Leuthardt and colleagues found that users of

ECoG BCIs had a quicker training rate than those who used EEG BCIs [48].

Invasive techniques accounted for 32% of the literature over the 2007–2011

period (Figure 1.5). Even still, the invasive nature of ECoG poses obvious

risks, including the chance that electrodes can unintentionally move from

their initial placement. In addition, patients are also at risk of postoperative

infection and tissue reaction [39, 49, 50]. Furthermore, the long-term stability

of ECoG signals has not been well researched.

Intracortical Neuron Recording

INR is a technique that allows for neuronal activity in the gray matter of

the brain to be recorded. Just like the EEG and ECoG, this technique relies

on the electrical impulses of the brain. Through the use of a penetrating

electrode made of glass, platinum or tungsten, placed near or within a neuron

cell body, electrical currents are able to be observed. This technique can be so

precise it detects one single neuron, known as single unit activity (SUA). Or it

can be used to detect multiple neuronal impulses, known as multi-unit activity

(MUA). Or more generally, INR can identify local field potentials (LFPs),

which are the electrical impulses in the surrounding area of the electrode
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placement [51].

Research into INR began with animal subjects and has since been applied

to humans—especially those with severe motor disorders. Coupled with ECoG,

research into BCIs using these methods accounted for 32% of the literature

(Fig. 5.5). The spatial resolution of INR is very detailed and surpasses all

other types of invasive and noninvasive neuroimaging techniques, whether

recording SUA, MUA, or LFPs. The temporal resolution is similar to that

of ECoG. This method has associated risks, including the diminishing of

signal acquisition through the electrode over time, tissue damage, foreign

body rejection, or electrode movement within the brain [52].

3.4.3 Brain Signal Patterns for BCI Operation

Every BCI is created to respond to a certain type of brain signal. Fig. 5.6

illustrates the most popular types of brain signals used for operating BCIs.

What follows is an overarching review of the brain signal patterns in terms of

their physiological bases, initial training requirement for use, and the rate

at which information is transferred from brain to application. However, only

neuroelectric signals, such as EEG, are discussed in the following sections,

because it not only can cover most of brain patterns (P300, SSEP, and

ERD/ERS) as shown in Fig. 5.2 but also is the most studied BCI system

because of its simplicity in application [14].

P300 ERPs

The P300 wave is an ERP component of the EEG that reaches a maximum

positive peak in voltage about 300 ms after a stimulus onset (Fig. 3.6a). It is



Introduction to BCI 3.52

(a)

(b)

(c)

(d)

Figure 3.6: Brain signal patterns for BCI operation. (a) P300 ERP (b)

Sensorimotor rhythm (c) SSVEP (d) Slow cortical potential.
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most commonly elicited in an “oddball” paradigm when a subject responds

to target stimuli that occur infrequently and irregularly within a series of

standard stimuli that occur frequently and regularly [53]. The amplitude of

the P300 wave is maximal at central and parietal scalp regions (e.g., Pz),

varying with the improbability of the targets. Its latency is proportional to the

difficulty of discriminating the target stimulus from the standard stimuli [54].

The stimulus can be visual [56], auditory [57], or even tactile [58].

Since the P300 response to external stimuli is automatic, initial training

is not required to teach users to control their brain signals. A short training

may be necessary for certain applications using the P300 wave owing to

complicated interfaces or for the sake of the classification algorithm. [58]

found that healthy individuals were able to achieve high accuracy levels with

very little training time. The high levels of accuracy coupled with the low-cost,

easy-to-use EEGs used to measure this response make the P300 wave a useful

and popular tool for BCIs. P300 BCIs can also provide the user with a large

amount of options to choose.

Steady-State Evoked Potentials

When presented with steady-state (i.e., vibratory in nature) stimuli, the

rhythmic brain activity in the associated cortical area will be generated,

mimicking the frequency of the stimuli (Fig. 3.6b). The stimulus can be

visual, auditory, or even tactile. For example, SSVEPs are currently the most

popular choice for brain signals in BCI operations. SSSEPs to be elicited by

vibrotactile stimuli [59] and SSAEPs to be elicited by auditory stimuli [60]

have also been used in BCI research.
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BCIs that use SSVEPs as their control signal usually have lights or other

stimuli that flash at differing frequencies. Each light or pattern is linked with

a control option (e.g., direction, on/off, etc.) for the BCI application. For

example, a 9-Hz flickering light-emitting diode (LED) is for turning on TV,

while an 11-Hz LED is for turning off TV. Selections are made through users

focusing on whichever stimulus is associated with the action they want to

perform. The neuroimaging device records the frequency of the brain signals

and interprets the selection. SSVEP BCIs do not require training and provide

the quickest and most reliable communication in EEG BCIs [61–63]. However,

as SSVEP BCIs required eye gaze and focus, they may not be suitable for

users with severe motor disabilities and those who are visually impaired [9].

Moreover, staring for long periods of time at flashing lights or stimulus may

also induce fatigue.

Sensorimotor Rhythms

SMRs are brainwave patterns recorded in the somatosensory and the motor

cortices (Fig. 3.6c). These patterns can change due to either movement or

imagined movement. There are two rhythms relevant to SMRs: the Mu band

(7–13 Hz, alpha band present in the somatosensory and motor cortices) and the

Beta band (14–30 Hz). Real and imagined movement creates what are known

as event-related desynchronization (ERD) and event-related synchronization

(ERS).

ERD is the decrease in frequency band amplitude in the sensorimotor

areas of the brain related to movements or imagined movement. ERS is the

increase in frequency band amplitude in the sensorimotor areas immediately
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after movement or imagined movement [7]. Mu band ERD starts right before

movement onset, reaches the maximal ERD shortly after movement onset,

and recovers its original level within a few seconds. In contrast, the beta

band shows a short ERD during the initiation of movement, followed by ERS

that reaches the maximum after movement execution. This ERS occurs when

the Mu rhythm is still attenuated [9]. In order for the signal emitting from

these movements or imagined movements to be strong enough, the area of

usage in the brain needs to be large enough. The hands, feet, and tongue

are represented over large areas of the somatosensory and motor cortices

owing to the complex and regular motion they produce. BCIs using SMRs

often use the imagined movement of feet, hands, or tongue for the purposes

of control [7]. Since outside stimulation is not required for this BCI type,

and the brainwaves and interactions with the BCI are controlled by thought

processes, training—sometimes extensive training—is required, employing

techniques such as operant conditioning.

Slow Cortical Potentials

Generalized changes in the polarization levels of superficial cortical neurons

are known as slow cortical potentials (SCPs) [64]. A change in the direction

of negative polarity is associated with increased cortical activity or movement,

while a change in the direction of positive polarity is associated with decreased

cortical activity and calm (Fig. 3.6d). SCPs are generally analyzed through

the Thought Translation Device. Extensive and intensive training is required,

using individualized cognitive and behavioral strategies [65]. SCPs take

anywhere from 1 s to several seconds to develop, and therefore the information
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transfer rate is quite slow compared to SSVEP and visual P300, which does

not allow for much efficiency in use. Similar to SMR BCIs, SCP BCIs do not

rely on external stimulus such as visual stimuli of SSVEP in order to elicit

brainwave patterns to use to influence the interface. Instead, users control

their thought processes in order to interact with the BCI.



Bibliography

[1] J.R. Wolpaw, et al., ”Brain-computer interface technology: a review of

the first international meeting,” in IEEE Transactions on Rehabilitation

Engineering, vol. 8, no. 2, pp. 164-173, June 2000.

[2] J.J. Vidal, ”Real-time detection of brain events in EEG,” in Proceedings

of the IEEE, vol. 65, no. 5, pp. 633-641, May 1977.

[3] J.J. Vidal, “Toward direct brain–computer communication”, Annual Re-

view of Biophysics and Bioengineering, vol. 2, no. 1, pp. 157–180, 1973.

[4] E.E. Fetz and D.V. Finocchio, “Operant conditioning of specific patterns

of neural and muscular activity”, Science, vol. 174, 1971.

[5] M. Lebdev and M. Nicholelis, “Brain-machine interfaces: past, present

and future”, Trends in Neurosciences, vol. 29, no. 9, pp. 536–546, 2006.

[6] E. Vaadia and N. Birbaumer, “Grand challenges of Brain–Computer

Interfaces in the years to come”, Frontiers in Neuroscience, vol. 3, no. 2,

pp. 151–154, 2009.

57



Introduction to BCI 3.58

[7] B. Graimann, et al., ”Brain–Computer Interfaces: A Gentle Introduction”,

Brain-Computer Interfaces. The Frontiers Collection. Springer, Berlin,

Heidelberg, 2010

[8] H. Gürkök and A. Nijholt, ”Brain–Computer Interfaces for Multimodal

Interaction: A Survey and Principles”, International Journal of Hu-

man–Computer Interaction, 28:5, pp. 292-307, 2012

[9] L. F. Nicolas-Alonso and J. Gomez-Gil, “Brain Computer Interfaces, a

Review,” Sensors, vol. 12, no. 2, pp. 1211–1279, Jan. 2012.

[10] A. Bashashati, M. Fatourechi, R.K. Ward, and G.E. Birch, ”A survey

of signal processing algorithms in brain–computer interfaces based on

electrical brain signals”, Journal of Neural engineering, vol. 4, no. 2, 2007.

[11] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, ”A

review of classification algorithms for EEG-based brain–computer inter-

faces”, Journal of Neural Engineering, vol. 4, no. 2, 2007.

[12] F. Lotte, C. Guan and K.K. Ang, ”Comparison of designs towards a

subject-independent brain-computer interface based on motor imagery,”

2009 Annual International Conference of the IEEE Engineering in Medicine

and Biology Society, Minneapolis, MN, 2009, pp. 4543-4546.

[13] S. Bhattacharyya, ”A review on brain imaging techniques for BCI appli-

cations”, Biomedical Image Analysis and Mining Techniques for Improved

Health Outcomes, 39, 2015.

[14] E. Niedermeyer, and F.L. da Silva, Electroencephalography: Basic Prin-

ciples, Clinical Applications, and Related Fields, vol. 1, 2005.



Introduction to BCI 3.59

[15] D.S. Cantor and J.R. Evans, Clinical Neurotherapy: Application of

Techniques for Treatment, Academic Press, 2013.

[16] M. Teplan, ”Fundamentals of EEG measurement”, Measurement Science

Review, 2(2), 2002.

[17] O. Tonet, et al., ”Critical review and future perspectives of non-invasive

brain–machine interfaces”, Journal of Neuroscience Methods, 31(0), 2006.

[18] C. Mühl, et al., ”A survey of affective brain computer interfaces: Princi-

ples, state-of-the-art, and challenge.” Brain–Computer Interfaces, 1(2),

pp. 66–84, 2014.

[19] M. Steriade, et al.,”Thalamocortical oscillations in the sleeping and

aroused brain”, Science, 262, 679, 1993.

[20] G. Pfurtscheller, ”Quantification of ERD and ERS in the time domain”,

Handbook of Electroencephalography and Clinical Neuropsychology, Even-

tRelated Desynchronization, vol. 6, pp. 89–105, Amsterdam: Elsevier,

1999.

[21] H.L. Peng, et al., ”Flexible dry electrode based on carbon nan-

otube/polymer hybrid micropillars for biopotential recording. Sensors

and Actuators A: Physical, 235, pp. 48–56, 2015.

[22] H.L. Peng, et al., ”A novel passive electrode based on porous Ti for EEG

recording”, Sensors and Actuators B: Chemical, 226, pp. 349–356, 2016.

[23] G. Schalk and J. Mellinger, ”A Practical Guide to Brain–Computer

Interfacing with BCI2000: General Purpose Software for Brain–Computer



Introduction to BCI 3.60

Interface Research, Data Acquisition, Stimulus Presentation, and Brain

Monitoring”, Springer Science & Business Media, 2010.

[24] R.W. Homan, R. W., et al., ”Cerebral location of international 10–20

system electrode placement”, Electroencephalography and Clinical Neuro-

physiology, 66(4), pp. 376–382, 1987.

[25] H.H. Jasper, ”The 10/20 international electrode system”, EEG and

Clinical Neurophysiology, 10, pp. 371–375, 1958.

[26] G. Klem, G., et al., ”The ten-twenty electrode system of the International

Federation”, Electroencephalography and Clinical Neurophysiology, 10(2),

pp. 371–375, 1958.

[27] H.J. Hwang, et al., ”EEG-based brain–computer interfaces: A thorough

literature survey”, International Journal of Human–Computer Interaction,

29(12), pp. 814–826, 2013.

[28] S. Castaño-Candamil, et al., ”Solving the EEG inverse problem based on

space-time-frequency structured sparsity constraints”, NeuroImage, 118,

pp. 598–612, 2015.

[29] M. Hämäläinen, et al., ”Magnetoencephalography—Theory, instrumenta-

tion, and applications to noninvasive studies of the working human brain”,

Reviews of Modern Physics, 65(2), pp. 413–97, 1993.

[30] P. Uhlhaas, ”Magnetoencephalogrphy as a tool in cognitive neuroscience:

A translational perspective”, Schizophrenia Bulletin, 41, pp. S98–S99,

2015.



Introduction to BCI 3.61

[31] U. Lindauer, U., et al. ”No evidence for early decrease in blood oxygena-

tion in rat whisker cortex in response to functional activation”, Neuroim-

age, 13, pp. 988–1001, 2001.

[32] A.K. Dunn, et al., ”Spatial extent of oxygen metabolism and hemo-

dynamic changes during functional activation of the rat somatosensory

cortex”, Neuroimage, 27, pp. 279–290, 2005

[33] A.L. Lin, ”No evaluation of MRI models in the measurement of CMRO2

and its relationship with CBF”, Magnetic Resonance in Medicine, 60(2),

pp. 380–389, 2008.

[34] N. Weiskopf, et al., ”Principles of a brain–computer interface (BCI) based

on real-time functional magnetic resonance imaging (fMRI)”, Biomedical

Engineering, IEEE Transactions on, 51(6), pp. 966–970, 2004.

[35] M.E. Giardini, et al., ”Portable microcontroller-based instrument for

near infrared spectroscopy”, SPIE, 3911, pp. 250–255, 2000.

[36] T. Wilcox, et al., ”Hemodynamic response to featural changes in the

occipital and inferior temporal cortex in infants: A preliminary method-

ological exploration: Paper”, Developmental Science, 11(3), pp. 361–370,

2008.

[37] S.M. Coyle, et al., ”Brain–computer interface using a simplified functional

near-infrared spectroscopy system”, Journal of Neural Engineering, 4(3),

pp. 219–226, 2007.

[38] F. Matthews, et al., ”Hemodynamics for brain–computer interfaces. IEEE

Signal Processing Magazine, 25(1), pp. 87–94, 2008.



Introduction to BCI 3.62

[39] T. Castermans, et al., ”Towards effective non-invasive brain–computer

interfaces dedicated to gait rehabilitation systems”, Brain Sciences, 4, pp.

1–48, 2014.

[40] J. Stollfuss, et al., ”Non-invasive imaging of implanted peritoneal carci-

nomatosis in mice using PET and bioluminescence imaging”, EJNMMI

Research, 5(1), pp. 1–8, 2015.

[41] D.W. Townsend, ”Dual-modality imaging: Combining anatomy and

function”, Journal of Nuclear Medicine, 49(6), pp. 938–955, 2008.

[42] H. Boecker, et al., ”AH 2 15 O positron emission tomography study

on mental imagery of movement sequences—The effect of modulating

sequence length and direction”, NeuroImage, 17(2), pp. 999–1009, 2002.

[43] S.T. Grafton, et al., ”Localization of grasp representations in humans by

positron emission tomography”, Experimental Brain Research, 112(1), pp.

103–111, 1996.

[44] C.J. Winstein,et al., ”Motor task difficulty and brain activity: Investiga-

tion of goal-directed reciprocal aiming using positron emission tomogra-

phy”, Journal of Neurophysiology, 77(3), pp. 1581–1594, 1997.

[45] C. Henle, et al., ”Towards electrocorticographic electrodes for chronic

use in BCI applications”, Towards Practical Brain–Computer Interfaces

SE - 5, pp. 85–103, Springer Berlin Heidelber, 2013.

[46] W.J. Freeman, et al., ”Spatial spectra of scalp EEG and EMG from

awake humans. Clinical Neurophysiology, 114(6), pp. 1053–1068, 2003.



Introduction to BCI 3.63

[47] R.J. Staba, et al., ”Quantitative analysis of high frequency oscillations

(80–500 Hz) recorded in human epileptic hippocampus and entorhinal

cortex”, Journal of Neurophysiology, 88(4), pp. 1743–1752, 2002.

[48] E.C. Leuthardt, et al., ”A brain–computer interface using electrocortico-

graphic signals in humans. Journal of Neural Engineering, 1(2), pp. 63–71,

2004.

[49] J.J. Daly, and R.J. Wolpaw, ”Brain–computer interfaces in neurological

rehabilitation”, The Lancet Neurology, 7(11), pp. 1032–1043, 2008.

[50] C.S. Mestais, et al., ”WIMAGINE: Wireless 64-channel ECoG recording

implant for long term clinical applications”, IEEE Transactions on Neural

Systems and Rehabilitation Engineering, 23(1), pp. 10–21, 2015.

[51] M.L. Homer, et al., ”Implants and decoding for intracortical brain

computer interfaces”, Annual Review of Biomedical Engineering, 15, pp.

383–405, 2013.

[52] B. Gunasekera, et al. ”Intracortical recording interfaces: Current chal-

lenges to chronic recording function”, ACS Chemical Neuroscience, 6(1),

pp. 68–83, 2015.

[53] A.A. Huettel, and G. McCarthy, ”What is odd in the oddball task?”,

Neuropsychologia, 42(3), pp. 379–386, 2004

[54] T.W. Picton, ”The P300 wave of the human event-related potential”,

Journal of Clinical Neurophysiology: Official Publication of the American

Electroencephalographic Society, 9(4), pp. 456–479, 1992



Introduction to BCI 3.64

[55] C. Bledowski, et al., ”Localizing P300 generators in visual target and

distractor processing: A combined event-related potential and functional

magnetic resonance imaging study” Journal of Neuroscience, 24(42), pp.

353–9360, 2004.

[56] Musiek, et al., ”The auditory P300 at or near threshold, ”Journal of the

American Academy of Audiology, 16(9), pp. 698–707, 2005.

[57] A.M. Brouwer and J.B. Van Erp, ”A tactile P300 brain–computer inter-

face”, Frontiers in Neuroscience, 4(19), 2010.

[58] C. Guger, et al., ”How many people are able to control a P300-based

brain–computer interface (BCI)?” Neuroscience Letters, 462, pp. 94–98,

2009

[59] M. Severens, et al., ”Transient and steady-state responses to mechan-

ical stimulation of different fingers reveal interactions based on lateral

inhibition. Clinical Neurophysiology: Official Journal of the International

Federation of Clinical Neurophysiology, 121(12), 2090–6, 2010

[60] N.J. Hill, and B. Schölkopf, ”An online brain–computer interface based

on shifting attention to concurrent streams of auditory stimuli”, Journal

of Neural Engineering, 9(2), 26011, 2012.

[61] I. Volosyak, ”SSVEP-based Bremen-BCI interface—Boosting information

transfer rates”, Journal of Neural Engineering, 8(3), 36020, 2011.

[62] Wang, Y., et al., ”Brain–computer interfaces based on visual evoked

potentials: Feasibility of practical system designs”, IEEE Engineering



Introduction to BCI 3.65

in Medicine and Biology Magazine: The Quarterly Magazine of the

Engineering in Medicine & Biology Society, 27(5), pp. 64–71, 2008

[63] D. Zhu, et al., ”A survey of stimulation methods used in SSVEPbased

BCIs”, Computational Intelligence and Neuroscience, 2010.

[64] U. Strehl, et al., ”Sustained reduction of seizures in patients with in-

tractable epilepsy after self-regulation training of slow cortical poten-

tials—10 years after”, Frontiers in Human Neuroscience, 8(604), 1–7,

2010

[65] P. Studer, et al., ”Slow cortical potential and theta/beta neurofeedback

training in adults: Effects on attentional processes and motor system

excitability”, Frontiers in Human Neuroscience, 8(July), 555, 2014



Chapter 4

VR based Cognitive Load Test

Abstract

BCI based cognitive load assessment has been a topic of significant research

for quite some time, especially while considering the driving scenario. However

till date very few research documents have considered its evaluation in a

VR environment and none providing a qualitative or a quantitative analysis

between the two. Through this chapter we would try to provide a quantitative

analysis of EEG-based cognitive load test while driving in a VR environment

compared to that in the non-VR environment.

4.1 Introduction

Evaluation of cognitive load test using EEG has been a popular research

study.

Cognitive failure while driving due to lapse of visual alertness, cognitive

planning, and motor execution was studied in [1]. Recurrent Neural Networks
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(RNN) classifiers on the basis of Lyapunov energy surface were used for the

processing of EEG signals. The work was further extended in [2], employing

a novel two-stage motor intention classifier. A differential Evolution (DE)-

induced fuzzy neural classifier was used for the decoding and classification of

motor imagery potentials while driving in [3]. As an improvement, authors

in [4], proposed a novel General-Type-2-Fuzzy (GT2FS) and Interval-Type-

2-Fuzzy (IT2FS) sets for cognitive load test while driving and was shown

to outperform the existing classifier. This work considered event-related

desynchronization (ERD) and event-related synchronization (ERS) stimuli

responses, and was extended in [5] using P-300 and N-400 stimuli responses.

Different from the existing work, author in [6], performed the analysis of

cognitive load test while driving using fNIRS for better spatial response of

the stimuli.

In 2002, authors in [7] provided a glimpse of possible VR applications into

different contexts of user-interface Later, the VIRART team from University

of Nottingham, presented in [8] and [9]. In [10], a detailed study on a driver’s

working memory load assessment with the help of fNIRS was performed using

a very realistic VR driving simulator setup at German Aerospace Centre.

Similarly in [11], a study on multitasking while driving in a with participants

of different age groups. However, both the above research considered either

multiple displays or a very large screen, which is not very cost-effective and

also a fixed simulator, for representing a VR environment. Contrary to this,

authors in [12] considered a head-mounted display (HMD)-based VR and

studied the efficiency of the HMD-VR over traditional fixed simulations, based

on a fixed set of questionnaires. Since subjective questionnaires can’t be
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considered as optimal human-machine interface performance indicator [13],

we tried to evaluate the cognitive load test while HMD-VR based driving

simulations, using EEG responses to different responses during simulation.

As, it can be observed that researches now prefer evaluation of cognitive

load test in virtual-reality environments as compared to traditional simulation

environments. The reasons could obviously be linked to the better interactive

capability of VR which results in a more natural response. However, so

far to the best of authors knowledge, till date no study has been done to

compare and evaluate the performance of the two techniques qualitatively

or quantitatively. Hence based on different statistical measures, this chapter

tries to provide a comparative analysis of the two techniques, keeping the

qualitative performance analysis of human interaction with the environment

a study for future research.

4.2 Methodology

This section describes in detail the experimental setup for our study along

with a brief discussion on data acquisition, preprocessing, feature extraction,

and lastly the classification of different sets of data for their corresponding

performance analysis.

4.2.1 Experimental Setup

Eleven healthy right handed-subjects (5 females and 6 males, mean age: 25.2

years old, range: 23-30 years old) participated in this study given their written

informed consents. The study was performed at the Artificial Intelligence
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Laboratory of Jadavpur University, Kolkata. All of these subjects were casual

drivers while none of them had prior training on the experimental procedure

in the present study.

EEG experiments were performed in a well insulated room. Subjects

were seated comfortably in a chair similar to a car-driver seat. The EEG

signals were recorded from a 32-channel Nihon Kohden EEG device using 21

electrodes. EEG signals were acquired using 19 electrodes from different brain

regions [6]: prefrontal lobe electrodes (Fp1 and Fp2 ), frontal lobe electrodes

(Fz, F3, F4, F7, and F8), occipital lobe electrodes (O1 and O2), parietal

lobe electrodes (Pz, P3, and P4), motor cortex electrodes (Cz, C3, and C4)

and temporal lobe electrodes (T3, T4, T5 and T6). The data sampling rate

was set at 500Hz. The driving simulations were carried out using a standard

LOGITECH driving simulator comprising a steering wheel, pedal foot, break

foot, and a gear-box. Project CARS 2 R© c© motorsport racing simulator

having VR support along with HTC Vibe pro head-mount VR system were

used for crating a VR-driving environment.

4.2.2 Data Acquisition

Each session required a participant to perform the driving task using the

setup mentioned in the previous subsection, for a duration of 15 minutes and

every participant completed the session twice (first without VR, and then

with VR), not necessarily one after the other. The EEG device collected

the brain samples corresponding to the 19 electrodes placed on the scalp in

synchronous with the driving simulation. The recorded data for each session

was then stored in a MATLAB (.m) file for further processing.
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4.2.3 Preprocessing and Feature Extraction

As our objective was to analyze the cognitive load for driving corresponding

to 7 different actions - acceleration (Acc), steering right (R), steering left (L),

applying breaks (B), accident (Acd), chase (Ch), and slow-driving (Sl), the

data samples corresponding to only these instances were extracted from the

data acquired for each session, and each of them were stored as independent

files. The acquired EEG signals were then passed through e-LORETA software

[19] to detect the active brain regions responsible for the present learning task.

The EEG signals acquired from the selected active brain lobes were then fed

to the artifact removal unit to remove spurious noise effects. In this regard,

Independent Component Analysis (ICA) [14] is performed over the EEG

signals to extract scalp maps for each electrode position. An Elliptical Infinite

Impulse response (IIR) filter was also used to filter the desired frequency

band of the EEG responsible for motor learning. In the present context,

we used two bio-physiological signals: P300 and N400, also known as event-

related potentials (ERPs) for detection of visual alertness and proper learning

over the entire learning phase. Then we use Principal Component Analysis

(PCA) [15] to select the optimal features from a large dimension of extracted

ERP features. Lastly, three statistical features, viz., mean(µ) variance(σ2)

and kurtosis(k), of the respective data corresponding to each of these different

scenarios were calculated.
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4.3 Classifier Design

In the present learning problem, we propose a fuzzy classifier using GT2FS [16]

to classify the data points. A GT2FS is a three tuple< x, uÃ(x), µ(x, uÃ(x)) >,

where x is a linguistic variable (here, feature value), uÃ(x) is the primary

member function (MF) and µ(x, uÃ(x)) is the secondary MF. Both the pri-

mary and the secondary MFs lie in [0,1]. Now, let xi be an extracted EEG

feature having r experimental instances, x1i , x
2
i , ..., x

r
i , taken on the same day

on the same subject. Presuming that the instances of xi support Gaussian

distribution, we represent them by a Gaussian MF with mean xi and variance

σ2
i equal to the mean and variance of x1i , x

2
i , ..., x

r
i . This Gaussian Type-1 MF

represents that the instances of xi are close enough to the mean value of the

points. So, this MF is referred to as µclose−to−mean(xi) abbreviated as µC(xi).

We take the minimum and maximum of different type-1 MFs over different

trials k to define a type-2 fuzzy set (T2FS), which is more complete than its

type-1 counterpart. The T2FS thus obtained is represented by two type-1

MFs, called Upper MF (UMF) and Lower MF (LMF), given by

µC̃(xi) = UMF (xi) = max
∀j∈[1,k]

(µjC(xj)). (4.1)

µ
C̃

(xi) = LMF (xi) = min
∀j∈[1,k]

(µjC(xj)). (4.2)

Thus for m features, we have m T2FS given by [µC̃(xi), µC̃(xi)]. Thus

the foot of uncertainty (FOU) is obtained. The constructed FOU is then

approximated by joining the peaks of Type-1 MFs with a straight line of zero

slope to obtain a flat top UMF to confirm convexity and normality [20] of

the type-2 fuzzy set, as described in Fig. 2.
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Figure 4.1: Construction of Flat-top IT2FS: (a) type-1 MFs, (b) IT2FS

representation of (a), (c) flat-top approximated IT2FS

Figure 4.2: Secondary Membership Assignment
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Figure 4.3: Firing Strength computation in the proposed GT2FS induced

classification
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Type-2 Fuzzy Inference Generation

Let us consider, the classifier rule j, given by

If x1 is Ã1,j and x2 is Ã2,j and ... and xn is Ãn,j, then class is j

where xi , i = 1 to m are GT2FS-induced propositions. Here, we represent

a GT2FS in vertical slice form (Fig. 3) [14], [21] where each vertical slice

stands for secondary MF with respect to primary membership at a given

x = x′ say.

Suppose we have the measurements: xi = x′i for i = 1 to m Let

Si = µÃj,i(x′i)(uk)× µÃj,i(x
′
i) : 1 ≤ j ≤ k (4.3)

and again let

STp × Sq = (µÃj,p(x′p)(ub)× µÃj,p(x
′
p))

T
(µÃj,q(x′q)(ug)× µÃj,q(x

′
q)) (4.4)

Then we obtain the firing strength of rule j in three steps (Fig. 4). 1. Evaluate,

S = ΠSi∀i terms in S.

2. Obtain the largest of the km terms in S and call it FSj

3. If FSj > FSl, ∀l ∈ [l, c], where c is the number of classes

4.4 Experiments Results and Discussion

This section first details on the experimental results obtained through both the

simulation techniques and then performs a comparative analysis to evaluate

the performance variation of the two.
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Table 4.1: Classification Accuracy without and with VR

Driving Action Non-VR (%) VR (%)

Acceleration 79.3 84.4

Break 83.9 87.5

Slow Driving 71.5 79.5

Right 76.5 82.8

Left 75.2 82.2

Chase 80.8 83.7

Accident 85.1 92.6

Average 78.9 86.1

4.4.1 Comparative Analysis

Using the classifier designed in the previous section we evaluate the perfor-

mance analysis if the two in terms of their classification accuracy, as shown in

Table 5.1, and it could be observed that the classification accuracy of driving

instances using VR is far superior than that without VR.

4.4.2 Statistical Validation

Table 5.2 presents the results of the statistical test obtained by applying

well-known Mc Nemar’s test [16].Here, we consider two classifier algorithms

X and Y , where X is the proposed IT2FS classifier algorithm and Y is one of

the other standard classifiers listed in Table 5.2. Let us define two parameters

n01 and n10 where n01 be the number of classes misclassified by X but not by

Y On the other hand, n10 be the number of classes misclassified by Y but
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Table 4.2: Statistical analysis with the reference algorithm: proposed

IT2Fs classifier

Classifier algorithm

used for comparison

using desired features

Parameters used

for McNemar’s test z

Comments on

acceptance/rejection

of hypothesisn01 n10

LSVM 31 97 33.01 Rejected

Type-1 Fuzzy 23 49 8.68 Rejected

not by X. Then, we define,

z =
(|n01 + n10| − 1)2

n01 + n10

. (4.5)

According to the χ2 distribution table, we have χ2
1,0.95 = 3.38 represents

the value of Chi-square with probability 0.05 and the degree of freedom

1. The null hypothesis, representing that the two classifiers have identical

performance with respect to the given classifier accuracy, is rejected as z

exceeds χ2
1,0.95 = 3.84

4.5 Conclusion

Through this work we can conclude that VR-based driving obviously has

a better simulation performance that that compared to without VR case.

Also, with the classification results obtained, we can get an insight that

since the cognitive load while driving in a VR scenario is more compared

to that of without VR, the classifier response is reflected correspondingly.

Also, this work can stand as a strong motivation to all the future driving
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simulation research to be based on our-proposed cost-efficient VR setup for

better evaluation of their simulation results.
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Chapter 5

Finger-induced Motor Imagery

Classification from

Hemodynamic Response using

Type 2 Fuzzy Sets

Abstract

Recent advances in brain computer interface (BCI) and advanced compu-

tational algorithms make us capable of classifying different human motor

imageries based on their corresponding non-invasive brain signals. Although

there exists significant research results on left/right hand motor imageries,

there is a scarcity of research on the classification of individual finger move-

ments by motor imagery techniques. This paper provides a solution to this

open problem by proposing an advanced classifier to classify the finger motor

81
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imageries corresponding to the motor intentions at individual fingers of the

right hand with the help of functional near infrared spectroscopy (fNIRS)

based hemodynamic response of the human brain. Experimental results ob-

tained confirm that the proposed hemodynamic response based classification

outperforms the reported results of electroencephalography (EEG) based

classification in terms of classification accuracy. Statistical tests included

confirm the efficacy of the proposed technique over its competitors.

5.1 Introduction

Humans like most other mammals use their motor cortex region to control

voluntary movements of their body parts. Several interesting research works,

concerning motor movement control, have been published in the past [1–6].

Most of the existing research is conducted using left and/or right hand motor

imageries, obtained from EEG devices [2–6]. This paper, however, has a

different motivation. It aims at classifying motor intentions of individual

fingers from the hemodynamic response, captured by a full-brain fNIRS device.

To the best of the authors’ knowledge, this is the first work of its kind, where

fNIRS based hemodynamic response is used for classification of individual

finger motor imagery. Infrared imagery is preferred over EEG for its good

spatial resolution [7] like functional Magnetic Resonance Imaging (fMRI)

devices. The fNIRS devices have an advantage of having relatively low price

while at the same time give acceptable performance. This prompted us to

use fNIRS device for our motor imagery classification.

Mental translation of motor imagination to real execution is possible with

the advent of left/right hand motor imagery as in [6], where left/right hand



Finger-induced Motor Imagery Classification from Hemodynamic Response
5.83

motor imageries were used for on-off type motor movement control, where

the decoded left hand imagery was used to make a device on and the right

hand imagery to make it off. However, for complex branching tasks, complex

coding techniques are requred for left/right hand motor imagery [8]. For

example, a 3-bit coding can produce 8 patterns with L (for left-hand) and R

(for right-hand) motor imageries, where 3 successive mental imaginations for

the left/right hand movements are required to generate a 3-bit code word like

L-R-L, L-L-L, R-L-L and the like. Such coding requires additional decoding

to get back the intended motor action by the subject. Both encoding and

decoding operations can be avoided, in case the finger motor imageries could

be decoded correctly by a suitable classifier. In fact, 10 different motor actions,

say, for setting motion of a robot in 10 different directions at 36◦ intervals,

can be realized with a single-bit binary classifier for each finger motor imagery.

Again for branching tasks, left/right hand imagery can be used to steer an

automated guided vehicle (AGV) clockwise or counterclockwise and then to

select its steering angle. Such AGVs can be driven by the motor imaginations

of an amputee.

The fNIRS device measures the change in oxygenated and deoxygenated

blood in response to a cognitive task undertaken by the brain [9]. It is observed

that the difference in oxygenated and deoxygenated blood response to motor-

imagery task is prominent, and thus is used as the basis for motor classification.

To make the performance robust, the duration of fNIRS acquisition is divided

into 3 time-slots, and the mean, variance, skewness, kurtosis, average slope

and the average energy of the sample points within each slot are used as the

static features. Besides static features, dynamic features, representing changes
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in the above parameters over the 3-time-slots are also considered. Further,

because of the presence of physiological noise, like eye blinking, heart-beat,

respiration, blood pressure fluctuation and mere waves, the fNIRS features

may suffer from imprecision.

Fuzzy logic has shown promising results in classification of brain signals

in presence of noise in the acquired brain responses due to parallel thoughts

and other concurrent undesirable brain activities. Membership functions

used in classical (type-1) fuzzy sets are constructed from single source, and

thus can hardly capture the real experimental situation. Type-2 fuzzy logic,

on the other hand, has added advantage of integratings opinion of several

sources, and thus is capable to model the real world, even in presence of

noise/imperfections. This inspired us to design the classifier using type-2

fuzzy sets. Two well-known varieties of type-2 fuzzy sets are popularly known

in the literature. They are interval type-2 fuzzy set (IT2FS) [10] and general

type-2 fuzzy sets (GT2FS) [11]. Although GT2FS has better potential in

capturing the real world uncertainty, it is hardly used in practice for its

high computational overhead. In this paper, the authors employed IT2FS to

undertake motor imagery classification from noisy fNIRs signals as in [12].

The type-2 classifier is designed using type-2 fuzzy rules, where the

antecedent of each rule includes fuzzy propositions, representing linguistic

variables with their interval type-2 membership functions (IT2MFs) and the

consequent includes a class label [10]. For a given set of measurements of the

linguistic variables used in the rule, the upper and lower firing strength of

the inference are computed. A weighted sum of the upper and lower firing

strengths [13] is finally used as the effective firing strength. Thus for a given
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set of measurements all the rules are fired, and the rule having the highest

firing strength is identified. In case the rule with highest firing strength is

rule j, then class j indicates the motor imagery of the jth finger.

As the weights of the upper and lower firing strength have impact on the

firing strength computation, we need to optimally select the weights ahead of

classification. This is done by preparing a table of training instances with

class labels. Experiments are carried out to search the proper choice of the

weights to maximize the classification accuracy. In this paper a simple grid

search algorithm [14] is computed for the optimal selection of weights of

the lower and upper firing strengths for each rule. Experiments undertaken

confirm that the classification accuracy of the proposed type-2 fuzzy classifiers

outperforms traditional classifiers. Statistical test undertaken reveals the

superior performance of the proposed technique over others.

The paper includes six sections. In section 2, we provide a general overview

of the proposed system. In Section 3, we introduce a novel scheme for type-2

fuzzy classifier design. Section 4 provides experimental details and their

results. The performance analysis and statistical validation is included in

Section 5. The conclusions are summarized in Section 6.

5.2 Principles and Methodologies

The finger based motor imagery classification is performed in five main

steps: data acquisition and normalization of the fNIRS signals, pre-processing

and artifact removal, feature extraction, feature selection, and classification.

Fig. 5.1 outlines the basic scheme of finger tapping based motor imagery

classification.
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Figure 5.1: System overview of finger classification.

The following principle is adopted to normalize the acquired hemodynamic

response. Let CHbOα(t) and CHbRα(t), respectively be the oxygenated and

the de-oxygenated blood response of the αth channel, in the motor-cortex for

motor imagery classification. The following two parameters are evaluated to

normalize CHbOα(t) and CHbRα(t), respectively, at the given αth channel:

maxCHbO = maxt(CHbOα(t) : t0 6 t 6 T,∀α). (5.1)

minCHbR = mint(CHbRα(t) : t0 6 t 6 T,∀α). (5.2)

where t0 and T respectively denote the beginning and the end time instances

of an experimental trial for a given stimulus on a selected subject.

The normalized value of the difference signal,

dα(t) = CHbOα(t)− CHbRα(t). (5.3)

is obtained as

d̂α(t) =
CHbOα(t)− CHbRα(t)
maxCHbO −min CHbR

. (5.4)

The sampling rate of the fNIRs device is 7.8 samples/s. In the training

phase, each trial contains 15×7.8 = 117 samples. The 15 s duration is divided

into 3 time-windows, each window includes 117÷ 3 = 39 samples. Next, the
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normalized difference signal, d̂α(t) for α = 1 to M channels is passed through

a elliptic bandpass filter of order 10 with the cut off frequencies at 0.1 and

5 Hz, to remove various forms of physiological artifacts [15]. The selection

of elliptic band pass filter is induced by its sharp roll off around the cut-off

frequency.

Next, we compute the static features which include mean, standard de-

viation, skewness, kurtosis, signal slope and average energy of d̂α(kT ) at

t = kT, k = 0, 1, 2, ... . We also compute the dynamic features obtained by

taking the difference of static features in a trial. Let d̂i,α(kT ) denote the ith

static feature of the αth channel for i = 1 to n and α = 1 to M . So the ith

dynamic feature from the αth channel is obtained by

∆d̂i,α(kT ) = d̂i,α(kT )− d̂i,α((k − 1)T ). (5.5)

In the present application, we have 6 × 3 = 18 static features and 6 ×

2 = 12 dynamic features. Consequently, we have 18 + 12 = 30 features

for each channel, thereby providing M × n = 20 × 30 = 600 features per

individual subject. The product Mn being large enough, we adopt Differential

Evolutionary (DE) algorithm [16] based feature selection method to reduce

600 features into 150 optimal features.

After feature selection is over, the fNIRS features are fed to a classi-

fier to classify the motor imagery task into one of the five finger classes.

The classification undergoes both training and test phases. In the training

phase, the classifier parameters/weights are adapted. In the test phase, the

weights/classifier parameters are known. Only, the input fNIRS features

are submitted to the classifier and the classifier needs to produce the right

class for the given set of input features. Although any traditional classifier



Finger-induced Motor Imagery Classification from Hemodynamic Response
5.88

could serve the purpose, a type-2 fuzzy logic induced classifier is employed

here to eliminate the influence of noise in the acquired fNIRS signals in

the classification process. As mentioned earlier some noise may creep into

fNIRS signals because of the parallel engagement of brain lobe due to side

thoughts, eye-blinking and other artifacts. Type-2 fuzzy sets have proved

itself successful to classify noisy features into classes with high classification

accuracy. Details of type-2 fuzzy classifier are explained next.

5.3 Classifier Design

In the present motor imagery classification problem (for different fingers of a

subject’s hand), we model the fluctuation of the hemodynamic features, of a

particular day, by a Gaussian Membership function (MF). Let x1, x1, ..., xn be

n selected features acquired from the motor cortex region due to individual

finger tapping motor imagery. The mean(mi,j) and variance (σ2
i,j) of the

Gaussian type-1 MF are respectively the mean and the variance of the

features obtained from a session for class j . Each session comprises 10 trials.

Thus we construct G(mi,j, σ
2
i,j) for variation in feature over different sessions

on different days. Now, to accommodate the effect of these variations, we

take the minimum and maximum of d days’ type-1 MF to construct the

lower membership function (LMF) and upper membership function (UMF)

respectively of an interval type-2 fuzzy sets (IT2FS). Thus for n features, we

have n IT2FS given by [µ
Ãi

(xi), µÃi(xi)] for i = 1 to n.

Classifier Rule.

Let us consider, the classifier rule j, given by
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Figure 5.2: Architecture of Type-2 Fuzzy Classifier.

If x1 is Ã1,j and x2 is Ã2,j and ... and xn is Ãn,j, then class is j

Suppose, we have n measurement points, xi = x′i, for i = 1 to n features. Now,

we compute the upper firing strength (UFS) and the lower firing strength

(LFS) of class j as:

UFSj = min(µÃ1
(x1), µÃ2

(x2), ....., µÃn(xn)). (5.6)

LFSj = min(µ
Ã1

(x1), µÃ2
(x2), ....., µÃn

(xn)). (5.7)

We then compute the firing strength of class j by taking the weighted

sum of UFSj and LFSj with respective weights wj and (1− wj) So here

FSj = wj.UFSj + (1− wj).LFSj. (5.8)

for any real number wj in [0, 1]. A grid search algorithm [14] is invoked for

the selection of wj with an aim to maximize the classification accuracy. Thus

for five finger classes, we compute FSj for j = 1 to 5. If FSj > FSk,∀k, then

class j is inferred (Fig. 5.2).
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Figure 5.3: (a) fNIRS Cap (b) Experimental setup (c) fNIRS device (d)

Source-detector connection of motor-cortex : 8 × 8 montage (e) Channel

set-up for motor-cortex montage.

5.4 Experiments and Results

This section includes three following experiments to obtain the required

results of the finger-induced motor imagery classification. Experiment 1 is

concerned with the automatic feature extraction to identify the correct fingers.

Experiment 2 provides the selection of hemodynamic features using differential

evolutionary algorithm. In experiment 3 we analyse the topographic map of

five fingers for each subject.
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5.4.1 fNIRs Data Acquisition and Experimental Frame-

work

The experiment is performed in Artificial Intelligence Laboratory of Jadavpur

University, Kolkata, India. Experiments were performed in a well insulated

room where the subjects were seated comfortably in an armchair. They

were instructed to perform repeated finger tapping activity according to the

stimuli presented on the monitor. The fNIRS signals were recorded from

NIRX Nirscout NIRS imager, manufactured by NIRx Medical Technologies

LLC, using 8 infrared (IR) sources and 8 IR detectors, placed over the scalp

of the subjects according to the international 10-10 system and in order

to capture the hemodynamic response of the brain, observations made at

two different frequencies (760 nm & 850 nm) and a sampling rate of 7.892

Hz (Fig. 5.3(a,b,c)). The source-detector arrangement on the head to the

topographic layout is shown in Fig. 5.3(d). The neighboring source-detector

combination forms a data channel. Here 8 sources and 8 detectors forms 8×8 =

64 channels, of which 20 channels are selected followed by nearest neighboring

source-detector combinations according to 10-10 placement system. Fig. 5.3(e)

identifies the selected combination of channels. Here, for example, the channel

3 represents the IR pathway from source 2 to detector 3, and is positioned

at the top left corner in the topographic layout. Ten healthy voulenteers

participated in the said experiment which included six men and four women

in the age-group of 22-30 years.
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Figure 5.4: Sample single trial visual-cue for finger-induced motor imagery

stimuli.

5.4.2 Stimuli Presentation for Online Classification

Each subject is advised to tap one of the five fingers (Thumb, Index, Middle,

Ring or Little) for 15 s duration as per the visual cue. In order to eliminate

the residual effect of one finger tapping to the next, a 10 s time-delay is

introduced between each pair of successive finger-tapping. The experiment

includes 10 sessions, where each session includes 10 trials. Consequently for

10 healthy subjects we have 10× (10 session/stimuli) ×(10 trials/session)

×(5 stimulus/trial) = 5000 training instances are generated to classify five

fingers. Fig. 5.4 provides a sample structure of the stimulus presented in the

said experiment for a single trial.

5.4.3 Experiment 1: Extraction Of Hemodynamic Fea-

tures to Discriminate Individual Fingers

The motivation of the experiment is to extract the fNIRS features for five

different fingers tapping induced motor imagery from the hemodynamic

response of the brain. Fig. 5.5 represents the feature level discrimination of

the mean HbO concentration of the five fingers to classify the five classes.

Eight optimal features out of 150 features (which in turn is selected from 600

features, as discussed in the next sub-section) are selected from the feature

value plot (Fig. 5.5) for five classes. It is evident from the plot that the feature
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Figure 5.5: Feature level discrimination between mean HbO concentrations

for five fingers.

f81 (mean HbO concentration of channel 4), f123 (mean HbO concentration

of channel 6), f158 (mean HbO concentration of channel 9), f262 (mean HbO

concentration of channel 7), f322 (mean HbO concentration of channel 19), f358

(mean HbO concentration of channel 15), f428 (mean HbO concentration of

channel 19), and f525 (mean HbO concentration of channel 19) offer maximal

intra-class separation.

5.4.4 Experiment 2: Selection of the Discriminating

Hemodynamic Features using DE

The motivation of this experiment is to select the most significant features

from a large dimensional feature sets, (here, 600) by DE algorithm. The

feature selection algorithm provides 150 optimal features. Out of 150 optimal

features the best 8 features are plotted in Fig. 5.5. The result of the proposed

evolutionary algorithm based feature selection is compared with the other

traditional PCA technique in Table 5.1. It is evident from Table 5.1 that the

proposed feature selection process gives better classification accuracy of the

classifier.
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Table 5.1: A comparison between PCA and DE based proposed IT2FS

classifier

Stimulus
Classification Accuracy % (standard deviation)

PCA + Proposed classifier algorithm DE + Proposed classifier algorithm

Thumb 89.6 (0.0172) 92.8 (0.0112)

Index 85.7 (0.0234) 89.7 (0.0155)

Middle 86.5 (0.0065) 89.2 (0.0042)

Ring 82.1 (0.0312) 85.3 (0.0212)

Little 84.9 (0.0294) 88.7 (0.0197)

5.4.5 Experiment 3: Topographic Map Analysis for In-

dividual Fingers

This experiment provides the corresponding changes in the topographic maps

for individual fingers. Different regions are activated for the individual finger-

imageries as indicated in Fig. 5.6. It can be observed that the primary motor

cortex of the left hemisphere and pre motor cortex of the right hemisphere

are mainly activated for the index finger; the primary motor cortex of the

left and right hemisphere are activated for the ring finger; the supplementary

motor cortex of the left and right hemisphere are activated for the thumb; the

supplementary motor cortex of the left hemisphere and the primary motor

cortex of the right hemisphere are activated for the middle finger; the pre

motor cortex of the left hemisphere and the primary motor cortex of the right

hemisphere are activated for the little finger.
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Figure 5.6: Brain activation regions for (a) Thumb (b) Index (c) Middle (d)

Ring (e) Little fingers during one of the experimental trial.

5.5 Classifier Performance and Statistical Val-

idation

This section deals with the experimental basis of performance analysis of the

proposed Type-2 fuzzy set induced reasoning techniques with the traditional

and existing ones.

5.5.1 Relative performance analysis of the proposed

classifier

To study the performance analysis, we compare the relative performance

of the proposed classifier with traditional and existing classifiers. Here, we

consider the following standard classifiers : linear support vector machine

(LSVM) [17], polynomial kernel (KSVM-polynomial) [18], kernelized SVM

using radial basis function (KSVM-RBF) [19], back propagation neural net

(BPNN) [20], type-1 fuzzy system (Type-1 Fuzzy) and IT2FS. Table 5.2

provides the result of relative performance analysis of the proposed classifier

outperforms the standard ones by quite a margin. It is also apparent from

the Table-2 that the run time complexity of the proposed classifier takes 42.9
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Table 5.2: Relative performance analysis for Individual fingers (in %)

Classifiers Thumb Index Middle Ring Little Run-time complexity

LSVM 69.1 69.3 68.7 60.2 62.3 53.0 ms

KSVM-polynomial kernel 75.1 72.6 74.2 71.9 74.6 55.1 ms

KSVM-RBF kernel 78.2 76.1 76.9 73.3 74.9 60.2 ms

BPNN 85.9 83.2 83.8 80.6 82.9 67.3 ms

Type-1 Fuzzy 88.6 84.9 84.4 82.8 85.2 49.8 ms

IT2FS 89.7 85.2 86.1 83.7 84.4 44.4 ms

Proposed Model 92.8 89.7 89.2 85.3 88.7 42.9 ms

milliseconds, which is comparably less than the other existing classifiers.

5.5.2 Statistical Validation

Table 5.3 presents the results of the statistical test obtained by applying

well-known Mc Nemar’s test [21].Here, we consider two classifier algorithms

X and Y , where X is the proposed IT2FS classifier algorithm and Y is one of

the other standard classifiers listed in Table 5.3. Let us define two parameters

n01 and n10 where n01 be the number of classes misclassified by X but not by

Y On the other hand, n10 be the number of classes misclassified by Y but

not by X. Then, we define,

z =
(|n01 − n10| − 1)2

n01 + n10

. (5.9)

According to the χ2 distribution table, we have χ2
1,0.95 = 3.38 represents

the value of Chi-square with probability 0.05 and the degree of freedom

1. The null hypothesis, representing that the two classifiers have identical
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Table 5.3: Statistical analysis with the reference algorithm: proposed

IT2Fs classifier

Classifier algorithm

used for comparison

using desired features

Parameters used

for McNemar’s test z

Comments on

acceptance/rejection

of hypothesisn01 n10

LSVM 31 97 33.01 Rejected

KSVM-polynomial kernel 17 67 28.58 Rejected

KSVM-RBF kernel 23 49 7.89 Rejected

BPNN 19 60 20.25 Rejected

Type-1 Fuzzy 23 49 8.68 Rejected

IT2FS 27 53 7.81 Rejected

performance with respect to the given classifier accuracy, is rejected as z

exceeds χ2
1,0.95 = 3.84

5.5.3 Performance Analysis with the Previous Work

Table 5.4 provides the performance analysis of the proposed technique with

the existing work [4]. In [4], the authors have perform the experiments using

EEG signals. It is evident from Table 5.4 that the classification accuracy of

the proposed algorithm from the hemodynamic response acquired from the

fNIRS device have the superior performance than the existing work.
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Table 5.4: A Comparison between the classification accuracy measures of

the proposed method and the existing work

Proposed Algorithm Algorithm proposed in [4]

Accuracy Measure 85.3 - 92.8 % 71.43 - 82.41 %

5.6 Conclusion

Classification of finger motor imageries is an open problem till date. This

paper introduces an interesting approach to solve this open problem by

employing a fNIRS device to measure the hemodynamic information from

active brain regions. A simple IT2FS induced fuzzy classifier is incorporated

to classify the motor imageries of individual fingers of one hand to recognize

the finger. Experiments undertaken confirm the superior performance of

the proposed fuzzy classifier with respect to the state-of-the art techniques.

Sstatistical (Mc Nemar’s) test undertaken also confirms the superiority of the

proposed type-2 classifier.
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