
 Hybridization of Differential Evolution with Bacterial
Foraging Optimization Technique for enhance Optimization

 By

 Saumyadeep Das
 Registration No- 137291 of 2016-17

 Examination Roll No – M6IAR19001

 Under The Guidance of

 Dr. Pratyusha Rakshit

This thesis is submitted in the partial fulfillment for the Degree of Master of
Technology in Intelligent Automation & Robotics under Electronics and
Telecommunication Engineering.

DEPARTMENT OF ELECTRONICS AND
TELECOMMUNICATION ENGINEERING

 Jadavpur University

 Kolkata – 700032

 May 2019

 FACULTY OF ENGINEERING AND TECHNOLOGY

 JADAVPUR UNIVERSITY

 CERTIFICATE OF RECOMMANDATION

This is to certify that the dissertation entitled, “Hybridization of Differential Evolution With
Bacterial Foraging Optimization Technique for Enhanced Optimization” has been carried
out by SAUMYADEEP DAS (University Registration No.: 137291 of 2016-2017) under my
guidance and supervision and be accepted in partial fulfillment of the requirement for the Degree
of Master of Electronics & Telecommunication Engineering. The research results presented in
the thesis have not been included in any other paper submitted for the award of any degree to any
other University or Institute.

 Dr. Pratyusha Rakshit Prof. Amit Konar

 (Project Guide) (Course Co-ordinator)

Dept. of Electronics & Telecommunication Intelligent Automation & Robotics

Engineering, Jadavpur University Dept. of Electronics & Telecommunication

 Engineering, Jadavpur University

Prof. Sheli Sinha Chaudhuri Prof. Chiranjib Bhattacharjee

(Head of the Department) Dean, Faculty Council of Engineering

Dept. of Electronics & Telecommunication and Technology, Jadavpur University

Engineering, Jadavpur University

 FACULTY OF ENGINEERING AND TECHNOLOGY

 JADAVPUR UNIVERSITY

 CERTIFICATE OF APPROVAL

The forgoing thesis is hereby approved as a creditable study of an engineering subject and
presented in a manner satisfactory to warrant acceptance as prerequisite to the degree for which
it has been submitted. It is understood that by this approval the undersigned do not necessarily
endorse or approve any statement made, opinion expressed or conclusion drawn there in but
approve the thesis only for which it is submitted.

Saumyadeep Das

Examination Roll Number: M6IAR19001

Committee on final examination for evaluation of the thesis

 External Examiner

 Dr. Pratyusha Rakshit

 FACULTY OF ENGINEERING AND TECHNOLOGY

 JADAVPUR UNIVERSITY

 DECLARATION OF ORIGINALITY AND COMPLIANCE OF ACADEMIC THESIS

I hereby declare that this thesis entitled, “Hybridization of Differential Evolution
With Bacterial Foraging Optimization Technique for Enhanced
Optimization”, contains literature survey & original research work by the
undersigned candidate, as part of his Degree of Master of Technology in Intelligent
Automation & Robotics.

All information have been obtained and presented in accordance with academic
rules & ethical conduct.

I also declare that, as required by these rules & conduct, I have fully cited &
reference all materials when required and none of the work represented in this
thesis is fabricated.

Name: Saumyadeep Das

Examination Roll No: M6IAR19001

Thesis Title: Hybridization of Differential Evolution With Bacterial Foraging
Optimization Technique for Enhanced Optimization

Date:

Place: Kolkata ______________________

 Signature of the candidate

 PREFACE

The main purpose of any kind of optimization is to achieve best design with respect to a set of

prioritized criteria or constraints. In engineering aspect, these include maximizing factors such as

productivity, strength, reliability, longevity, efficiency, and utilization.

High-speed digital computers made implementation of the complex optimization procedures

possible and stimulated further research on newer methods. Simulated annealing, evolutionary

algorithms including genetic algorithms, and neural network methods represent a new class of

mathematical programming techniques that have come into prominence during the last decade.

Two powerful optimization techniques are Differential Evolution & Bacterial Foraging

Optimization. But they are alone not sufficient to optimize a particular system design due to their

limitation in performance. In order to prevent stagnation, and more generally, to reach a high

standard of performance in a DE framework, several studies have been carried out in recent

years. Numerical results show that a DE can perform very well but requires a very extensive a

priori study in order to tune the parameters and in particular the population size. A proper

hybridization of various algorithmic components (MA) leads to an optimization algorithm which

performs better than its components separately and finely tuned.

TABLE OF CONTENTS
CHAPTER-1: Introduction

1.1 Optimization
1.2 Traditional optimization techniques

1.3 Evolutionary & swarm optimization techniques
1.4 Overview of evolutionary

Optimization algorithms
1.5 Overview of swarm optimization algorithms
1.6 Hybridization and its advantage

References

CHAPTER-2: Differential Evolution

 2.1 Introduction

 2.2 Literature Review

 2.3 Main steps of Differential Evolution (DE)

 2.4 Pseudo code

 2.5 A few real world applications of DE

 2.6 Conclusions

 References

CHAPTER-3: Bacterial Foraging Optimization Algorithm (BFOA)

 3.1 Introduction

 3.2 Literature Review

 3.3 Main steps of BFOA

 3.4 Pseudo Code

 3.5 A few real world applications of BFOA

 3.6 Conclusion

 References

 CHAPTER-4: Hybridization of Differential Evolution and bacterial
Foraging Optimization Algorithm

 4.1 Introduction

 4.2 Proposed method of hybridization

 4.3 Pseudo code

 4.4 Experiments and results

 4.5 Conclusion

 References

CHAPTER-5: Conclusion & future research

 5.1 Conclusion

 5.2 Future scope of research

 References

LIST OF FIGURES Page No.
1.1 Differential Evolution Basic Block

Diagram 3

1.2 Architecture of Evolutionary algorithm 11

1.3 Different steps of Evolutionary algorithm 12

2.1 Differential Evolution Stages 25

2.2 Illustrating a simple DE mutation scheme

in 2-D parametric space 27

2.3 Different possible trial vectors formed due to

 uniform/ binomial crossover between the

target and the mutant vectors in 2-D search space. 29

2.4 Frequency Bands of a signal on Integrated

Services Digital Network (ISDN) 32

2.5 Analog frontend circuitry belonging to Infineon line

cards with the GEMINAX ® ADSL chipset 32

2.6 PLL section of the VTC video tester family of

Rohde & Schwarz 34

2.7 Final approximation of Rideal,j 35

3.1 Different Parts of an Escherichia coli 43

3.2 Magnified view of flagellum-cell body joint 44

3.3 Bundling phenomenon of flagella 45

3.4 E. coli bacterium, flagellar connection,

and biological “motor” 48

3.5 Swarm Pattern of E. Coli 50

3.6 Overall procedure of Chaotic BFO 53

3.7 BFOA Based Adaptive PID controller block diagram 65

3.8 Level cascaded multilevel inverter 67

3.9 Output voltage waveform of a 7-level MLI 67

4.1 Ordinary Differential Evolution
Iteration vs Fitness Curve 81

4.2 Hybrid Differential Evolution
Iteration vs Fitness Curve 81
4.3 Dimensional plot for Rastrigin Function 82

LIST OF TABLES Page No.
3.1 Impact of variation of number of bacteria in BFOA

when applied for segmentation of images lena and pepper. 56

3.2 Impact of variation of number of chemotactic steps

in BFOA when applied for segmentation of images

lena and pepper. 56

3.3 Impact of variation of swim lengths in BFOA when

applied for segmentation of images lena and pepper. 57

3.4 Impact of variation of Run-Length Unit in BFOA when

 applied for segmentation of images lena and pepper. 57

3.5 Free parameters for BFOA. 58

3.6 Impact of variation precision goal of bacteria in
ABFOA when applied for segmentation of images
lena and pepper. 58

4.1 DE & DEBC fitness comparison 80

 1

CHAPTER 1

 INTRODUCTION

 This chapter gives a brief overview of optimization technique, traditional optimization

techniques, and general overview of two important optimization tools i.e., Differential Evolution

& Swarm Optimization which are advantageous over other optimization techniques. The

requirement of hybridization of two optimization techniques & why it is advantageous are also

discussed briefly in this chapter.

1.1 Optimization- 2

Optimization is an important tool for selection of best element with regard to some conditions &

criteria which are used everywhere, from Railway seat reservation to Banking, finance & from

engineering design to internet routing. In reality when we try to maximize our profit by keeping

the cost minimum, when we try to design a system which will consume less energy by giving the

best in class efficiency & output then the term ‘Optimization’ plays an important role. Basically,

we have a limited time, money & resources and this is the reason why optimization is

indispensable.

An optimization algorithm computes best available information & values of an objective

function given different type of values of different domains. The fulcrum of an optimization

process is different search algorithms & computational modeling. Mathematical modeling &

Search algorithms are key tools of achieving optimality of the problems of interest.

1.2 Traditional Optimization Techniques –

There are several traditional optimization techniques are presents. According to S Koziel[1],

algorithms for optimization are more diverse than the types of optimization, though

the right choice of algorithms is an important issue. These optimization algorithms can be

classified into classes as below:-

a) Derivative based algorithm

b) Derivative free algorithm

c) Meta-heuristic algorithm

• Derivative based algorithms can be further classified as-

1. Newton’s method & hill climbing

2. Conjugate gradient method

• Derivative free algorithms can be further classified as-

1. Pattern search

2. Trust region method

• Meta heuristic algorithms can be classified as-

1. Simulated Annealing

2. Genetic algorithm & differential evolution

3. Particle swarm optimization 3

4. Harmony search

5. Firefly algorithm

6. Cuckoo search

1.3 Evolutionary & swarm optimization techniques-

In this section two algorithms among the different type of optimization algorithms are discussed

as these algorithms are very popular & they also have some advantages over traditional

optimization techniques.

 According to Dr. D.B.Fogel[2] ,a pioneer in evolutionary computation, the problems like

robotics, operation research, decision making, bioinformatics, machine learning, data mining and

many more are very complex and hard to solve. An approach to face up such real life complex

problems inspired by Darwinian natural evolution is referred as Evolutionary Computations.

Evolutionary computing involves various algorithms; commonly known as Evolutionary

Algorithms. During last two decades Evolutionary Algorithms becomes very popular tool for

searching, optimization and providing solutions to complex problems. Evolutionary technique is

best suited to the applications where it is not possible to use heuristic solutions and may lead to

inadequate results.

1.3.1 Evolutionary optimization advantages-

 a. Conceptual Simplicity-

The prime advantage of an evolutionary optimization technique is the simplicity in concept. A

flow chart is shown which describes the evolutionary function applied for function-

 Figure: 1.1 Differential Evolution Basic Block Diagram

Population
Initialization

Random variation
of Individuals

‘Fitness’
Evaluation Apply Selection

 4

A population of candidate solutions to a problem at hand is initialized. This is done by randomly

sampling from the space of possible solutions. New solutions are created by randomly varying

existing solutions. This random variation may include mutation and/or recombination.

Competing solutions are evaluated in the basis of a performance index describing their "fitness".

Selection is then applied to determine which solutions will be maintained into the next

generation, and with what frequency. These new "parents" are then subjected to random

variation, and the process iterates.

b. Broad Applicability-

Evolutionary techniques can be applied to virtually any problem that can be formulated as a

function optimization task. It requires a data structure to represent solutions, a performance index

to evaluate solutions, and variation operators to generate new solutions from old solutions

c. Outperform Classic Methods on Real Problems-

optimization problems often (1) impose nonlinear constraints, (2) require payoff functions that

are not concerned with least squared error, (3) involve non stationary conditions, (4) incorporate

noisy observations or random processing, or include other vagaries that do not conform well to

the prerequisites of classic optimization techniques. In addition, in the often encountered case of

applying linear programming to problems with nonlinear constraints, this offers an almost

certainly incorrect result because the assumptions required for the technique are violated. In

contrast, evolutionary computation can directly incorporate arbitrary constraints.

d. Potential to Use Knowledge and Hybridize with other Methods-

It is always reasonable to incorporate domain-specific knowledge into an algorithm

when addressing particular real-world problems. Specialized algorithms can outperform

unspecialized algorithms on a restricted domain of interest (Wolpert and Macready, 1997).

Evolutionary algorithms offer a framework such that it is comparably easy to incorporate such

knowledge. For example, specific variation operators may be known to be useful when applied to

particular representations.

 5

These can be directly applied as mutation or recombination operations. Knowledge can also be

implemented into the performance index, in the form of known physical or chemical properties

(e.g., van der Waals interactions, Gehlhaar et al., 1995). Evolutionary algorithms can be

combined with more traditional optimization techniques. This may be as simple as the use of a

conjugate-gradient minimization used after primary search with an evolutionary algorithm (e.g.,

Gehlhaar et al., 1995), or it may involve simultaneous application of algorithms. There may also

be a benefit to seeding an initial population with solutions derived from other procedures.

Further, evolutionary computation can be used to optimize the performance of neural networks

(Angeline et al., 1994), fuzzy systems (Haffner and Sebald, 1993), production systems (Wilson,

1995), and other program structures.

e. Parallelism-

Evolution is a highly parallel process. As distributed processing computers become

more readily available, there will be a corresponding increased potential for applying

evolutionary algorithms to more complex problems. It is often the case that individual solutions

can be evaluated independently of the evaluations assigned to competing solutions. The

evaluation of each solution can be handled in parallel and only selection (which requires at least

pair wise competition) requires some serial processing. In effect, the running time required for an

application may be inversely proportional to the number of processors.

 f. Robust to Dynamic Changes –

Traditional methods of optimization are not robust to dynamic changes in the environment and

often require a complete restart in order to provide a solution (e.g., dynamic programming). In

contrast, evolutionary algorithms can be used to adapt solutions to changing circumstance. The

available population of evolved solutions provides a basis for further improvement and in most

cases it is not necessary, nor desirable, to reinitialize the population at random. Indeed, this

procedure of adapting in the face of a dynamic environment can be used to advantage. The

ability to adapt on the fly to changing circumstance is of critical importance to practical problem

solving. For example, suppose that a particular

 6

simulation provides perfect fidelity to an industrial production setting. All workstations and

processes are modeled exactly, and an algorithm is used to find a "perfect" schedule to maximize

production. This perfect schedule will, however, never be implemented in practice because by

the time it is brought forward for consideration, the plant will have changed: machines may have

broken down, personnel may not have reported to work or failed to keep adequate records of

prior work in progress, other obligations may require redirecting the utilization of equipment,

and so forth. The "perfect" plan is obsolete before it is ever implemented. Rather than spend

considerable computational effort to find such perfect plans, a better prescription is to spend less

computational effort to discover suitable plans that are robust to expected anomalies and can be

evolved on the fly when unexpected events occur.

g) Capability for Self-Optimization-

Most classic optimization techniques require appropriate settings of exogenous

variables. This is true of evolutionary algorithms as well. However, there is a long history of

using the evolutionary process itself to optimize these parameters as part of the search for

optimal solutions (Reed et al., 1967; Rosenberg, 1967; and others).

h) Able to Solve Problems that have no known Solutions –

Perhaps the greatest advantage of evolutionary algorithms comes from the ability

to address problems for which there are no human experts. Although human expertise should be

used when it is available, it often proves less than adequate for automating problem-solving

routines. Troubles with such expert systems are well known: the experts may not agree, may not

be self-consistent, may not be qualified, or may simply be in error. Research in artificial

intelligence has fragmented into a collection of methods and tricks for solving particular

problems in restricted domains of interest. Certainly, these methods have been successfully

applied to specific problems (e.g., the chess program Deep Blue). But most of these applications

require human expertise. They may be impressively applied to difficult problems requiring great

computational speed, but they generally do not advance our understanding of intelligence.

 7

 1.3.2 Swarm optimization advantages-

 a) In PSO, the use of a Lagrangian or Cost function confers advantages similar to analysis using

spectral /frequency domain methods. As the first response points out, the problem need not be

differentiable or integrated of order 1.

 b) The more obvious advantages are in the use of larger amounts of data though improvements

in efficiency are limited given the equal asymptotic performance of other techniques.

 c) Theoretically, the PSO allows improving on the ANN in terms of weeding out necessary local

optima as the group's overall solution with each individual optimized datum.

1.4 Overview of evolutionary optimization algorithms-

Evolutionary computation[3] is an ambitious name for a simple idea: use the

theory of evolution as an algorithm. Any program that uses the basic loop

shown below could be termed evolutionary computation. Evolutionary algorithms operate on

populations. The data structures would be chosen to represent the population, quality measures,

and different ways to vary the data. It will need to decide how to tell when to stop. For any given

problem there are many ways to implement an evolutionary computation system to attack the

problem.

i) Set i=0;

ii) Generate the initial population P(i) at random;

iii) REPEAT

a) Evaluate the fitness of each individual in P(i);

b) Select parents from P(i)based on their fitness;

c) Apply search operators to the parents & produce generation P(i+1);

iv) UNTIL the population converges & or the maximum time is reached

Evolutionary computation encompasses several major branches, i.e., evolution strategies,

evolutionary programming, genetic algorithms and genetic programming, due largely to

historical reasons. At the philosophical level, they differ mainly in the level at which they

simulate evolution. At the algorithmic

 8

level, they differ mainly in their representations of potential solutions and their operators used to

modify the solutions. From a computational point of view, representation and search are two key

issues. Evolution strategies were first proposed by Rechenberg and Schwefel in 1965 as a

numerical optimization technique. The original evolution strategy did not use populations. All

evolutionary algorithms have two prominent features [4] which distinguish themselves from

other search algorithms. First, they are all population-based. Second, there is communications

and information exchange among individuals in a population. Such communications and

information exchange are the result of selection and/or recombination in evolutionary algorithms.

1.5 Overview of swarm optimization algorithms-

Particle swarm optimization (PSO), in its historical version, is a collective,

anarchic (in the original sense of the term), iterative method, with the emphasis on

cooperation; it is partially random and without selection. Bird flocks, fish schools, and animal

herds constitute representative examples of natural systems where

aggregated behaviors are met, producing impressive, collision-free, and synchronized moves. In

such systems, the behavior of each group member is based on simple inherent responses,

although their outcome is rather complex from a macroscopic point of view. For example, the

flight of a bird flock can be simulated with relative accuracy by simply maintaining a target

distance between each bird and its immediate neighbors. This distance may depend on its size

and desirable behavior. For instance, fish retain a greater mutual distance when swimming

carefree, while they concentrate in very dense groups in the presence of predators. The groups

can also react to external threats by rapidly changing their form,

breaking in smaller parts and re-uniting, demonstrating a remarkable ability to respond

collectively to external stimuli in order to preserve personal integrity. Similar phenomena are

observed in physical systems. A typical example is the particle aggregation caused by direct

attraction between particles due to Brownian motion or fluid shear. Humans too are characterized

by agnate behaviors, especially at the level of social organization and belief formulation.

However, these interactions can become very complex, especially in the belief space, where, in

contrast to the physical space, the same point (a belief or an idea) can be

 9

occupied concurrently by large groups of people without collisions. The aforementioned

aggregating behaviors characterized by the simplicity of animal and physical systems or the

abstractness of human social behavior, intrigued researchers and motivated their further

investigation through extensive experimentation and simulations (Heppner & Grenander, 1990;

Reynolds, 1987; Wilson, 1975). The social sharing of information among individuals in a

population can provide an evolutionary advantage. This general belief, which was suggested in

several studies and supported by numerous examples from nature, constituted the core idea

behind the development of PSO. Pseudo code of the operation of PSO is shown below –

Input: Number of particles N, swarm S, best positions P.

i) Set t←0.

ii) Initialize S and Set P=S.

iii) Evaluate S and P, and define index g of the best position.

iv) While (Termination criteria not met)

v) Update S.

vi) Evaluate S.

vii) Update P and redefine index g.

viii) Set t←t+1

ix) End While

x) Print best position found.

1.6 Hybridization and its advantage:-

Hybrid optimizations assume that one has implemented two or more algorithms for the same

optimization. A hybrid optimization uses a heuristic to choose the best of these algorithms to

apply in a given situation. Although evolutionary computation has been widely accepted for

solving several important practical applications in engineering, business, commerce, etc., yet in

practice sometimes they deliver only marginal performance. Inappropriate selection of various

parameters, representation, etc. is frequently blamed. There is little reason to expect that one

 10
can find a uniformly best algorithm for solving all optimization problems.

This is in accordance with the No Free Lunch theorem[5], which explains that for any algorithm,

any elevated performance over one class of problems is exactly paid for in performance over

another class. Let us consider, for m number of points, c be the cost value, f be the cost function,

a1 & a2 be the two different algorithms. Now if we want to know, how F1, the set of ‘f’ for

which some algorithm ‘a1’ outperforms another algorithm ‘a2’ compare to F2, the set of ‘f’. To

perform the comparison, the way of comparing sum over all ‘f’ of P (𝑐|f, m, a1) to the sum over

all ‘f’ of P (𝑐|f, m, a2). P (𝑐|f, m, a) is independent of ‘a’ when we average over all cost

functions. So it can be shown as-

 ∑ P (𝑐|f, m, a1)௙ =∑ P (

஼
→ |f, m, a2)௙

 Evolutionary algorithm behavior is determined by the exploitation and exploration relationship

kept throughout the run. All these clearly illustrate the need for hybrid evolutionary approaches

where the main task is to optimize the performance of the direct evolutionary approach.

Recently, hybridization of evolutionary algorithms is getting popular due to their capabilities in

handling several real world problems involving complexity, noisy environment, imprecision,

uncertainty, and vagueness. As mentioned earlier, for several problems a simple Evolutionary

algorithm might be good enough to find the desired solution. There are several types of problems

where a direct evolutionary algorithm could fail to obtain a convenient (optimal) Solution. This

clearly paves way to the need for hybridization of evolutionary algorithms with other

optimization algorithms, machine learning techniques, heuristics etc. Some of the possible

reasons for hybridization are as follows:-

i) To improve the performance of the evolutionary algorithm (example: speed of

convergence)

ii) To improve the quality of the solutions obtained by the

 evolutionary algorithm.

iii) To incorporate the evolutionary algorithm as part of a larger system.

 11

In case of evolutionary optimization, from initialization of population to the generation of

offsprings, there are lots of opportunities to incorporate other techniques/algorithms etc.

Population may be initialized by incorporating known solutions or by using heuristics, local

search etc. Local search methods may be incorporated within the initial population members or

among the offsprings. Evolutionary algorithms may be hybridized by using operators from other

algorithms (or algorithms themselves) or by incorporating domain-specific knowledge.

Evolutionary algorithm behavior is determined by the exploitation and exploration relationship

kept throughout the run. Adaptive evolutionary algorithms have been built for inducing

exploitation/exploration relationships that avoid the premature convergence problem and

optimize the final results. The performances Of the evolutionary algorithm can be improved by

combining problem-specific knowledge for particular problems.

 Figure: 1.2 Architecture of Evolutionary algorithms

 12
1.6.1 Architectures of Hybrid Evolutionary Algorithms:-

Several techniques and heuristics/metaheuristics have been used to improve the general

efficiency of the evolutionary algorithm. Some of most used hybrid architectures are summarized

as follows:-

1. Hybridization between an evolutionary algorithm and another evolutionary algorithm

(example: a genetic programming technique is used to improve the performance of a genetic

algorithm)

2. Neural network assisted evolutionary algorithms

3. Fuzzy logic assisted evolutionary algorithm

4. Particle swarm optimization (PSO) assisted evolutionary algorithm

5. Ant colony optimization (ACO) assisted evolutionary algorithm

6. Bacterial foraging optimization assisted evolutionary algorithm

7. Hybridization between evolutionary algorithm and other heuristics (such as local search, tabu

search, simulated annealing, hill climbing, dynamic programming, greedy random adaptive

search procedure, etc)

 Figure 1.3: Different steps of Evolutionary algorithm

 13
References:-

[1] Slawomir Koziel and Xin-She Yang (Eds.) ,‘Computational Optimization, Methods and

Algorithms’. 2011 Springer-Verlag Berlin Heidelberg.

[2] David B. Fogel, ‘The Advantages of Evolutionary Computation’ Natural Selection, Inc.

[3] Daniel Ash lock, Department of Mathematics and Statistics University of Guelph,

‘Evolutionary Computation for Modeling and Optimization’. 2006 Springer Science+Business

Media, Inc.

[4] Ruhul Sarker, Joarder Kamruzzaman, Charles Newton, ‘EVOLUTIONARY

OPTIMIZATION (EvOpt): A BRIEF REVIEW AND ANALYSIS’, International Journal of

Computational Intelligence and Applications

Vol. 3, No. 4 (2003) 311-330, Imperial College Press

[5] David H. Wolpart, William G. Macready, ‘No free lunch theorem for search’,SFI-TR-95-

02-010, The Santa Fe Institute, February 23,1996

CHAPTER-2 14

 Differential Evolution

2.1 Introduction:-

Differential Evolution [1] was developed as a reliable and versatile global optimization tool for

functions of many variables that is also easy to use. The first written publication on Differential

Evolution appeared as a technical report in 1995. Since then, Differential Evolution has proven

itself in competitions, such as IEEE's International Contest on Evolutionary Optimization

(ICEO) in 1996 and 1997 and in the real world on a broad variety of applications. Like nearly all

evolutionary algorithms (EAs), Differential Evolution is a population-based optimizer. It starts

by sampling the objective function at multiple, randomly chosen initial points. The objective

function f(X) is a function of d variables, X = (X0, X1, ..., Xd-1), f (X) = f (X0,X1, ... ,Xd-1). The

initial population has Np vectors X. The variable Np represents the number of points (vectors) in

the population (it is not a product of N and P). Each vector Xi is indexed with a number i from 0

to Np-1. Each vector represents an initial trial solution and the objective function is evaluated at

each vector. The domain from which the Np initial vectors are chosen is defined by the preset

parameter bounds. Like other population-based methods, Differential Evolution generates new

points that are perturbations of existing points. Differential Evolution perturbs vectors with the

scaled difference of two randomly selected population vectors. To produce a trial vector,

Differential Evolution adds the scaled, random vector difference to a third randomly selected

population vector. In the selection stage, the trial vector competes against the population vector

of the same index. The vector with the better objective function value (e.g., lower for

minimization) is marked as a member of the next generation. The procedure repeats until all Np

population vectors have competed against a randomly generated trial vector. Once the last trial

vector has been tested, the survivors of the Np pairwise competitions become parents for the next

generation in the evolutionary cycle. It should be noted that in the operations research and

numerical methods literature there is insight into how and why Differential Evolution works,

including conditions for a convergence proof.

 15

2.2Literature review:-

In an attempt[2] to find the global optimum of non-linear, non-convex, multi-modal and non-

differentiable functions defined in the continuous parameter space (DRd), Storn and Price

proposed the Differential Evolution (DE) algorithm in 1995. Since then, DE and its variants have

emerged as one of the most competitive and versatile family of the evolutionary computing

algorithms and have been successfully applied to solve numerous real world problems from

diverse domains of science and technology. Unlike several other evolutionary computation

techniques, basic DE stands out to be a very simple algorithm whose implementation requires

only a few lines of code in any standard programming language. DE exhibits remarkable

performance while optimizing a wide variety of objective functions in terms of final accuracy,

computational speed, and robustness. Since 2010, apart from the combination of the existing

mutation

schemes in DE, researchers have also made several attempts to devise new mutation schemes

(involving difference vectors in various forms) which can provide improved search moves on

complex fitness landscapes.

Below, it will be pointed out some of the reasons why the researchers have been looking at DE

as an attractive optimization tool and as we shall proceed through this survey, these reasons will

become more obvious.

1) With respect to other EAs, DE is much more simple and straightforward to implement.

Main body of the algorithm takes few lines to code in any programming language.

Simplicity to code is important for practitioners from other fields, since they may not be

experts in programming and are looking for an algorithm that can be simply implemented

and tuned to solve their domain-specific problems. Note that although PSO is also very

easy to code, the performance of DE and its variants is largely better than the PSO

variants over a wide variety of problems as has been indicated by studies like[3],[4].

2) As indicated by the recent studies on DE [3], [4], [5] despite its simplicity, DE exhibits

much better performance in comparison with several others like G3 with PCX, MA-S2,

ALEP, CPSO-H, and so on of current interest on a wide variety of problems including

unimodal, multimodal, separable, non-separable and so on. Although some very strong

EAs like the restart CMAES was able to beat DE at CEC 2005 competition, on non-

separable objective functions, the gross performance of DE in terms of accuracy,

convergence speed, and robustness still makes it attractive for applications to various

real-world optimization problems, where finding an approximate solution in reasonable

amount of computational time is much weighted.

3) Control parameters are less (Cr, F, and NP DE). The effects of these parameters on the

performance of the in classical algorithm are well studied. Simple adaptation rules for F

and Cr have been devised to improve the performance of the algorithm to a large extent

without imposing any serious computational burden [6], [7].

4) The space complexity of DE is low as compared to some of the most competitive real

parameter optimizers like CMA-ES [S232]. This feature helps in extending DE for

handling large scale and expensive optimization problems. Although CMA-ES remains

very competitive over problems up to 100 variables, it is difficult to extend it to higher

dimensional problems due to its storage, update, and inversion operations over square

matrices with size the same as the number of variables.

In a recently published article [8], Neri and Tirronen reviewed a number of DE-variants for

single-objective optimization problems and also made an experimental comparison of these

variants on a set of numerical benchmarks. However, the article did not address issues like

adapting DE to complex optimization environments involving multiple and constrained objective

functions,noise and uncertainty in the fitness landscape, very large number of search variables,

and so on.

2.2.1 DE in Different domain:-

This section reviews the extensions of DE for handling multiobjective, constrained, and large

scale optimization problems. It also surveys the modifications of DE for optimization in dynamic

and uncertain environments.

16

 17

a. DE for Multiobjective Optimization:

Due to the multiple criteria nature of most real-world problems especially in engineering, multi-

objective optimization (MO) problems are ubiquitous. Multi-objective optimization problems

involved multiple objectives, which should be optimized simultaneously and that often are in

conflict with each other. This results in a group of alternative solutions, which must be

considered equivalent in the absence of information concerning the relevance of the others. The

concepts of dominance and Pareto optimality may be presented more formally in the following

way. Consider without loss of generality the following multi-objective optimization problem

with D decision variables x (parameters) and n objectives y:

Minimize 𝑌ሬ⃑ = f (X) = (f1(x1,, xD),, fn(x1,, xD))

Where 𝑋⃗ = [x1,, xD]T ∈ P and Y = [y1,, yn]
T ∈ O

and where 𝑋⃗ is called decision (parameter) vector, P is the

parameter space, Y is the objective vector, and O is the objective space. A

decision vector 𝐴 ∈ P is said to dominate another decision vector 𝐵ሬ⃗ ∈ P (also

written as 𝐴< 𝐵ሬ⃗ for minimization) iff,

 ∀i ∈ {1,, n} : fi(𝐴) ≤ fi(𝐵ሬ⃗)

 ∧ ∃j ∈ {1,, n} : fj(𝐴) < fj(𝐵ሬ⃗).

Based on this convention, we can define non-dominated, Pareto-optimal solutions as follows.

Let 𝐴 ∈ P be an arbitrary decision vector.

1) The decision vector A is said to be non-dominated regarding the set P' ⊆ P if and only if there

is no vector in P' which can dominate 𝐴 .

2) The decision (parameter) vector A is called Pareto optimal if and only if 𝐴 is non-dominated

regarding the whole parameter space P .

Many evolutionary algorithms were formulated by the researchers to tackle multi-objective

problems in recent past. Kukkonen and Lampinen extended DE/rand/1/bin to solve multi-

objective optimization problems in their approach called generalized differential

evolution (GDE). To deal with the shortcomings of GDE2 regarding slow convergence,

Kukkonen and Lampinen proposed an improved version called GDE3 [9] (a combination of the

earlier GDE versions and the Pareto-based differential evolution algorithm).

 This version added a growing population size and non-dominated sorting (as in the NSGAII) to

improve the distribution of solutions in the final Pareto front and to decrease the sensitivity of

the approach to its initial parameters. Santana-Quintero and Coello Coello proposed the ∈-

MyDE in [10]. This approach keeps two populations: the main population (which is used to

select the parents) and a secondary (external) population, in which the concept of ∈-dominance

is adopted to retain the non-dominated solutions found and to distribute them in a uniform way.

This approach keeps two populations: the main population (which is used to select the parents)

and a secondary (external) population, in which the concept of ∈-dominance is adopted to retain

the non-dominated solutions found and to distribute them in a uniform way. In [11], Xue et al.

came up with the multiobjective DE (MODE) in which the best individual is adopted to create

the offspring. A Pareto-based approach is introduced to implement the selection of the best

individual. If a solution is dominated, a set of non-dominated individuals can be identified and

the “best” turns out to be any individual (randomly picked) from this set.Robic and Filipic

presented a DE for multiobjective optimization (called DEMO) in [12]. This algorithm combines

the advantages of DE with the mechanisms of Pareto-based ranking and crowding distance

sorting.

DEMO only maintains one population and it is extended when newly created candidates take

part immediately in the creation of the subsequent candidates. This enables a fast convergence

toward the true Pareto front, while the use of non-dominated sorting and crowding distance

(derived from the NSGA-II) of the extended population promotes the uniform spread of

solutions. Iorio and Li [13] proposed the non-dominated sorting DE (NSDE), which is a simple

modification of the NSGA-II . The only difference between this approach and the NSGA-II is in

the method for generating new individuals. The NSGA-II uses a real-coded crossover and

18

mutation operator, but in the NSDE, these operators were replaced with the operators of

differential evolution. NSDE was shown to outperform NSGA-II on set of rotated MO problems

with strong interdependence of variables.

Some researchers have proposed approaches that use non- Pareto based multiobjective concepts

like combination of functions, problem transformation, and so on. For example, Babu and Jehan

[14] proposed a DE algorithm for MO problems, which uses the DE/rand/1/bin variant with two

different mechanisms to solve bi-objective problems: first, incorporating one objective function

as a constraint, and secondly using an aggregating function. Li and Zhang, [15] proposed a

multiobjective differential evolution algorithm based on decomposition (MOEA/D-DE) for

continuous multiobjective optimization problems with variable linkages. The DE/rand/1/bin

scheme is used for generating new trial solutions, and a neighborhood relationship among all the

sub-problems generated is defined, such that they all have similar optimal solutions. In [15], they

introduce a general class of continuous MO problems with complicated Pareto set (PS) shapes

and reported the superiority of MOEA/D-DE over NSGA-II with DE type reproduction

operators. Summation of normalized objective values with diversified selection approach was

used in [16] without the need for performing non-dominated sorting.

b. DE for Constrained Optimization:

Most of the real world optimization problems involve finding a solution that not only is optimal,

but also satisfies one or more constraints. A general formulation for constrained optimization

may be given in the following way.

 Find 𝑋⃗ = [x1, x2, ..., xD]T 𝑋⃗ ∈ℜD

 to minimize: f (𝑋⃗)

subjected to inequality constraints: gi(𝑋⃗) ≤ 0 i=1,2,….,K

 equality constraints: hj(𝑋⃗) = 0 j=1,2,….,N

 and boundary constraints: xj,min ≤ xj ≤ xj,max.

Boundary constraints are very common in real-world applications, often because parameters are

related to physical components or measures that have natural bounds, e.g., the resistance of a

wire or the mass of an object can never be negative. In order to tackle boundary constraints,

19

penalty methods drive solutions from restricted areas through the action of an objective function-

based criterion. DE uses the following four kinds of penalty method to handle boundary

constraint violation.

1) Brick wall penalty [17]: if any parameter of a vector falls beyond the pre-defined lower or

upper bounds, objective function value of the vector is made high enough (by a fixed big

number) to guarantee that it never gets selected.

2) Adaptive penalty [18], [19]: similar to brick wall penalty, but here the increase in the objective

function value of the offender vector may depend on the number of parameters violating bound

constraints and their magnitudes of violation.

3) Random re-initialization [21], [17]: replaces a parameter that exceeds its bounds by a

randomly chosen value from within the allowed range following (1).

4) Bounce-back [17]: relocates the parameter in between the bound it exceeded and the

corresponding parameter from the base vector.

The first known extension of DE toward the handling of inequality constrained optimization

problems (mainly design centering) was by R. Storn [21]. He proposed a multimember DE

(called CADE: constraint adaptation with DE, in his paper) that generates M (M > 1) children for

each individual with three randomly selected distinct individuals in the current generation, and

then only one of the M + 1 individuals will survive in the next generation. Mezura-Montes et al.

used the concept also to solve constrained optimization problems. Zhang et al. [22] mixed the

dynamic stochastic ranking with the multimember DE framework and obtained promising

performance on the 22 benchmarks taken from the CEC 2006 competition on constrained

optimization [23]. some studies have also been reported regarding parameter control in DE for

constrained optimization. Brest et al. have proposed an adaptive parameter control for two DE

parameters related to the crossover and mutation operators. Huang et al. [24] used an adaptive

mechanism to select among a set of DE variants to be used for the generation of new vectors

based on a success measure. Moreover, they also adapted some DE parameters to control the

variation operators. Very recently Mezura-Montes and Palomeque-Ortiz presented the adaptive

parameter control in the diversity differential evolution (DDE) algorithm for constrained

optimization. Three parameters namely the scale factor F, the crossover rate Cr, and the number

of offspring generated by each target vector NO, are self-adapted by encoding them

20

within each individual and a fourth parameter called selection ratio Sr is controlled by a

deterministic approach.

C. DE for Large-Scale Optimization:

In last few decades, several type of bio-inspired optimization algorithms have been designed and

applied to solve optimization problems. Although these approaches have shown excellent search

abilities when applied to some 30–100 dimensional problems, usually their performance

deteriorates quickly as the dimensionality of search space increases beyond 500. The reasons

appear to be two-fold. First, complexity of the problem usually increases with the size of

problem, and a previously successful search strategy may no longer be capable of finding the

optimal solution. Second, the solution space of the problem increases exponentially with the

problem size, and a more efficient search strategy is required to explore all the promising regions

in a given time budget. Since the performance of basic DE schemes also degrade with massive

increase in problem dimensions, some important attempts have In [25], Noman and Iba proposed

fittest individual refinement (FIR), a crossover based local search method for DE, such that the

FIR scheme accelerates DE by enhancing its search capability through exploration of the

neighborhood of the best solution in successive generations. The proposed memetic version of

DE (augmented by FIR) was shown to obtain an acceptable solution with a lower number of

evaluations particularly for higher dimensional functions. Another memetic DE for high-

dimensional optimization was presented by Gao and Wang [26], where the stochastic properties

of chaotic system is used to spread the individuals in search spaces as much as possible and the

simplex search method is employed to speed up the local exploiting and the DE operators help

the algorithm to jump to a better point. been made by the researchers to make DE suitable for

handling such large-scale optimization problems.

In terms of optimizing high-dimensional problems, cooperative co-evolution (first proposed by

Potter and De Jong for GAs) with the following divide-and-conquer strategy has proven an

effective choice.

1) Problem decomposition: splitting the object vectors into some smaller subcomponents.

2) Optimize subcomponents: evolve each subcomponent with a certain optimizer separately.

3) Cooperative combination: combine all subcomponents to form the whole system.

21

In [27], the authors proposed two DE-variants (DECCI and DECC-II) that use self-adaptive

NSDE (SaNSDE) (a synergy of the works reported in [28] and [7]) in a cooperative co-

evolutionary framework with novel strategies for problem decomposition and subcomponents’

cooperation. The algorithms were tested on a set of widely used benchmarks scaled up to 500

and 1000 dimensions. An important extension of the same work for better performance on

rotated and non-separable high-dimensional functions has been reported in [29] where the

authors use random grouping scheme with adaptive weighting for problem decomposition and

coevolution The theoretical analysis illustrates how such strategies can help to capture variable

interdependencies in non-separable problems. Recently, Parsopoulos devised a cooperative

micro- DE, which employs small cooperative subpopulations (with only few individuals) to

detect subcomponents of the original problem’s solution concurrently. The subcomponents are

combined through cooperation of subpopulations to build complete solutions of the problem.

Zamuda et al. proposed a DE-variant for large scale global optimization, where original

DE is extended by log-normal self-adaptation of its control parameters and combined with

cooperative co-evolution as a dimension decomposition mechanism.Su presented a surrogate

assisted DE framework based on Gaussian process for solving large-scale computationally

expensive problems in. Brest et al. [6] investigated a self-adaptive DE (abbreviated as

jDEdynNP-F) where control parameters F and Cr are self-adapted and a population-size

reduction method is used. The proposed jDEdynNP-F algorithm also employs a mechanism for

sign changing of F with some probability based on the fitness values of randomly chosen vectors,

which are multiplied by F in the mutation step of DE. The algorithm achieved third rank in CEC

2008 special session and competition on high-dimensional real-parameter optimization [30] that

included non-separable functions.

D. DE for Optimization in Dynamic and Uncertain Environments

In many real world applications, EAs often have to deal with optimization problems in the

presence of a wide range of uncertainties. In general, there are four ways in which uncertainty

may creep into the computing environment .

First, the fitness function may be noisy. Second, the design variables and/or the environmental

parameters may change after optimization, and the quality of the obtained optimal solution

should be robust against environmental changes or

22

deviations from the optimal point. Third, the fitness function may be approximated, which means

that the fitness function suffers from approximation errors. Finally, the optimum of the problem

to be solved changes its location over time and, thus, the optimizer should be able to track the

optimum continuously. In all these cases, the EAs should be equipped with additional measures

so that they are still able to work satisfactorily.

For a noisy problem, a deterministic choice of the scale factor and the greedy selection methods

can be inadequate and a standard DE can easily fail at handling a noisy fitness function, as

experimentally shown in [31]. Looking at the problem from a different perspective, the DE

employs too much deterministic search logic for a noisy environment and therefore tends to

stagnate. Das et al. [32] made an attempt to improve the performance of DE on noisy functions

by first varying the scale factor randomly between 0.5 and 1 and secondly by incorporating two

not-so-greedy selection mechanisms (threshold based selection and stochastic selection) in DE.

Liu et al. [33] combined the advantages of the DE algorithm, the optimal computing budget

allocation technique and simulated annealing (SA) algorithm to devise a robust hybrid DE

method abbreviated as DEOSA) that can work well in noisy environments. Mendes and Mohais

presented DynDE [34]—a multi-population DE algorithm, developed specifically to optimize

slowly time-varying objective functions. DynDE does not need any parameter control strategy

for the F or Cr. The main components in DynDE are as follows.

1) Usage of several populations in parallel.

2) Usage of uniform dither for F? [0, 1] as well as Cr ∈ [0, 1].

3) To maintain diversity of the population based on two approaches.

 a) Re-initialization of a population if the best individual of a population gets too close to the

best individual of another population. The population with the absolute best individual is kept

while the other one is reinitialized. This way the various populations are prevented from

merging.

 b) Randomization of one or more population vectors by adding a random deviation to the

components.

23

E. DE for Multimodal Optimization and Niching:

Many practical objective functions are highly multimodal and likely to have several high quality

global and/or local solutions. Often, it is desirable to identify as many of these solutions as

possible so that the most appropriate solution can

be chosen. In order to identify many solutions of a multimodal optimization problem, several

“niching” techniques have been developed. A niching method empowers an EA to maintain

multiple groups within a single population in order to locate different optima. The niching

techniques include crowding [35], fitness sharing, clearing, restricted tournament selection [36],

The crowding method allows competition for limited resources among similar individuals, i.e.,

within each niche. Generally, the similarity is measured using distance between individuals. The

method compares an offspring with some randomly sampled individuals from the current

population. The most similar individual will be replaced if the offspring is superior. Thomsen

extended DE with a crowding scheme named as crowding DE (CDE) [35] to solve multimodal

optimization problems. In CDE, when an offspring is generated, it will only compete with the

most similar (measured by Euclidean distance) individual in the population. The offspring will

replace this individual if it has a better fitness value.

The fitness sharing method divides the population into different subgroups according to

parameter space similarity of the individuals. An individual must share its information with other

individuals within the same niche. The shared fitness for ith individual can be represented by

using the following equation:

 fshared(i) =
௙೚ೝ೔೒೔೙ೌ೗(௜)

∑ ௦ℎ(ௗ೔ೕ)ಿ
ೕసభ

 where the sharing function is calculated as:

 𝑠ℎ(𝑑௜௝) = ቊ
1 − (

ௗ೔ೕ

ఙೞℎೌೝ೐
)ఈ

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 if 𝑑௜௝ < 𝜎௦ℎ௔௥௘

and dij is the distance between individuals i and j, 𝜎௦௛௔௥௘ is the sharing radius, N is the

population size and α is a constant called sharing level. Thomsen integrated the fitness sharing

concept with DE to form the sharing DE.

24

2.3 Main steps of DE:

When we try to optimize a system, we aim at finding out such a set of values of the system

parameters for which the overall performance of the system will be the best under some given

conditions. Usually, the parameters governing the system performance are represented in a

vector like – 𝑋⃗ = [x1, x2,….,xD]T For real parameter optimization, as the name implies, each

parameter xi is a real number. To measure how far the “best” performance we have achieved, an

objective function (or fitness function) is designed for the system. The task of optimization is

basically a search for such the parameter vector 𝑋⃗∗ which minimizes such an objective function

f(Xሬሬ⃗)(f : Ω ⊆ ℜୈ → ℜ) , i.e., f(Xሬሬ⃗ ∗) < f(Xሬሬ⃗) ∀ Xሬሬ⃗ ∈ Ω, where Ω is a non-empty large finite set

serving as the domain of the search. For unconstrained optimization problems Ω = ℜ஽ Since,

max {f(𝑋⃗)} = - min{- f(𝑋⃗)} , the restriction to minimization is without loss of generality. In

general, the optimization task is complicated by the existence of non- linear objective functions

with multiple local minima. A local minimum 𝑓௟ = f(𝑋𝑙ሬሬሬሬ⃗) may be defined as ∃𝜀 >0 ∀ Xሬሬ⃗ ∈ Ω :

ฮ𝑋⃗ − 𝑋⃗𝑙ฮ < 𝜀 ⇒ 𝑓௟ ≤ f(𝑋⃗), where ‖. ‖ indicates any p-norm distance measure.

DE is a simple real parameter optimization algorithm. It works through a simple cycle of stages,

presented in below figure.

 Fig2.1: Differential Evolution Stages

25

A. Initialization of the Parameter Vectors :-

DE searches for a global optimum point in a D-dimensional real parameter space ℜ஽ . It begins

with a randomly initiated population of NP D dimensional real-valued parameter vectors. Each

vector, also known as genome/chromosome, forms a candidate solution to the multidimensional

optimization problem. We shall denote subsequent generations in DE by G = 0, 1..., Gmax. Since

the parameter vectors are likely to be changed over different generations, we may adopt the

following notation for representing the ith vector of the population at the current generation:

 X i,G = [X1,i,G, X2,i,G, X3,i,G,, XD,i,G]

For each parameter of the problem, there may be a certain range within which the value of the

parameter should be restricted, often because parameters are related to physical components or

measures that have natural bounds (for example if one parameter is a length or mass, it cannot be

negative). The initial population (at G = 0) should cover this range as much as possible by

uniformly randomizing individuals within the search space constrained by the prescribed

minimum and maximum bounds: 𝑋⃗ min = {x1,min, x2,min, ..., xD,min} and

Xmax = {x1,max, x2,max, ..., xD,max}. Hence we may initialize the jth component of the ith vector as

 xj,i,0 = xj,min + randi,j[0, 1] · (xj,max - xj,min)

where randi,j[0, 1] is a uniformly distributed random number lying between 0 and 1 (actually 0 ≤

randi,j[0, 1] ≤ 1) and is instantiated independently for each component of the i-th vector.

A. Mutation with Difference Vectors:-

Biologically, “mutation” means a sudden change in the gene characteristics of a chromosome. In

the context of the evolutionary computing paradigm, however, mutation is also seen as a change

or perturbation with a random element. In DE-literature, a parent vector from the current

generation is called target vector, a mutant vector obtained through the differential mutation

operation is known as donor vector and finally an offspring formed by recombining the donor

with the target vector is called trial vector. In one of the simplest forms of DE-mutation, to create

the donor vector for each ith target vector from the current population, three other distinct

parameter vectors, say 𝑋⃗ 𝑟ଵ
௜
 , 𝑋⃗ 𝑟ଶ

௜, 𝑋⃗ 𝑟ଷ
௜
 are sampled randomly from the current population. The

indices r1i , r2i , and r3i are mutually exclusive integers randomly chosen from the range [1, NP]

26

which are also different from the base vector index i. These indices are randomly generated once

for each mutant vector. Now the difference of any two of these three vectors is scaled by a scalar

number F (that typically lies in the interval [0.4, 1]) and the scaled difference is added to the

third one whence we obtain the donor vector Vi,G. We can express the process as

 Vi,G = X 𝑟ଵ
௜+ F · (X 𝑟ଶ

௜,G - X 𝑟ଷ
௜ ,G).

The process is illustrated on a 2-D parameter space (showing constant cost contours of an

arbitrary objective function) in below Fig. 2.2.

 Figure 2.2[2]: Illustrating a simple DE mutation scheme in 2-D parametric space.

27

A. Crossover:-

To enhance the potential diversity of the population, a crossover operation comes into play after

generating the donor vector through mutation. The donor vector exchanges its components with

the target vector 𝑋⃗i,G under this operation to form trial vector 𝑈ሬሬ⃗ i,G = [u1,i,G, u2,i,G, u3,i,G, ...,

uD,i,G].The DE family of algorithms can use two kinds of crossover methods—exponential (or

two-point modulo) and binomial (or uniform) [17]. In exponential crossover, we first choose an

integer n randomly among the numbers [1, D]. This integer acts as a starting point in the target

vector, from where the crossover or exchange of components with the donor vector starts. We

also choose another integer L from the interval [1, D]. L denotes the number of components the

donor vector actually contributes to the target vector. After choosing n and L the trial vector is

obtained as

𝑢௝,௜,ீ = 𝑣௝,௜,ீ for j = 〈𝑛〉 D 〈𝑛 + 1〉D ,….,〈𝑛 + 𝐿 − 1〉D

xj,i,G for all other j ∈ [1, D]

where the angular brackets D denote a modulo function with modulus D. The integer L is drawn
from [1, D] according to the following pseudo-code:

L = 0; DO

 {

 L = L + 1;

 } WHILE ((rand(0, 1) ≤ Cr) AND (L ≤ D)).

“Cr” is called the crossover rate and appears as a control parameter of DE just like F. Hence in

effect, probability (L = υ) = (Cr)υ - 1 for any positive integer v lying in the interval [1, D]. For

each donor vector, a new set of n and L must be chosen randomly as shown above.

On the other hand, binomial crossover is performed on each of the D variables whenever a

randomly generated number between 0 and 1 is less than or equal to the Cr value. In this case,

the number of parameters inherited from the donor has a (nearly) binomial distribution. The

scheme may be outlined as

𝑢௝,௜,ீ = ቊ
 𝑣௝,௜,ீ 𝑖𝑓(𝑟𝑎𝑛𝑑𝑖, 𝑗 [0,1] ≤ 𝐶𝑟 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑥௝,௜,ீ 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

28

where, as before, randi,j[0, 1] is a uniformly distributed random number, which is called anew for

each jth component of the ith parameter vector. jrand ∈ [1, 2,, D] is a randomly chosen index,

which ensures that 𝑈ሬሬ⃗ i,G gets at least one component from 𝑉ሬ⃗ i,G. It is instantiated once for each

vector per generation. We note that for this additional demand, Cr is only approximating the true

probability PCr of the event that a component of the trial vector will be inherited from the donor.

Fig.2.3[2]: Different possible trial vectors formed due to uniform/binomial
 crossover between the target and the mutant vectors in 2-D search space.

Also, one may observe that in a 2-D search space, three possible trial vectors may result from

uniformly crossing a mutant/donor vector 𝑉ሬ⃗ i,G with the target vector 𝑋⃗i,G. These trial vectors are

as follows.

1) 𝑈ሬሬ⃗ i,G = 𝑉ሬ⃗ i,G such that both the components of 𝑈ሬሬ⃗ i,G are inherited from 𝑉ሬ⃗ i,G.

2) 𝑈/ሬሬሬሬ⃗
i,G , in which the first component (j = 1) comes from 𝑉ሬ⃗ i,G and the second one (j = 2)

from 𝑋⃗i,G.

3) 𝑈// ሬሬሬሬሬሬሬ⃗
i,G , in which the first component (j = 1) comes from

X i,G and the second one (j = 2) from Vi,G.

The possible trial vectors due to uniform crossover are illustrated in above Fig.

29

 30

 D) Selection:-

To keep the population size constant over subsequent generations, the next step of the algorithm

calls for selection to determine whether the target or the trial vector survives to the

next generation, i.e., at G = G + 1. The selection operation is described as

 𝑋⃗i,G+1 = 𝑈ሬሬ⃗ i,G if f(𝑈ሬሬ⃗ i,G) ≤ f(𝑋⃗i,G)

 = 𝑋⃗i,G if f(𝑈ሬሬ⃗ i,G) > f(𝑋⃗i,G)

where f (X) is the objective function to be minimized. Therefore, if the new trial vector yields an

equal or lower value of the objective function, it replaces the corresponding target vector in the

next generation; otherwise the target is retained in the population. Hence, the population either

gets better (with respect to the minimization of the objective function) or remains the same in

fitness status, but never deteriorates. In above equation, the target vector is replaced by the trial

vector even if both yields the same value of the objective function—a feature that enables DE-

vectors to move over.

2.4 Pseudo Code:

Step 1: Read values of the control parameters of DE: scale factor F, crossover rate Cr, and the

population size NP from user.

Step 2: Set the generation number G = 0 and randomly initialize a population of NP individuals

PG = {𝑋⃗i,G,, 𝑋⃗N,P,G } with 𝑋⃗i,G = [x1,i,G, x2,i,G, x3,i,G,, xD,i,G] and each individual uniformly

distributed in the range [𝑋⃗min, 𝑋⃗max], where 𝑋⃗min = {x1,min, x2,min, ..., xD,min} and

𝑋⃗max = {x1,max, x2,max, ..., xD,max} with i = [1, 2,, NP].

Step 3. WHILE the stopping criterion is not satisfied

DO

FOR i = 1 to NP //do for each individual sequentially

 31

 Step 3.1 Mutation Step

 Generate a donor vector Vi,G = {v1,i,G,, }

 {vD,i,G} corresponding to the ith target vector

 𝑋⃗i,G via the differential mutation scheme of DE

 as: 𝑉ሬ⃗ i,G = 𝑋⃗𝑟ଵ
௜
,G + F . (𝑋⃗𝑟ଶ

௜
,G - 𝑋⃗𝑟ଷ

௜
,G)

 Step 3.2 Crossover Step

 Generate a trial vector 𝑈ሬሬ⃗ i,G = {u1,i,G,, uD,i,G} for the ith target vector

𝑋⃗i,G through binomial crossover in the following way: uj,i,G = vj,i,G, if (randi,j[0, 1] ≤ Cr or j = jrand)

xj,i,G, otherwise,

 Step 3.3 Selection Step

 Evaluate the trial vector Ui,G

 IF f (Ui,G) ≤ f (X i,G), THEN X i,G+1 = Ui,G

 ELSE X i,G+1 = X i,G.

 END IF

 END FOR

 Step 3.4 Increase the Generation Count

 G = G + 1

 END WHILE

2.5 Few Real World Applications:

 2.5.1 OPTIMIZATION OF A G992.1(an International Telecommunication Union
standard):

The first problem is a design problem by Infineon AG which was first reported in [37]. The ITU-

standard G992.1 [38] for asymmetrical digital subscriber lines (ADSL) uses a two pair twisted

line to transport upstream and downstream data simultaneously from/into the home of a

subscriber to achieve a data rate of 6.144Mbps in downstream (DS) and 640kbps in upstream

(US). There are two annexes, Annex A which defines ADSL(Asymmetric digital subscriber line)

over Plain Old Telephone Service (POTS) and Annex B which defines ADSL over Integrated

Services Digital Network (ISDN). For the latter the frequency bands of interest are sketched in

below Fig.2.4

 Fig.2.4: Frequency Bands of a signal on Integrated Services Digital Network (ISDN)

The challenge in this configuration was to minimize the interference between the adjacent bands

and hence achieve a maximum data rate for all the signals ISDN, US, and DS. The main part of

the electrical circuit for the analog frontend using

the Infineon Geminax ® chipset is shown in below Fig.

 Fig 2.5 : Analog frontend circuitry belonging to Infineon line cards with the
 GEMINAX ® ADSL chipset

32

When a DS signal is sent via the GEMINAX-L2 line driver it will also enter the receive path for

US via the lowpass circuitry consisting of R1, C1, and C2. Even though the band of the DS signal

is different from the US band there are still DS sidelobes acting as disturbers which reduce the

signal-to-noise rate (SNR) in the US and therefore the achievable US rate. In order to mitigate

the DS echo E(f) the echo-cancelling circuitry consisting of R2, C3, and C4, and the RC-active

balancing filter HBI(f) is employed. Since HBI(f) is an active component it also injects amplifier

noise into the US band. The design task was therefore to minimize the echo E(f) as well as the

amplifier noise of HBI(f) simultaneously which turned this design problem into a two-objective

optimization problem. The design was further complicated by several constraints:

Firstly, not only the DS side lobes disturb the US band but also the ISDN side lobes coming

from the lower part of the spectrum. Hence a tolerance scheme for ISDN signal suppression had

also to be mandated.

Secondly, the measurement point MP2 was subject to the peak voltage limit of 1.26V which was

not allowed to be exceeded in order to prevent nonlinear behavior of the GEMINAX-A0.

Thirdly, the maximum values for the resistors Ri were limited to 100kΩ and the capacitors Ci

were limited to 2nF which was a result of component size limitations due to an already existing

printed circuit board layout.

Fourthly, all capacitors had to exhibit discrete values from the E12-Series and the resistors from

the E-96 series [40] in order to reduce component costs. From the description it is clear that this

problem is multiobjective, constrained and of mixed integer type so it is not surprising that the

analog design engineers failed to come up with a satisfactory result which meets all constraints

after many weeks of design activity.

 2.5.2 GAUSSIAN FILTER DESIGN:
The next real-world example is a digital filter design used at Rohde & Schwarz in an FPGA-

based channel simulator for wireless applications [41] [42], [43]. The tolerance scheme for the

magnitude of the filter follows a gaussian shape exhibiting an extremely narrow bandwidth in the

range Ω ∈ [0, 0.0046]. The filter had to be implemented by an FPGA-based IIR-filter of 8th

order and a word-length of 32 bits. For ease of implementation and minimization of digital

quantization noise the filter structure was split into four biquad stages [44]. The magnitude at Ω

= 0.0046 was required to be -57dB. All endeavors to use standard filter design tools built into

MATLAB ® [44] failed due to strong violations of the tolerance scheme when the coefficients

33

were finally set to their finite word-length of 32 bits. This failure was due to the two-step

approach taken by the tools where the coefficients were determined with infinite precision in the

first step and quantization in the second. So a design using Differential Evolution (DE) [45], [46]

had to come to the rescue where the coefficient quantization was taken directly into account.

2.5.3 PLL DESIGN:
For the VTC video tester family of Rohde&Schwarz ® a phase locked loop (PLL) was needed to

assist the measurement of eye diagrams [46]. The reference frequency, which serves as the input

to the PLL, can vary between 25MHz and 340MHz, depending on the video stream. The PLL

was required to generate a frequency of 7.15GHz with a constant bandwidth of 4MHz. In order

to keep the bandwidth constant the gain of the amplification inside the PLL needed to be

adjusted by pertinently choosing a gain dependent resistor Rideal,j where j is associated with a gain

vj. Rideal,j is approximated by a parallel circuit of up to 12 resistors that are combined by the three

switches ADG1204YRUZ shown in the middle of Fig 2.6

Fig 2.6. PLL section of the VTC video tester family of Rohde & Schwarz ® with the three
switches ADG1204YRUZ that implement a variable gain determining resistor by a parallel

34

circuit of up to 12 resistors

 35

The switches have five positions in order for each switch to add 0, 1, 2, 3, or 4 resistors to the

combination which results in 53=125 possible resistor combinations in total. In order to maintain

a constant bandwidth Rideal,j, j=1,2,…,125, follows a logarithmic curve if j defines an ordering

such that Rideal,j+1 > Rideal,j. The problem was to find the optimum selection of 12 resistor values

that constitute a best-fit approximation of Rideal,j. The resistor values had to be taken from a fixed

set of discrete resistor values of the E-192 series. Eventually the problem was tackled with DE

using the variant DE/rand/1/exp and NP=50. As recommended in [47] the conductance values

were kept non-discretized during difference vector generation. Discretization of the values was

deferred to the evaluation of the cost function value according to (19). It took only 500

generations and roughly 3 minutes on an Intel E6750@2.66GHz processor to obtain a

satisfactory solution shown in Fig. below. The resulting frequency error of the PLL stayed well

within +/- 0.5MHz for all input frequencies from 25MHz to 340MHz

 Fig. 2.7: Final approximation of Rideal,j with Rapprox,j =1/Gj.

 36

2.5.4 SQUELCH OPTIMIZATION:

The squelch function is an important element in airborne radios like the MR6000L/R ® made by

Rohde & Schwarz. It suppresses the audio output of the radio receiver when the desired signal

does not have sufficient S/N (signal-to-noise) ratio and/or signal strength in order to not disturb

the pilot with irritating noise or crackling sounds. The squelch characteristic has usually evolved

through many iterations stemming from customer feedback as well as extensive lab and field

tests under various noise conditions, so that the user finally experiences the most convenient

squelch behavior. In order to free up DSP cycles to allow the implementation of additional

features into the MR6000L/R the computational effort for the squelch function had to be

reduced. The task here was to ensure that the carefully obtained squelch characteristic remained

the same. Fig. 8 shows the squelch of the MR6000L/R which consists of an S/N squelch and a

so-called carrier squelch. Both of them are illustrated for the F3E-mode [47]. In this application

it is desired to reduce processor cycles in the S/N squelch because the carrier squelch did not

offer sufficient potential for DSP cycle reduction. We considered the following situation: the

squelch operates in F3E mode on signals with a sample rate of f1 = 128 kHz. Consequently, all

IIR filters (HP,LP) also have a clock rate of 128 kHz. According to the Nyquist Theorem [43] an

audio signal of 3.4kHz bandwidth can be sampled with much lower frequency than 128 kHz, so

in order to reduce the computational complexity, we wanted to reduce the sampling frequency of

the LP filter to 32 kHz, i.e., only every fourth sample was to be considered by the LP filter. The

straightforward approach to go further would have been to redesign both the HP and LP filter by

applying standard filter design theory and then tune the remaining parameters of the S/N squelch

using the radio and the existing test & measurement setups including customer feedback. In

order to avoid the latter we decided on a different approach: a MATLAB ® model of the entire

S/N squelch was established which had to be verified first by applying audio files to both the

radio and the model and then comparing the results. After the model had been verified the plan

was to optimize all parameters simultaneously such that the squelch behavior in the model would

remain the same after the sample rate reduction from 128kHz to 32kHz.

 37

2.6 Conclusions:

This chapter introduced one of the most useful optimization techniques Differential Evolution

with its various steps & pseudo codes. The real world applications of differential evolution are

also exhibited in this chapter. Apart from the mentioned applications DE can be used in function

optimization like Single Objective Optimization, Multiobjective Optimization. Multiobjective

Optimization (MO) problems consist of several competing and incommensurable objective

functions. Such problems are frequently encountered in numerous scientific and engineering

applications. The need for the concurrent minimization of more than one objective functions,

renders the use of EAs particularly attractive. In contrast to traditional gradient–based

techniques, EAs operate on a set of potential solutions of the problem. Thus, EAs are capable of

detecting several solutions of an MO problem in a single run.

 38

References

[1] Kenneth V. Price ,Rainer M. Storn Jouni A. Lampinen, ‘Differential Evolution- A Practical

Approach to Global Optimization’, Springer-Verlag Berlin Heidelberg 2005.

[2] Swagatam Das, P.N.Suganthan, ‘Differential Evolution: A Survey of the State-of-the-

Art’, IEEE Transaction on Evolutionary Computation, Vol. 15, No. 1, February 2011.

[3] S. Das, A.Abraham, U. K. Chakraborty, and A. Konar “Differential

evolution using a neighborhood based mutation operator,” IEEE Trans.

Evol. Comput., vol. 13, no. 3, pp. 526–553, Jun. 2009.

[4] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, “Opposition based differential

evolution,” IEEE Trans. Evol. Comput., vol. 12, no. 1, pp. 64–79, Feb. 2008

[5] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution with optional external

archive,” IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 945–958, Oct. 2009

[6] J. Brest, S. Greiner, B. Boskovi ˇ c, M. Mernik, and V. ´ Zumer, “Self- adapting control

parameters in differential evolution: A comparative study on numerical benchmark problems,”

IEEE Trans. Evol. Comput., vol. 10, no. 6, pp. 646–657, Dec. 2006

[7] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution algorithm with strategy

adaptation for global numerical optimization,” IEEE Trans. Evol. Comput., vol. 13, no. 2, pp.

398–417, Apr. 2009

[8] F. Neri and V. Tirronen, “Recent advances in differential evolution: A. review and

experimental analysis,” Artif. Intell. Rev., vol. 33, no. 1, pp. 61–106, Feb. 2010

[9] S. Kukkonen and J. Lampinen, “GDE3: The third evolution step of generalized differential

evolution,” in Proc. IEEE Congr. Evol. Comput., vol. 1. Sep. 2005, pp. 443–450.

[10] L. V. Santana-Quintero and C. A. Coello Coello, “An algorithm based on differential

evolution for multiobjective problems,” Int. J. Comput. Intell. Res., vol. 1, no. 2, pp. 151–169,

2005.

[11] F. Xue, A. C. Sanderson, and R. J. Graves, “Pareto-based multiobjective differential

evolution,” in Proc. Congr. Evol. Comput., vol. 2. 2003, pp. 862–869.

[12] T. Robic and B. Filipic, “DEMO: Differential evolution for multiobjective optimization,” in

Proc. 3rd Int. Conf. Evol. Multi-Criterion Optimization, LNCS 3410. 2005, pp. 520–533.

[13] A. W. Iorio and X. Li, “Solving rotated multiobjective optimization problems using

differential evolution,” in Proc. AI: Adv. Artif. Intell.,

LNCS 3339. 2004, pp. 861–872.

[14] B. V. Babu and M. M. L. Jehan, “Differential evolution for multiobjective optimization,” in

Proc. Congr. Evol. Comput., vol. 4. Dec. 2003, pp. 2696–2703.

[15] H. Li and Q. Zhang, “Multiobjective optimization problems with

complicated Pareto sets, MOEA/D and NSGA-II,” IEEE Trans. Evol.

Comput., vol. 13, no. 2, pp. 284–302, Apr. 2009.

[16] B. Y. Qu and P. N. Suganthan, “Multiobjective evolutionary algorithms based on the

summation of normalized objectives and diversified selection,” Inform. Sci., vol. 180, no. 17, pp.

3170–3181, Sep. 2010.

[17] K. Price, R. Storn, and J. Lampinen, Differential Evolution—A Practical Approach to

Global Optimization. Berlin, Germany: Springer, 2005.

[18] R. Storn, “On the usage of differential evolution for function optimization,” in Proc. North

Am. Fuzzy Inform. Process. Soc., 1996, pp. 519–523.

[19] R. Storn, “Differential evolution design of an IIR-filter with requirements for magnitude and

group delay,” in Proc. IEEE Int. Conf. Evol. Comput., 1996, pp. 268–273.

[20] J. Lampinen and I. Zelinka, “Mixed integer-discrete-continuous optimization with

differential evolution,” in Proc. 5th Int. Mendel Conf.

Soft Comput., Jun. 1999, pp. 71–76.

[21] R. Storn, “System design by constraint adaptation and differential

evolution,” IEEE Trans. Evol. Comput., vol. 3, no. 1, pp. 22–34, Apr.

1999.

[22] M. Zhang, W. Luo, and X. Wang, “Differential evolution with dynamic stochastic selection

for constrained optimization,” Inform. Sci., vol. 178, no. 15, pp. 3043–3074, Aug. 2008.

[23] J. J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, P. N. Suganthan, C. A. Coello

Coello, and K. Deb, “Problem definitions and evaluation criteria for the CEC 2006 (special

session on constrained real-parameter optimization),” Nanyang Technol. Univ., Singapore,

39

40

Tech. Rep., 2006.

[24] V. L. Huang, A. K. Qin, and P. N. Suganthan, “Self-adaptive differential evolution

algorithm for constrained real-parameter optimization,” in Proc. IEEE Congr. Evol. Comput.,

Jul. 2006, pp. 324–331.

[25] N. Noman and H. Iba, “Enhancing differential evolution performance with local search for

high dimensional function optimization,” in Proc. Conf. Genet. Evol. Comput., Jun. 2005, pp.

967–974.

[26] Y. Gao and Y. Wang, “A memetic differential evolutionary algorithm for high dimensional

function spaces optimization,” in Proc. 3rd ICNC 20, vol. 4. Aug. 2007, pp. 188–192.

[27] Z. Yang, K. Tang, and X. Yao, “Differential evolution for highdimensional function

optimization,” in Proc. IEEE Congr. Evol. Comput., Sep. 2007, pp. 3523–3530.

[28] Z. Yang, J. He, and X. Yao, “Making a difference to differential evolution,” in Advances in

Metaheuristics for Hard Optimization, Z. Michalewicz and P. Siarry, Eds. Berlin, Germany:

Springer, 2007, pp.415–432.

[29] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization using cooperative

coevolution,” Inform. Sci., vol. 178, no. 15, pp. 2985– 2999, 2008.

[30] K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y. P. Chen, C. M. Chen, and Z. Yang,

“Benchmark functions for the CEC’2008 special session and competition on large scale global

optimization,” Nature Inspired Comput. Applicat. Lab., USTC, China, Nanyang Technol.

Univ., Singapore, Tech. Rep., 2007.

[31] T. Krink, B. Filipiˇc, and G. B. Fogel, “Noisy optimization problems: A particular challenge

for differential evolution,” in Proc. IEEE Congr. Evol. Comput., 2004, pp. 332–339.

[32] S. Das, A. Konar, and U. Chakraborty, “Improved differential evolution algorithms for

handling noisy optimization problems,” in Proc. IEEE Congr. Evol. Comput., vol. 2. 2005, pp.

1691–1698.

[33] B. Liu, X. Zhang, and H. Ma, “Hybrid differential evolution for noisy optimization,” in

Proc. IEEE Congr. Evol. Comput., Jun. 2008, pp. 587–592.

[34] R. Mendes and A. S. Mohais, “DynDE: A differential evolution for dynamic optimization

problems,” in Proc. IEEE Congr. Evol. Comput., vol. 2. 2005, pp. 2808–2815.

40

[35] R. Thomsen, “Multimodal optimization using crowding-based differential evolution,” in

Proc. IEEE Congr. Evol. Comput., 2004, pp. 1382– 1389.

[36] B. Y. Qu and P. N. Suganthan, “Novel multimodal problems and differential evolution with

ensemble of restricted tournament selection,” in Proc. IEEE Congr. Evol. Comput., Jul. 2010, pp.

3480–3486.

[37] Storn, R., “Differential Evolution – Ein praktischer Ansatz zur globalen

Parameteroptimierung, Presentation at the public seminar “Elektronische Bauelemente” at

Technical University of Munich, May 17, 2004.

[38] ITU-T Recommendation G.992.1, Asymmetric digital subscriber line (ADSL) transceivers,

June 1999.

[39] Infineon AG, GEMINAX ADSL Transceiver Chipset PEB55508 (GEMINAX-D), PEB

22720 (GEMINAX-A0), and PEB 22716 (GEMINAX-L2)

[40] A. Van Dyck, “Preferred Numbers”, Proceedings of the Institute of Radio Engineers,

volume 24, pp. 159-179, Feb. 1936.

[41] K. Borst, “Entwicklung eines universellen, FPGA-basierten Simulators für

Mobilfunkkanäle”, Diploma Thesis, Univ. Stuttgart, Dez. 2005.

[42] Storn, R., “Optimization of Wireless Communication Applications using Differential

Evolution”, SDR Technical Conference SDR’07, Denver, Colorado, Nov. 5-9, 2007

[43] L. R. Rabiner & B. Gold, Theory and Application of Digital Signal

Processing, Prentice-Hall, Englewood Cliffs, 1975

[44] MATLAB, https://www.mathworks.com/

[45] R. Storn, “Designing Nonstandard Filters with Differential Evolution”, IEEE Signal

Processing Magazine, pp. 103 – 106, 2005.

[46] J. Schöller, “Bestimmung der PLL Schleifenverstärkung”, Rohde&Schwarz-internal

communication, July 22, 2011.

[47] Determination of Necessary Bandwidths Including Examples for their Calculation,

Recommendation ITU-R SM.1138, Geneva, 1995.

41

 CHAPTER-3

 Bacterial Foraging Optimization Algorithm

3.1 Introduction:-

Bacterial foraging optimization algorithm (BFOA) becomes popular as a global optimization

algorithm of current interest for distributed optimization and control. BFOA is inspired by the

social foraging behaviour of Escherichia coli & M.xanthus. BFOA has already drawn the

attention of researchers because of its efficiency in solving real-world optimization problems

arising in several application domains. The underlying biology behind the foraging strategy of

E.coli is emulated in an extraordinary manner and used as a simple optimization

Algorithm. Bacterial Foraging Optimization Algorithm (BFOA), was proposed by Passino [1],

is a new comer to the family of nature-inspired optimization algorithms. During last five

decades, optimization algorithms like Genetic Algorithms (GA) [2], Evolutionary Programming

(EP) [3], Evolutionary Strategies (ES) [4], have been dominating the realm of optimization

algorithms. Recently natural swarm inspired algorithms like Particle Swarm Optimization (PSO)

[5], Ant Colony Optimization (ACO) [6] have found their way into this domain and proved their

effectiveness. Following the same trend of swarm-based algorithms, Passino proposed the BFOA

in [1]. Application of group foraging strategy of a swarm of E.coli bacterial in multi-optimal

function optimization is the key idea of the new algorithm. Bacterial search for nutrients in a

manner to maximize energy obtained per unit time. Individual bacterium also communicates

with others by sending signals. A bacterium takes foraging decisions after considering two

previous factors. The process, in which a bacterium moves by taking small steps while searching

for nutrients, is called chemotaxis and key idea of BFOA is mimicking chemotactic movement of

virtual bacterial in the problem search space. Since its inception, BFOA has drawn the attention

of researchers from diverse fields of knowledge especially due to its biological motivation and

graceful structure. Researchers are trying to hybridize BFOA with different other algorithms in

order to explore its local and global search properties separately. It has already been applied to

many real world problems and proved its effectiveness over many variants of GA and PSO.

42

Mathematical modelling, adaptation, and modification of the algorithm might be a major part of

the research on BFOA in future.

 3.1.1 Bacterial Foraging: E. coli:

 A typical E. coli bacterium[1] is shown in Figure. It has a plasma membrane, cell wall, and

capsule that contain, for instance, the cytoplasm and nucleoid. The pili (singular, pilus) are used

for a type of gene transfer to other E. coli bacteria, and flagella (singular, flagellum) are used for

locomotion. (Only one is shown, but in the actual cell there are as many as six.) The cell is about

1μm in diameter, and 2μm in length. The E. coli cell only weighs about 1 picogram, and is

composed of about 70% water. Salmonella typhimurium is a similar type of bacterium. When E.

coli grows, it gets longer, then divides in the middle into two,“daughters.” Given sufficient food

and held at the temperature of the human gut (one place where they live) of 37 deg.C . E. coli

can synthesize and replicate everything it needs to make a copy of itself in about 20 min.; hence,

growth of a population of bacteria is exponential with a relatively short “time to double” the

population size.

 Fig.3.1: Different Parts of an Escherichia coli

E. coli bacterium has a control system that enables it to search for food and try to avoid noxious

substances (the resulting motions are called“taxes”). For instance, it swims away from

alkaline and acidic environments, and towards more neutral ones. To explain the motile

behaviour of E. coli bacteria,its actuator (the flagella), “decision-making,” sensors, and

43

closed-loop behavior (i.e., how it moves in various environments—its “motile behavior”) will
be explained.
3.1.1.1 Swimming and Tumbling via Flagella:

Locomotion is achieved via a set of relatively rigid flagella that enable it to “swim” via each

of them rotating in the same direction at about 100 – 200 revolutions per second (in control

systems terms, we think of the flagella as providing for actuation). Each flagellum is a left-

handed helix configured so that as the base of the flagellum (i.e., where it is connected to the

cell) rotates counter clockwise, as viewed from the free end of the flagellum looking towards the

cell, it produces a force against the bacterium so it pushes the cell. If a flagellum rotates

clockwise, then it will pull at the cell. From an engineering perspective, the rotating shaft at the

base of the flagellum is quite an interesting contraption that seems to use what biologists call a

“universal joint” (so the rigid flagellum can,“point”,in different directions, relative to the

cell). In addition, the mechanism that creates the rotational forces to spin the flagellum in either

direction is described by biologists as being a biological “motor” (a relatively rare contraption

in biology even though several types of bacteria use it) as shown in Figure 3.2

 Fig. 3.2: Magnified view of flagellum-cell body joint

 An E. coli bacterium can move in two different ways: it can “run” (swim for

44

a period of time) or it can “tumble,” and it alternates between these two modes of operation its

entire lifetime (i.e., it is rare that the flagella will stop rotating). If the flagella rotate clockwise,

each flagellum pulls on the cell and the net effect is that each flagellum operates relatively

independent of the others and so the bacterium “tumbles” about (i.e., the bacterium does not

have a set direction of movement and there is little displacement). To tumble after a run, the cell

slows down or stops first; since bacteria are so small they experience almost no inertia, only

viscosity, so that when a bacterium stops swimming, it stops within the diameter of a proton.

Call the time interval during which a tumble occurs a “tumble interval.”

 Fig. 3.3: Bundling phenomenon of flagella shown in (a), swimming and
tumbling behavior of the E. coli bacterium is shown in (b) in a neutral medium and in (c) where
there is a nutrient concentration gradient, with darker shades indicating higher concentrations
of the nutrient.

45

 46

If the flagella move counter clockwise, their effects accumulate by forming a“bundle” (it is

thought that the bundle is formed due to the viscous drag of the medium) and hence, they

essentially make a“composite propeller” and push the bacterium so that it runs (swims) in one

direction.(Fig.3.3)

3.1.1.2 Bacterial Motile Behavior: Climbing Nutrient Gradients:-

The motion patterns (called “taxes”) that the bacteria will generate in the

presence of chemical attractants and repellents are called “chemotaxes.” For

E. coli, encounters with serine or aspartate result in attractant responses, while

repellent responses result from the metal ions Ni and Co, changes in pH, amino

acids like leucine, and organic acids like acetate. What is the resulting emergent

pattern of behavior for a whole group of E. coli bacteria? Generally, as a group

they will try to find food and avoid harmful phenomena, and when viewed

under a microscope, we will get a sense that a type of intelligent behavior has

emerged, since they will seem to intentionally move as a group (analogous to how a swarm of

bees moves).

To explain how chemotaxis motions are generated, we simply must explain

how the E. coli decides how long to run since, from the above discussion, we

know what happens during a tumble or run. First, note that if an E. coli is in some substance that

is neutral, in the sense that it does not have food or noxious substances, and if it is in this

medium for a long period of time (e.g., more than one minute), then the flagella will

simultaneously alternate between moving clockwise and counterclockwise so that the bacterium

will alternately tumble and run. This alternation between the two modes will move the

bacterium, but in random directions, and this enables it to “search” for nutrients. For instance, in

the isotropic homogeneous environment described above, the bacteria alternately tumble and run

with the mean tumble and run lengths given above, and at the speed that was given. If the

bacteria are placed in a homogeneous concentration of serine (i.e., one with a nutrient but no

gradients), then a variety of changes occur in the characteristics of their motile behavior. For

instance, mean run length and mean speed increase and mean tumble time decreases. They do,

however, still produce a basic type of searching behavior; even though it has some food, it

persistently searches for more. Next, suppose that the bacterium happens to encounter a nutrient

gradient .The change in the concentration of the nutrient triggers a reaction such that the

bacterium will spend more time swimming and less time tumbling. As long as it travels on a

positive concentration gradient (i.e., so that it moves towards increasing nutrient concentrations)

it will tend to lengthen the time it spends swimming (i.e., it runs farther). The

directions of movement are “biased” towards increasing nutrient gradients. The

cell does not change its direction on a run due to changes in the gradient—the

tumbles basically determine the direction of the run, aside from the Brownian

influences mentioned above suppose that the concentration of the nutrient is constant for the

region it is in, after it has been on a positive gradient for some time. In this case, after a period of

time (not immediately), the bacterium will return to the same proportion of swimming and

tumbling as when it was in the neutral substance so that it returns to its standard searching

behavior. It is never satisfied with the amount of surrounding food; it always seeks higher

concentrations. Actually, under certain experimental conditions, the cell will compare the

concentration observed over the past 1 sec. with the concentration observed over the 3 sec.

before that and it responds to the difference . Hence, it uses the past 4 sec. of nutrient

concentration data to decide how long to run . Considering the deviations in direction due to

Brownian movement discussed above, the bacterium basically uses as much time as it can in

making decisions about climbing gradients. In effect, the run length results from how much

climbing it has done recently. If it has made lots of progress and hence, has just had a long run,

then even if for a little while it is observing a homogeneous medium

(without gradients), it will take a longer run. After a certain time period, it will recover and

return to its standard behavior in a homogeneous medium. Basically, the bacterium is trying to

swim from places with low concentrations of nutrients to places with high concentrations. An

opposite type of behavior is used when it encounters noxious substances. If the various

concentrations move with time, then the bacteria will try to “chase” after the more favorable

environments and run from harmful ones. Clearly, nutrient and noxious substance diffusion and

motion will affect the motion patterns of a group of bacteria in complex ways.

47

3.1.1.3 Underlying Sensing and Decision-Making Mechanisms:-

A cross-section of one corner of the E. coli bacterium is shown in the figure. The sensors are the

receptor proteins, which are signaled directly by external substances or via the“periplasmic

substrate-binding proteins.” The “sensor” is very sensitive, in some cases requiring less than

10 molecules of attractant to trigger a reaction, and attractants can trigger a swimming reaction in

less than 200 ms.

 Fig.3.4: E. coli bacterium, flagellar connection, and biological “motor”
Although at first glance it seems possible that the bacterium senses concentrations at both ends

of the cell and finds a simple difference to recognize a concentration gradient (a spatial

derivative) but this is not the case. Experiments have shown that it performs a type of sampling,

and roughly speaking, it remembers the concentration a moment ago, compares it with a current

one, and makes decisions based on the difference like Euler approximation. So, it can be

concluded that with memory, a type of addition mechanism, an ability to make comparisons, a

few simple internal “control rules,” and its chemical sensing and locomotion capabilities, the

bacterium is able to achieve a complex type of searching and avoidance behaviour. Evolution has

designed this control system. It is robust and clearly very successful at meeting its goals of

survival when viewed from a population perspective.

48

3.1.1.4 Elimination and Dispersal Events:-

It may happen that the local environment where a population of bacteria lives changes either

gradually (e.g., via consumption of nutrients) or suddenly due to some other influence. There can

be events such that all the bacteria in a region are killed or a group is dispersed into a new part of

the environment. For example, local significant increases in heat can kill a population of bacteria

that are currently in a region with a high concentration of nutrients (one can think of heat as a

type of noxious influence). Or, it may be that water or some animal will move populations of

bacteria from one place to another in the environment.Over long periods of time, such events

have spread various types of bacteria into virtually every part of our environment, from our

intestines, to hot springs and underground environments, and so on. The effect of elimination

and dispersal events on chemotaxis is destroy of chemotactic progress but it also has the effect of

assisting in chemotaxis since dispersal may place bacteria near good food sources. From a broad

perspective, elimination and dispersal is part of the population-level motile behavior.

3.1.1.5 Evolution of Bacteria:-
Mutations in E. coli occur at a rate of about 10−7 per gene, per generation. In addition to

mutations that affect its physiological aspects (e.g., reproductive efficiency at different

temperatures), E. coli bacteria occasionally engage in a type of “sex” called “conjugation,”

where small gene sequences are unidirectionally transferred from one bacterium to another. It

seems that these gene sequences apparently carry good fitness characteristics in terms of

reproductive capability, so conjugation is sometimes thought of as a transmittal of “fertility.”

To achieve conjugation, a pilus extends to make contact with another bacterium, and the gene

sequence transfers through the pilus. While conjugation apparently spreads“good” gene

sequences, the “homogenizing effect” on gene frequency from conjugation is relatively small

compared to how sex works in other organisms. This is partly since conjugation is relatively rare,

and partly since the rate of reproduction is relatively high, on the order of hours depending on

environmental conditions. Due to these characteristics, population genetics for E. coli may be

dominated by selection sweeps triggered by the acquisition, via sex, of an adaptive allele.

49

 Fig.3.5:Swarm Pattern of E. Coli

3.2 Literature review:

In last two decades, multiple nature-inspired optimization algorithms have been proposed,

including Genetic Algorithm (GA) [2], Particle Swarm Optimization (PSO) [5], and Ant Colony

Optimization (ACO) [6]. Based on the competitive-cooperative mechanism of Escherichia

coli.(E. coli) in the foraging process, Passino [1] proposed a novel swarm intelligence algorithm

called Bacterial Foraging Optimization algorithm (BFO), which consists mainly of four

behaviors: chemotaxis, swarming, reproduction and elimination-dispersal. Two important classes

of population-based optimization algorithms are evolutionary algorithms [3] and swarm

intelligence-based algorithms [7]. Swarm Intelligence is a meta-heuristic method in the field of

artificial intelligence that is used to solve optimization problems. It is based on the collective

behaviour of social insects, flocks of birds, or schools of fish. A swarm can be considered as any

collection of interacting agents or individuals. Researchers have analysed such behaviours and

designed algorithms that can be used to solve combinatorial and numerical optimization

problems in many science and engineering domains. Recent studies[8],[9] have shown that

algorithms based on Swarm Intelligence have great potential. Bacterial Foraging Optimization

Algorithm (BFOA), is a new algorithm in the category of swarm intelligence. The group

foraging behaviour of E.coli bacteria in multi-optimal function optimization is the basis of the

new algorithm. Bacteria search for nutrients in a manner to maximize energy obtained per unit

50

time. The communication of Individual bacteria is done by sending various signals. The foraging

decisions of a bacteria are based on two factors one is called chemotaxis and another is

mimicking chemotactic movement. The process, in which a bacterium moves by taking small

steps while searching for nutrients, is called chemotaxis and key idea of BFOA is mimicking

chemotactic movement of virtual bacteria in the problem search space. After invention of the

BFOA, it has been applied to various Engineering and Science related optimization problems.

Researchers are continuously modifying the BFOA by hybridization, inserting new phase and

new control parameters to improve the performance. This algorithm has been already compared

with GA, PSO and ABC[10] algorithms for solving real world optimization problems. Bacteria

are in the category of social insects. The foraging behaviour of bacteria produces an intelligent

social behaviour, called as swarm intelligence. This swarm intelligence is simulated and an

intelligent search algorithm namely, Bacterial Foraging Optimization (BFO) algorithm. Since its

inception, a lot of research has been carried out to make BFO more and more efficient and to

apply BFO for different types of problems. In order to get rid of the drawbacks of basic BFO,

researchers have improved BFO in many ways.

In his paper Qian Zhang[11] proposed algorithm Chaotic BFO combines two chaotic strategies.

First, a chaotic initialization strategy is incorporated into BFO for bacterial population

initialization. Then, a chaotic local search with a `shrinking' strategy is introduced into the

chemotaxis step. This proposed `shrinking' strategy is a modified version of the method

described in[12].

Chaos Theory:- Over the last few decades, much progress has been made in the chaos theory. It

has been used widely in different fields of science such as chaos control[13], feature selection,

and parameter optimization . Chaotic sequences have three basic dynamic properties: sensitive

dependence on initial conditions, randomicity, and ergodicity. Chaotic sequences have been

applied to various metaheuristic optimization algorithms in recent years. In [14], a novel GA

with chaotic mutation was proposed by replacing the Gaussian mutation operator in real-coded

GA with a chaotic mapping. Mingjun and Huanwen [15] introduced chaotic initialization and

chaotic sequences into Simulated Annealing (SA) instead of Gaussian distribution. In [16]. In

order to improve the overall searching performance of basic algorithms, other metaheuristic

51

optimization algorithms also use the chaos theory, including Moth-Flame Optimization (MFO)

[17], Firefly Algorithm (FA) [18], Artificial Bee Colony (ABC) [10], Biogeography- Based

Optimization (BBO) [19], Krill Herd (KH) [20],Water Cycle Algorithm(WCA) [21], and Grey

Wolf Optimizer (GWO) [22]. If chaos variables are used in the search, more advantage is gained

over random search. The basic idea of chaos optimization is 1) to introduce chaos state into

optimization variables by using a similar carrier method, 2) to magnify the traversal range of

chaotic motions to the range of optimization variables, and 3) to use the chaos variables to search

to make the search more effective. The proposed method generates a chaotic sequence using

logistic mapping as shown in equation below:

 chi+1 = µ chi+1 * (1-chi) i=1,…S-1 …..(1)

Where µ is the control parameter, take µ=4. 0 < ch1 < 1, and ch1 ≠ 0:25; 0:5; 0:75; 1. Not

difficult to prove that when µ =4, the system is completely in chaos. S is the number of

individuals.

Chaotic search usually works well in local optimization for its ergodicity and randomicity [23],

[24]. However, its performance decreases when it explores a large search space. To overcome

this shortcoming, chaotic local search was introduced. Due to the randomicity of chaotic local

search, the search process can avoid premature convergence and local optima stagnation. In

[25], chaotic local search was incorporated into PSO to construct a chaotic PSO (CPSO),

where the parallel population-based evolutionary searching ability of PSO and chaotic searching

behavior are reasonably combined. Jia et al. [26] proposed an effective memetic DE algorithm

called DECLS, which utilizes a chaotic local search with a `shrinking' strategy. In [27], a chaotic

local search was integrated into the reduced Symbiotic Organisms Search (SOS) to form chaotic

SOS (CSOS) for improving solution accuracy and convergence mobility.

a) Chaotic Initialization:-
Step 1: Through the chaos mechanism, the chaotic sequence is generated by using the logistic

map generated by the Eq. (1),

52

 Fig.3.6: Overall procedure of Chaotic BFO.

The position P of the initial bacterial population is mapped into the chaotic sequence to generate

the position PCh of the corresponding chaotic initial bacterial population. As shown in Eq. (2):

 PCh = chi * P i = 1,…,S …..(2)

Step 2: From the initial position P of the bacterial population and its corresponding position PCh

of the chaotic initial bacterial population, S superior individuals are selected as the initial

solutions of bacterial populations. Loop execution (S - 1) times.

b) Chaotic Initialization:-

Step 1: Before the chemotaxis operation of the ith bacterium, place the ith bacterium at the

position of jth chemotaxis, kth reproductive, and lth elimination dispersal as the optimal

positiong best in the current bacterial population.

53

Step 2: The chaotic variable chi generated in Eq. (1) is mapped into the chaotic vector CHi in the

domain of definition [lb, ub], as shown in Eq. (3):

 CHi = lb + chi *(ub – lb) i =1,……, S …….(3)

Where lb and ub represent the lower and upper bounds of the initial solution, respectively.

Step 3: The chaotic vector CHi is linearly combined with the optimal position gbest to generate

the candidate bacterial position sol, as shown in Eq. (4):

sol =(1 – setCan)*gbest + setCan* CHi i= 1,…….., S ………(4)

Where setCan is the contraction factor, which is determined by Eq. (5):

 setCan = exp(-Intertime/max_iteration) ……….(5)

Where Max_iteration represents the maximum number of iterations of the algorithm and

Intertime represents the current iteration number of the algorithm. From Eq. (5), it can be seen

that the contraction factor setCan decreases as the number of iterations increases. As shown in

Eq. (4), the smaller the value of setCan is, the smaller the range of chaos search is. In the early

iteration, setCan is larger, which helps to expand the search range and increase the diversity of

the population. At the later stage of iteration , setCan is smaller, which helps to

converge to the global optimal solution.

Step 4: If the candidate bacterial position sol is better than Gbest (Gbest represents the current

optimal fitness function of the bacterial population), the fitness of sol is recorded as Gbest and

gbest (gbest described in Step 1 represents the optimal position in the current bacterial

population) is updated as sol. If the chaotic sequence length reaches S, local search ends;

otherwise skip to Step 2 to continue execution. BFOA was implemented in image segmentation

by N.Sanyal et al.[28]. Entropy based thresholding results in more centralized distribution of

image histogram of segmented images. This work is related to thresholding based image

segmentation in image processing domain. Bi-level thresholding is performed for some

electronically available web based benchmark images of size 512X512. Optimal thresholds of

image histograms are found out by maximizing the Fuzzy Entropy. Optimization tool is

developed on the basis of Bacterial Foraging Algorithm. Most of the evolutionary algorithms

deal with minimization problems. Bacterial foraging is also suitable for solving minimization

problems. On the contrary entropy based thresholding is a maximization problem. Fuzzy entropy

itself is a negative function (Zhao et al., 2001). Therefore in the proposed algorithm,

54

minimization of negative fitness function eventually results in maximization of absolute value of

fuzzy entropy. In 8 bit representation, any gray image can be represented by 256 gray scale

intensity levels. Uniformity is a quantitative measure by which the quality of segmented image

can be evaluated. Uniformity is defined as –

 u = 1-2*c*
∑ ∑ (௙௜ିఓ௝)ଶೕ∈ೃೕ

೛
ೕసబ

ே∗(௙௠௔௫ି௙௠௜௡)ଶ

where,
c = Number of thresholds
Rj = jth segmented region
N = Total number of pixels in given image
fi = Gray level of pixel i
lj = Mean gray level of pixels of jth region
fmax = Maximum gray level of pixels of jth region
fmin = Minimum gray level of pixels of jth region

Uniformity is a positive fraction between 0 and 1. The higher the value of uniformity, better is

the quality of the segmented image. Since the proposed problem is a stochastic optimization

problem for a new application area, there are too many free parameters which can affect the

system performance. It is basically a challenge for a researcher to find the best set of free

parameters for which the system performance is satisfactory. For this purpose classical BFOA

has undergone twenty independent runs for a particular parameter. setting (each of the

parameters are varied one at a time and its effect on the performance was noted) and considering

the best performance parameter set is recorded. During this run two benchmark images ‘lena’

and ‘pepper’ were chosen and the manner in which the fitness function and the uniformity vary

are recorded. in below tables. At first, size of the population of bacteria colony is varied in steps

from 20 to 60. Order of the population is arbitrarily chosen by surveying the literature (Maitra &

Chatterjee, 2008). With the increase in number of bacteria the optimization algorithm must yield

better result because at least one bacterium is expected to be nearest to the optimum point

(Passino, 2002).

55

 Table 1 shows that the mean entropy

 Mean uniformity Mean entropy Maximum uniformity

Lena

S=20 0.947 9.9664 0.9576
S=30 0.9478 9.9667 0.9576
S=40 0.9471 9.9854 0.9578
S=50 0.9461 9.9974 0.9565
S=60 0.9452 9.995 0.9577
Pepper

S=20 0.9521 10.0888 0.9654
S=30 0.9486 10.1133 0.9653
S=40 0.951 10.127 0.9652
S=50 0.9474 10.1273 0.964
S=60 0.9488 10.1271 0.9634

Table-3.1 Impact of variation of number of bacteria in BFOA when applied for segmentation of
images lena and pepper.

 Table-3.2 Impact of variation of number of chemotactic steps in BFOA when applied for
 segmentation of images lena and pepper.

 Mean uniformity Mean entropy Maximum uniformity

Lena

Nc=10 0.9469 9.9847 0.9564
Nc=15 0.9471 9.9854 0.9578
Nc=20 0.9439 9.9909 0.9537
Nc=25 0.946 9.9904 0.9576

Pepper

Nc=10 0.9514 10.1187 0.9649
Nc=15 0.951 10.127 0.9652
Nc=20 0.949 10.1097 0.9652
Nc=25 0.9514 10.1332 0.9641

56

 Mean uniformity Mean entropy Maximum uniformity

Lena

Ns=5 0.9474 9.9762 0.9576
NS=10 0.9471 9.9854 0.9578
Ns=15 0.9448 9.9861 0.9559
NS=20 0.9454 9.9899 0.9561

Pepper

Ns=5 0.9496 10.1166 0.9653
NS=10 0.951 10.127 0.9652
Ns=15 0.9483 10.1222 0.9648

NS=20 0.9472 10.1046 0.9639

Unit run
length

Mean uniformity
 Mean
entropy

Maximum
uniformity

Lena

0.01 0.947 9.9818 0.9577

0.1 0.9448 9.9855 0.9559

0.4 0.9471 9.9854 0.9578

1.0 0.944 10.0322 0.9545

Pepper

0.01 0.9492 10.0901 0.9652

0.1 0.9461 10.101 0.9653

0.4 0.951 10.127 0.9652

1.0 0.9473 10.1755 0.9622

 Table-3.3 Impact of variation of swim lengths in BFOA when applied for
segmentation of images lena and pepper.

Table-3.4 Impact of variation of Run-Length Unit in BFOA when applied for
segmentation of images lena and pepper.

57

Table 1 shows that the mean entropy, i.e. the fitness function of the algorithm, maximizes with

the increase in number of bacteria. We choose S = 40 as an increase in the number of bacteria

results in increase in computational complexity and uniformity measure will also increase in

most occasions. Once S is fixed, we started varying number of chemotactic steps Nc from 10 to

25. Though the computational complexity increases with the increase in number of chemotactic

steps, the chance of getting optimum result also increases .For both mean uniformity, and

maximum uniformity Nc = 15 gives considerably good result for both the images. Hence Nc is

fixed at 15. Now as Nc is fixed we can vary Ns which physically signifies that random walk is

biased more in the direction of

Parameter Value
S 40

Nc 15
Ns 10

C(i,k) 0.4
Nre 1
Ned 2
Ped 0.4

Mean
uniformity Mean entropy

Maximum
uniformity

Lena
Ɛ=1 0.9476 10.0018 0.9576
Ɛ=2 0.9465 10.0009 0.9577
Ɛ=3 0.9468 9.9917 0.9559
Ɛ=4 0.944 10.0077 0.955

Pepper

Ɛ=1 0.9495 10.1466 0.9646
Ɛ=2 0.9473 10.1243 0.964
Ɛ=3 0.9479 10.1242 0.9639
Ɛ=4 0.9554 10.1273 0.9651

 Table-3.5 Free parameters for BFOA.

Table-3.6 Impact of variation precision goal of bacteria in ABFOA when applied for
 segmentation of images lena and pepper.

58

 59

climbing down the hill. For both the test images Ns = 10 delivers the almost best set of results.

So Ns is fixed at 10.

3.3 Main steps of BFOA:-

Chemotaxis : This process simulates the movement of an E.coli cell through swimming and

tumbling via flagella. Biologically an E.coli bacterium can move in two different ways. It can

swim for a period of time in the same direction or it may tumble, and alternate between these two

modes of operation for the entire lifetime. Suppose (j, k, l) i q represents i-th bacterium at jth

chemotactic, k-th reproductive and l-th elimination-dispersal step. C(i) is the size of the step

taken in the random direction specified by the tumble (run length unit). Then in computational

chemotaxis the movement of the bacterium may be represented by

 𝜃 i (j+1,k,l) = 𝜃 i (j,k,l)+C(i)
∆(௜)

ඥ∆்(௜)∆(௜)
 …….(1)

Where ∆ indicates a vector in the random direction whose elements lie in [-1, 1].

 Swarming: An interesting group behavior has been observed for several motile species of

bacteria including E.coli and S. typhimurium, where intricate and stable spatio-temporal patterns

(swarms) are formed in semisolid nutrient medium. A group of E.coli cells arrange themselves in

a traveling ring by moving up the nutrient gradient when placed amidst a semisolid matrix with a

single nutrient chemo-effecter. The cells when stimulated by a high level of succinate, release an

attractant aspertate, which helps them to aggregate into groups and thus move as concentric

patterns of swarms with high bacterial density. The cell-to-cell signaling in E. coli swarm may be

represented by the following function.

 Jcc (𝜃,P(j,k,l)) = ∑ 𝐽𝑐𝑐 (𝜃, 𝜃𝑖(𝑗, 𝑘, 𝑙))௦

௜ୀଵ
= ∑ [−𝑑௦

௜ୀଵ 𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑎𝑛𝑡 exp(-W𝑎𝑡𝑡𝑎𝑟𝑐𝑡𝑎𝑛𝑡 ∑ (𝜃௠
௣
௠ୀଵ − 𝜃௠

௜)2)]+∑ [ℎ௥௘௣௘௟௟௔௡௧
௦
௜ୀ exp(-

𝑤௥௘௣௘௟௟௔௡௧ ∑ (
௣
௠ୀଵ 𝜃௠ − 𝜃௠

௜)2)] ……(2)

where Jୡୡ(θ , P(j, k, l)) cc q is the objective function value to be added to the actual objective

function (to be minimized) to present a time varying objective function, S is the total number of

bacteria, p is the number of variables to be

optimized, which are present in each bacterium and 𝜃 = [𝜃ଵ, 𝜃ଶ, … 𝜃௣]T is a point in the p-

dimensional search domain. datractant ,wattractant ,drepellant ,wrepellant are different coefficients that

should be chosen properly.

 Reproduction: The least healthy bacteria eventually die while each of the healthier bacteria

(those yielding lower value of the objective function) asexually split into two bacteria, which are

then placed in the same location. This keeps the swarm size constant.

Elimination and Dispersal: Gradual or sudden changes in the local environment where a

bacterium population lives may occur due to various reasons e.g. a significant local rise of

temperature may kill a group of bacteria that are currently in a region with a high concentration

of nutrient gradients. Events can take place in such a fashion that all the bacteria in a region are

killed or a group is dispersed into a new location. To simulate this phenomenon in BFOA some

bacteria are liquidated at random with a very small probability while the new replacements are

randomly initialized over the search space.

3.4 PSUDO Code of BFOA:-

Parameters:

 Step1- Initialize parameters p, S, Nc, Ns, Nre, Ned, Ped, C(i)(i=1,2…S), 𝜃i

Algorithm:

 Step-2 Elimination-dispersal loop: l=l+1

 Step-3 Reproduction loop: k=k+1

 Step-4 Chemotaxis loop: j=j+1

 [a] For i =1,2…S take a chemotactic step for bacterium i as follows.

 [b] Compute fitness function, J (i, j, k, l).

 Let, J (i, j, k, l) =J (i, j, k, l) +Jcc(𝜃i(j, k, l),P(j, k, l)) (add on the cell-to cell

attractant–repellant profile to simulate the swarming behavior)

where, Jcc is defined in (2).

 [c] Let Jlast=J (i, j, k, l) to save this value since we may find a better cost via a run.

60

 [d] Tumble: generate a random vector D(i)ÎÂp with each element (i),m 1,2,..., p, m

 D = a random number on [-1, 1].

 [e] Move: Let 𝜃i (j+1,k,l) = 𝜃i (j,k,l)+C(i)
∆(௜)

ඥ∆்(௜)∆(௜)

 This results in a step of size C(i) in the direction of the tumble for

 bacterium i.

 [f] Compute J (i, j +1, k, l) and let

 J(i,j+1,k,l)=j(i,j,k,l)+ Jcc 𝜃i (j+1,k,l), P(j+1, k, l)

 [g] Swim

 i) Let m=0 (counter for swim length).

 ii) While m< s N (if have not climbed down too long).

 Let m=m+1.

 If J (i, j +1, k, l) < Jlast (if doing better), let Jlast = J (i, j +1, k, l) and

 Let 𝜃i (j+1,k,l) = 𝜃i (j,k,l)+C(i)
∆(௜)

ඥ∆்(௜)∆(௜)

 And use this (j 1, j, k) i q + to compute the new J (i, j +1, k, l) as we did in [f]

 Else, let m= s N . This is the end of the while statement.

 [h] Go to next bacterium (i+1) if i ¹ S (i.e., go to [b] to process the next bacterium).

 Step-5 If c j < N , go to step 4. In this case continue chemotaxis since the life of

 the bacteria is not over.

 Step-6 Reproduction:

 [a] For the given k and l, and for each i = 1,2,..., S , let

 𝐽௛௘௔௟௧
௜ = ∑ 𝐽(𝑖, 𝑗, 𝑘, 𝑙)ே௖ାଵ

௝ୀଵ …….(3)

 be the health of the bacterium i (a measure of how many nutrients it got over its

lifetime and how successful it was at avoiding noxious substances). Sort bacteria and

chemotactic parameters C(i) in order of ascending cost health Jhealth (higher cost means lower

health).

61

 [b] The r S bacteria with the highest health J values die and the remaining r S

bacteria with the best values split (this process is performed by the copies that are made are

placed at the same location as their parent).

 Step-7 If k < Nre , go to step 3. In this case, we have not reached the number of

specified reproduction steps, so we start the next generation of the chemotactic loop.

 Step-8 Elimination-dispersal: For i = 1,2..., S with probability ed P , eliminate and

disperse each bacterium (this keeps the number of bacteria in the population constant). To do

this, if a bacterium is eliminated, simply disperse another one to a random location on the

optimization domain. If ed l < N , then go to step 2; otherwise end.

62

 START

Initialize all variables, Set
all loop counters &
bacterium index I = 0

Increase elimination
dispersion loop counter l
= l+1

 l < Ned
 Stop

No

Yes

Increase Reproduction Loop
Counter k=k+1

 K<Nre ?
No

Perform Elimination
Dispersal (For
i=1,..,S) with
probability ped

eliminate & disperse
one to a random
location)

Increase chemotactic
loop counter j=j+1 X

Yes

 j<Nc

 Y

Yes

No

Perform
Reproduction (By
killing the half of the
population with
higher cumulative
health & splitting
the better half into
two)

63

 Y

Increase Bacterium index i=i+1

 i<S? X
No

Yes

Compute the objective function value for the ith
bacterium as J(I,j,k,l), adding the cell to cell attractant
effect to nutrient concentration & set J =J(I,j,k,l)

Tumble(let the ith bacterium take a step of height C(i)
aling a randomly generated tuble vector Δ(i))

Compute the object function value
J(i,j+1,k,l) taking into account the cell to
cell attractant effect

Set swim counter m=0

 m<N1 ?

m=m+1

J(I,j+1,k,l)<Jlast
Set
m=Ns

No

St J= J(I,j+1,k,l) swim (let the ith bacterium take a step
of height(C(i) along with the direction of same
tumble vectors vector ∆(i)

 Flowchart of BFOA

64

3.5 Real world applications:-

3.5.1 BFOA Based Adaptive PID controller:

The PID controller has been widely used in the most industrial process due to simple structure,

algorithm, and good performance. However, the PID controller parameters are still computed

using the classic tuning formulae and these do not provide good control performance in all

situations, for example, for unstable systems with time delay. In order to provide consistent,

reliable, safe and optimal solution to industrial control problems as described above, many

approaches for PID control schemes and tuning techniques have been presented. These schemes

generally consist of four basic parts: model estimation, desired system specifications, optimal

tuning mechanism and an online PID.

PID controller is a simple algorithm based on estimating the information of the past, present and

future. The control system mainly combined with PID controller and charged objects. The PID

transfer function is:

 Gp = Kp + Ki / S + Kd

The performance of a PID controller can be enhanced upto a greater extent by using BFOA[29].

A basic system with BFOA is shown in figure below:-

65

Fig.3.7: BFOA Based Adaptive PID controller block diagram

Where r (t) is as the system input, and e (t) is as the system error, u (t) is as

the PID controller output, y (t) is as the system output. Evaluation part, that is the objective

function, means the index of the fitness value which is calculated by using of input variables,

output variables and intermediate variables. Although different control systems have different

objective fitness function and even the control systems have changed dramatically, the algorithm

has little change relatively. Even the transfer function has been changed, three parameters Kp ,

Ki, Kd can be obtained easily, this is the fundamental principle of adaptive PID controller which

can be realized . Analog PID which discrete into digital PID results can be expressed simply as:

 u(k) = kpe(k) + ki ∑ 𝑒(𝑗)𝑇 + 𝑘௞
௝ୀ଴ d (e(k)-e(k-1))/T

Where kp, ki, kd are the coefficient of Proportional-Integral-Derivative (PID). T is the sampling

time. K is the consequence of sampling. e(k) is the error of the point of k times. The BFOA

encoding usually use binary code or real number code, the real number code is proposed

according to the above equation. Then the parameters kp,ki,kd and T are initialized.

3.5.2 BFOA Harmonic reduction in Inverter:

Multilevel inverter is attaining increasing attention in the past few years because of

its high voltage and therefore high power capability [1, 2]. There are various modulation

methods which includes sinusoidal PWM (SPWM) and space-vector modulation (SVM) to

control the output voltage and to reduce unwanted components in multilevel inverters. Selective

Harmonic Elimination (SHE) is a technique choosing the switching times so that specific lower

order dominant harmonics such as 5th, 7th, and 11th and so on are suppressed in the output

voltage connected to the load. The SHE technique involves solving the nonlinear transcendental

equations characterizing the harmonic contents, which offers multiple solutions. These equations

can be solved through optimization techniques effectively. There are several optimization

algorithms such as GA (Genetic algorithm) which emulates the process of biological evolution,

PSO (Particle Swarm Optimization) inspired by social behavior of bird flocking, ACO (Ant

Colony Optimization) emulating the foraging behavior of ant colonies, Artificial Bee Colony

Algorithm (ABC) mimicking foraging behavior of swarm of honey bees have been used

66

extensively for the solving the non-linear equations. Here, BFOA is realized to minimize lower-

order harmonics, and to maintain the desired fundamental component. Among the different

topology structures of MLI, Cascaded H-bridge topology has gained more prominence due to

their simplicity of its structure and control, modularity and flexibility. The cascaded MLI

consists of a series connected H bridge inverter units. Each of the individual cell (full bridge

unit) can generate three different output voltage levels: +Vdc, 0, and −Vdc. All the H Bridges

connected in series can produce staircase waveform.

 Fig.3.8: level cascaded multilevel inverter

67

Fig.3.9: Output voltage waveform of a 7-level MLI

where Vn is the nth harmonic component amplitude. The angles of the switches should be

restricted between 0 and π/2 (0 ≤ θ < π/2). Because of odd quarter-wave symmetry, even order

harmonics become zero.

The objective of SHEPWM is to eliminate the lower order dominant harmonics. In a 7-level

Cascaded MLI the 5th and 7th dominant lower order harmonics are to be eliminated because 3rd

harmonic will be eliminated in 3 phase systems. So, in order to obtain the desired fundamental

harmonic and to eliminate 5th and 7th harmonics, three non-linear equations with three switching

angles are shown in below set of equations:-

 V1 =

ସ௏೏೎

గ
 [cos𝜃ଵ+ cos𝜃ଶ+ cos𝜃ଷ]

 V5 =
ସ௏೏೎

ହగ
 [cos5𝜃ଵ+ cos5𝜃ଶ+ cos5𝜃ଷ]

 V7 =
ସ௏೏೎

଻గ
 [cos7𝜃ଵ+ cos7𝜃ଶ+ cos7𝜃ଷ]

In above set of equations V5 and V7 are set to zero in order to eliminate 5th and 7th harmonics,
respectively. In order to obtain various switching angles a titled modulation index, new index, is
defined to be a representative as:

 MI ≜
௏ଵ

భమೇ೏೎
𝚷

 (0≤ 𝑀𝐼 ≤ 1)………(2)

 Here, MI is between 0 and 1 in order to cover various values of V1. Thus, by
replacing equation (2) in equation (1)

 MI =
ଵ

ଷ
[cos𝜃ଵ+𝑐𝑜𝑠𝜃ଶ+cos𝜃ଷ]

 0 = [cos5𝜃ଵ+𝑐𝑜𝑠5𝜃ଶ+cos5𝜃ଷ]

 0 = [cos7𝜃ଵ+𝑐𝑜𝑠7𝜃ଶ+cos7𝜃ଷ]
Now, the three different switching angles, namely θ1, θ2, and θ3, can be found with respect to the

range of MI. The parameters to be initialized are number of bacteria required for searching which

are initialized as 26 and number of iterations to be undertaken, taken here as 100. The fitness

function that is used is given below-

………(1)

68

 𝑉ଵ

∗ Desired fundamental voltage

 𝑉ଵ Fundamental voltage

 ℎ௦ Order of sth harmonic

 𝑉௛ೞ
 Voltage of sth harmonics

The switching angles thus found eliminate the low-order harmonics (5th and 7th)

while retaining the maximum fundamental component.

3.5.3Application of BFOA in Economic Load Dispatch :

In the current scenario, where the industries are plagued with global energy crisis and

skyrocketing fuel prices, the need of the hour is efficient utilization of the available resources

without compromising the demand. In order to solve the complexity involved in ED problems, a

power system has to be operated in such a way that it eventually supplies all the loads with

minimum cost. According to [30] the classic mode of solving ED issues was through performing

lambda-iteration and gradient methods, which requires the unit input-output curves of generators.

However, due to forbidden operating zones these curves do not show a monotonic rise. Thus, as

per [31], for optimizing non-linear cost functions, the traditional ED algorithms are not generally

recommended. The economic load dispatch is an important aspect of modern Power systems

among others like unit commitment, load forecasting, available transfer capacity calculation,

security analysis and scheduling of fuel purchases etc. The power system ELD problem based on

BFOA and FA has been tested on 3-generator and 13 -generator system. The initial system for

testing comprises of three generating units with a demand of 850MW and 900MW for both

inclusion and exclusion of valve point loading. The second test system consists of 13 generating

units with a total demand of 1800Mw with both including and excluding of valve point loading.

From the paper of [32]it can be said that the test results of BFOA outweigh FA in accuracy. Its

peers are computationally intensive and time taking because these are based on stochastic (i.e.

behaviorally non deterministic) searches in population and generations. But BFOA method is

69

self-adaptive. It converges in a better fashion and hence gives better results with regards to

generation cost. Thus it takes lesser memory space to converge to the optimal value. The

established respect of bacterial movement for food search lends further credence to this method's

usage. Also it avoids premature convergence and the BFOA's second stage i.e reproduction

process paces the convergence process.

3.6 Conclusions:-
BFOA is very much suitable to achieve global optimum. This is because of the inherent

characteristics of the BFOA itself comprising of elimination and dispersal processes. Some real

world practical applications of Bacterial Foraging Algorithm is described here. Apart from these

example the BFOA can be used in different domains like, uninhabited autonomous vehicles

(UAVs) that are used in military (or commercial) applications where i) Animals, organisms =

UAVs , ii) social foragers = group of cooperating UAVs that can communicate with each other,

iii) prey, nutrients = targets, iv) predators, noxious substances = threats, and v) environment =

battlefield. it would be interesting to characterize the physiological and environmental aspects

that drove evolution to “design” a specific foraging strategy and optimize its operation. This

would help us understand how vehicular constraints and tactical situations affect the design and

operation of the cooperative Strategy. Any superior performance in one class of problems

generally results in inferior performance over another class. The combination of such algorithms

is called hybridization or hybrid metaheuristics. They combine the advantages of individual

algorithms while overcoming individual weaknesses. Such an approach ensures that at least one

of the algorithms provides optimum solution to each particular class of problems. The main

concern while using hybridization is that the percentage of successful convergence to global

optimum should increase as opposed to those obtained by standalone algorithm.

70

References:

[1] Kevin M. Passino,”Biomimicry for Optimization, Control, and Automation”, Springer-Verlag

London Limited 2005 .

[2] John H. Holland,’ Adaptation in Natural and Artificial Systems’, 1992 The

MIT Press.

[3] David J. Fogel, Lawrence J. Fogel,’ An introduction to evolutionary programming’, Natural

selection Inc. 3333North Torrey Pines Ct. Suite 200

[4] Ingo Rechenberg, Hans-Paul Schwefel, Hans-Michael Voigt, Werner Ebeling, Parallel

Problem Solving from Nature- PPSN IV, International Conference on Evolutionary Computation

- The 4th International Conference on Parallel Problem Solving from Nature Berlin,

Germany,September 22-26, 1996.

[5] James Kennedy, Russell C. Eberhart, Yuhui Shi , Swarm Intelligence’, The Morgan

Kaufmann Series in Evolutionary Computation.

[6] Marco Dorigo, Thomas Stützle, ‘Ant Colony Optimization’, 2004 Massachusetts Institute of

Technology.

[7] Gerardo Beni , Jing Wang,’ Swarm Intelligence in Cellular Robotic Systems’, College of

Engineering University of California, Riverside, Springer-Verlag Berlin Heidelberg 1993.

[8] Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of

IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948.

IEEE (1995).

[9] Price, K.V., Storn, R.M., Lampinen, J.: Differential evolution: a practical approach to global

optimization. Springer, Heidelberg (2005) .

[10] Derviş Karaboga, Bahriye Akay, Artificial Bee Colony (ABC) Algorithm on Training

Artificial Neural Networks, Bilgisayar Mühendisliği Bölümü Erciyes Üniversitesi, Kayseri.

[11] Qian Zhang, Huiling Chen , Jie Luo, Yueting Xu, Chengwen Wu, and Chengye Li,Chaos

Enhanced Bacterial Foraging Optimization for Global Optimization’’, 10.1109/ACCESS.

2018.2876996

71

[12] D. Jia, G. Zheng, and M. K. Khan, ``An effective memetic differential evolution algorithm

based on chaotic local search,'' Inf. Sci., vol. 181, no. 15, pp. 3175_3187, 2011.

[13] L. Zhang and C. Zhang, ``Hopf bifurcation analysis of some hyperchaotic systems with

time-delay controllers,'' Kybernetika, vol. 44, no. 1, pp. 35_42, 2008.

[14] L. J. Yang and T. L. Chen, ``Application of chaos in genetic algorithms,'' Commun. Theor.

Phys., vol. 38, no. 2, pp. 168_172, 2002.

[15] J. Mingjun and T. Huanwen, ``Application of chaos in simulated annealing,'' Chaos,

Solitons Fractals, vol. 21, no. 4, pp. 933_941, 2004.

[16] B. Alatas, E. Akin, and A. B. Ozer, ``Chaos embedded particle swarm optimization

algorithms,'' Chaos, Solitons Fractals, vol. 40, no. 4, pp. 1715_1734, 2009

[17] M.Wang et al., ``Toward an optimal kernel extreme learning machine using a chaotic moth-

Flame optimization strategy with applications in medical diagnoses,'' Neurocomputing, vol. 267,

pp. 69_84, Dec. 2017.

[18] A. H. Gandomi, X.-S. Yang, S. Talatahari, and A. H. Alavi, ``Firefly algorithm with chaos,''

Commun. Nonlinear Sci. Numer. Simul., vol. 18, no. 1, pp. 89_98, 2013.

[19] S. Saremi, S. Mirjalili, and A. Lewis, ``Biogeography-based optimization with chaos,''

Neural Comput. Appl., vol. 25, no. 5, pp. 1077_1097, 2014.

[20] G.-G. Wang, L. H. Guo, A. H. Gandomi, G.-S. Hao, and H. Q. Wang,Chaotic krill herd

algorithm,'' Inf. Sci., vol. 274, pp. 17_34, Aug. 2014.

[21] A. A. Heidari, R. Ali Abbaspour, and A. R. Jordehi, ``An ef_cient chaotic water cycle

algorithm for optimization tasks,'' Neural Comput. Appl., vol. 28, no. 1, pp. 57_85, 2017.

[22] M. Kohli and S. Arora, ``Chaotic grey wolf optimization algorithm for

constrained optimization problems,'' J. Comput. Des. Eng., vol. 5, no. 4, pp. 458_472, Oct. 2018.

[23] M. S. Tavazoei and M. Haeri, ``Comparison of different one-dimensional

maps as chaotic search pattern in chaos optimization algorithms,'' Appl. Math. Comput., vol.

187, no. 2, pp. 1076_1085, 2007.

[24] L. Wang, D.-Z. Zheng, and Q. S. Lin, ``Survey on chaotic optimization methods,'' Comput.

Technol. Autom., vol. 20, no. 1, pp. 1_5, 2001.

72

[25] B. Liu, L. Wang, Y.-H. Jin, F. Tang, and D. X. Huang, ``Improved particle swarm

optimization combined with chaos,'' Chaos, Solitons Fractals, vol. 25, no. 5, pp. 1261_1271,

2005.

[26] D. Jia, G. Zheng, and M. K. Khan, ``An effective memetic differential evolution algorithm

based on chaotic local search,'' Inf. Sci., vol. 181, no. 15, pp. 3175_3187, 2011.

[27] S. Saha and V. Mukherjee, ``A novel chaos-integrated symbiotic organisms search

algorithm for global optimization,'' Soft Comput., vol. 22, no. 11, pp. 3797_3816, Jun. 2018.

[28] Nandita Sanyal, Amitava Chatterjee, Sugata Munshi, An adaptive bacterial foraging

algorithm for fuzzy entropy based image segmentation’’, 2011 Elsevier Ltd.

[29] Guozhong Wu,”Application of Adaptive PID Controller Based On Bacterial Foraging

Optimization Algorithm”.

[30] Sinha, N.; Chakrabarti, R.; Chattopadhyay, P.K., "Evolutionary programming techniques for

economic load dispatch,", IEEE Transactions on Evolutionary Computation , vol.7, no.l, pp. 83-

94, Feb 2003

[31] W. J. Tang, M. S. Li, Q. H. Wu and J. R. Saunders, "Bacterial Foraging Algorithm for

Optimal Power Flow in Dynamic Environments", IEEE Transactions on Circuits and Systems-I,

vo1.55, no.8, pp.2433-2442, Sept. 2008.

[32] D.R.Prabha, A.K. Prasad. Raju,S. Saikumar, R.Mageshvaran, T.Narendiranath Babu,

Application of Bacterial Foraging and Firefly Optimization Algorithm to Economic Load

Dispatch Including Valve Point Loading”.

73

 74

 CHAPTER-4

Hybridization of Differential Evolution and bacterial Foraging
Optimization Algorithm:-

4.1 Introduction:-

Evolutionary optimization technique has been one of the major optimization techniques in past

decade. Few key features of the evolutionary algorithms (EAs) include parallel computation,

holistic learning approach and self-adaption. The application of evolutionary algorithms has been

carried out extensively for solving constrained problems and practical engineering problems also.

Though the EAs are widely used, in practice they deliver only marginal performance. Hence the

current aim of researchers is to apply the complementary algorithms to enhance their

performance. A current trend in the field of optimization using evolutionary algorithms tends to

hybridize two or more algorithms in order to perform better than the individual algorithm.

Though the population based search methods explore search spaces effectively with problems

having high dimensionality, non convexity; they may be stuck in local optima and may not

always provide the global optimum. Many real world large scale optimization problems may not

provide acceptable solutions, when applied independently as seen in cases of combinatorial

optimization. Thus instead of using traditional nature inspired algorithms there has been a

increase in combination of algorithmic ideas since there is not a single strategy which can be

used to solve all kinds of optimization problems[1]. Any superior performance in one class of

problems generally results in inferior performance over another class. The combination of such

algorithms is called hybridization or hybrid meta-heuristics. They combine the advantages of

individual algorithms while overcoming individual weaknesses. Such an approach ensures that at

least one of the algorithms provides optimum solution to each particular class of problems. The

main concern while using hybridization is that the percentage of successful convergence to

global optimum should increase as opposed to those obtained by standalone algorithm. several

approaches of heuristic algorithms have been used to enhance the performance of EAs. Zmuda et

al. [2] introduced a hybrid evolutionary learning scheme for synthesizing multi-class pattern

recognition systems. Wang [3] developed a hybrid approach to improve the performance of EAs

for a simulation optimization problem. A hybrid technique that combines GA and PSO, called

genetic swarm optimization (GSO), was proposed by Grimaldi et al. [4] for solving an

electromagnetic optimization problem. Li and Wang et al. [5] proposed a hybrid PSO using

Cauchy mutation to reduce the probability of trapping local optima for PSO. Li and Yang [6]

used a hybrid evolutionary algorithm base on Particle swarm optimization (PSO), Fast

Evolutionary Programming (FEP), and Estimation of Distribution Algorithm (EDA) was used by

them. Bashir and Neville [7] propose evolutionary computation algorithm featuring a novel

adaptive elitism strategy and a sequential quadratic programming algorithm; combined in a

collaborative portfolio with a validation procedure. Shi et al [8] prl and series forms.

4.2 Proposed method of Hybridization:-

The radical reduction in the computational time in the recent past coupled with the increasing

demand to solve complex real world problems has enhanced the quest for more proficient nature-

inspired metaheuristics. It is to be noted that two fundamental processes drive the evolution of an

Evolutionary Algorithm (EA) population— the diversification process, which enables exploring

different regions of the search space and the intensification process, which ensures the

exploitation of previous knowledge about the fitness landscape. The effects of such exploration

and exploitation processes need to be competently balanced by an EA for its qualitative

performance both in computational complexity and run-time accuracy over different fitness

landscapes. However the superiority of an EA in optimizing objective functions is subjected to

the No Free Lunch Theorem (NFLT) [9]. According to NFLT the expected effectiveness of any

two traditional EAs across all possible optimization problems is identical. A self-evident

implication of NFLT is that the elevated performance of one EA, say A, over other EA, say B,

for one class of optimization problems is counterbalanced by their respective performances over

another class. It is therefore practically difficult to devise a universal EA that would solve all the

problems. This apparently paves the way for hybridization of EAs with other optimization

strategies, machine learning techniques and heuristics. In evolutionary computation

75

paradigm, hybridization [10] refers to the process of integrating the attractive features of two or

more EAs synergistically to develop a new hybrid EA. The hybrid EA is expected to outperform

its ancestors both in accuracy and complexity over application-specific or general benchmark

problems. The fusion of EAs through hybridization hence can be regarded as the key to

overcome their individual limitations. In this paper, we propose a simple yet very powerful

hybrid EA by collegially coalescing the attributes of two global optimizers— traditional

Differential Evolution (DE) [11] and traditional Bacterial Foraging Algorithm (BFA) [12]. In our

proposed hybridization stratagem, the chemotactic movement of bacteria is embodied into the

modified version of mutation policy of DE to utilize the composite benefit of the explorative and

exploitative capabilities of both ancestor algorithms. The chemotaxis of bacteria around their

own positions provides them the local exploitation capability. On the other hand, DE/rand/1

mutation strategy offers DE a potential for global exploration. These facts have motivated us to

propose a new hybrid algorithm, named Differential Evolution with Bacterial Chemotaxis

(DEBC). In DEBC, the intensification process is controlled by the chemotactic movement of

bacteria in its local neighbourhood, while the diversification is influenced by the DE mutation

policy. As mentioned in earlier chapters, an evolutionary algorithm works through 4 steps, i.e.

initialization, mutation,crossover/recombiantion,selection. In this proposed hybridization

technique, the chemotaxis step of the Bacterial Foraging algorithm is introduced in

crossover/recombination step of DE as shown in Pseudo code to achieve desired optima.

4.3 Pseudo Code:-

Let x is a n-dimensional vector & f is real function of real valued arguments, three parameters of

DEA are CR (defining crossover and mutation operations that are mutually exclusive), F (scaling

factor of the difference of two individuals) and NP (population size) to generate the evolutionary

process for n-dimensional problem, number of generation is Gmax D dimension, three randomly

chosen individuals with index r1,r2 & r3, Ci is step size taken in the random direction specified

by the tumble, the bacterium will generate the tumble direction Δi ,

where Δሬሬ⃗ i = [Δሬሬ⃗ i1 , Δሬሬ⃗ i2 ,….. Δሬሬ⃗ D] .Thus,in computational chemotaxis the movement of the bacterium
may be represented by-

 𝑋⃗𝑝𝑟𝑖𝑚𝑒← 𝑋⃗𝑝𝑟𝑖𝑚𝑒 + STEPsize ×
∆ሬሬ⃗

∆ሬሬ⃗ ௑∆ሬሬ⃗ ೅

76

1 Begin

2 G=0

3 Create a random initial population

4 for i = 1 to NP do

5 for j = 1 to D do

6 𝑥௝,௜
(ீୀ଴) = 𝑥௝

௠௜௡ + 𝑟𝑎𝑛𝑑௝[0,1].(𝑥௝
௠௔௫- 𝑥௝

௠௜௡)

7 end for

8 end for

9 Evaluate Fitness Function for each individual of population

10 for i = 1 to NP do

11 f(𝑥௜
(ீୀ଴))

12 end for

13 Test vector generation

14 for G = 1 to MaxGen do

15 for i = 1 to NP do

16 Select Randomly r1,r2,r3 ∈ [1,NP],r1≠r2≠r3≠i

17 Mutation & Crossover Process

18 jrand = randInt[1:D]

19 for j = 1 to D do

20 if(rand[0,1]<CR or j == jrand)then

21 𝑣௜,௝
(ீାଵ)= 𝑥௜௥

(ீ)+ F*(𝑥௜௥ଶ
(ீ)-𝑥௜௥ଷ

(ீ))

22 else

23 𝑣௜,௝
(ீାଵ)

= 𝑥௜௝
(ீ)

24 Chemotaxis

25 Randomly initialize a vector ∆ሬሬ⃗ =[Δ1 , Δ2 ,…. ΔD] where Δj is uniformly distributed

within [-1,1] for j=[1,2,….,D];

26 𝑋⃗_𝑝𝑟𝑖𝑚𝑒← 𝑋⃗_𝑝𝑟𝑖𝑚𝑒 + STEP_size ×
∆ሬሬ⃗

∆ሬሬ⃗ ௑∆ሬሬ⃗ ೅

77

27 Evaluate f(𝑋⃗_𝑝𝑟𝑖𝑚𝑒);

28 m←0;

29 while m< Ns do

30 Begin

31 m←m+1;

32 if f(𝑋⃗_𝑝𝑟𝑖𝑚𝑒) < last_cost

33 Then do

34 Begin

35 last_cost←f(𝑋⃗_𝑝𝑟𝑖𝑚𝑒);

36 𝑋⃗_𝑝𝑟𝑖𝑚𝑒←𝑋⃗_𝑝𝑟𝑖𝑚𝑒 + STEP_size x
∆ሬሬ⃗

∆ሬሬ⃗ ௑∆ሬሬ⃗ ೅
 ;

37 Evaluate f(𝑋⃗_𝑝𝑟𝑖𝑚𝑒);

38 Endif

39 Endfor

40 Endfor

41 Selection

42 if(f(𝑣(ீାଵ)≤ f(𝑥௜
(ீ))) then

43 𝑥௜
(ீାଵ)= 𝑣௜,௝

(ீାଵ)

44 else

45 𝑥௜
(ீାଵ)= 𝑥௜

(ீ)

46 end if

47 end for

48 end for

49 End

4.4 Experiments and results:-

 Benchmark functions:

 The proposed algorithm is tested with the 6 benchmark functions of popular 25 benchmark

functions given in CEC-2005. The functions are described below-

78

1. Rastrigin Function-

This function, the so-called Rastrigin’s function , is an example of

a highly multimodal search space. It has several hundred local optima in the

interval of consideration. The function can be formulated as,

 f(x) = An + ∑ [𝑥௜
ଶ − 𝐴𝑐𝑜𝑠(2𝜋𝑥௜)]௡

௜ୀଵ

 where A = 0

 Global minima f(0,……,0)=0, Search Domain: -5.12≤ xi ≤ 5.12

2. Sphere Function-

The function sphere, f1, can be said as the center point of every optimization algorithm. It is a

smooth, unimodal, and symmetric function and it does not present any of the difficulties that we

have discussed so far. The performance on the sphere function is a measure of the general

efficiency of an algorithm. Below, the function is shown,

 f(x) = ∑ 𝑥௜
ଶ௡

௜ୀଵ

 Global minima f(x1,…..,xn)=f(0,……,0)=0

 Search domain: - ∞≤ xi ≤ +∞

 3. Ackley Function-

This is a highly multimodal function.The function is not convex. It is non-separable &

Differentiable. The function can be represented by-

 f(x,y) = -20exp[-0.2ඥ0.5(𝑥ଶ + 𝑦ଶ)] − exp[0.5(cos2πx+ cos2πy)+e+20

 Global minima f(0,0)=0 Search Domain -5≤ x,y ≤5

4. Beale Function-

This is a continuous , non convex, multimodal function. The function can be defined on any

input domain but it is usually evaluated on xϵ [-4.5,4.5] ∀ i=1,2.

The function can be defined as,

79

 f(x,y)=(1.5-x-xy)2 + (2.25-x-xy2)2 + (2.625-x+xy3)2

 Global minima f(3,0.5)=0 Search Domain -4.5 ≤ x,y ≤ 4.5

5. Matyas Function-

Another unimodal function is Matyas function. The other properties of this test function are, it is

convex, differentiable, continuous, non separable. The function can be represented as-

 f(x,y) = 0.26(x2+y2)-0.48xy

 Global minima f(0,0)=0 Search domain -10≤x,y≤10

6. Booth Function-

This function is continuous, convex, unimodal & differentiable. The function is formulated as-

 f(x,y) = (x+2y-7)2 + (2x+y-5)2

 Global minima f(1,3)=0 Search domain -10≤x,y≤10

Results:

The six numbers benchmark functions are used to test the proposed algorithm. Here, the code has

been executed for 200 iterations. The table below represents the value of fitness for 200th

iteration.

Function Name DE DEBC

Rastrigin 0.000000 0.3752540
Beale 5.9165e-31 0.0006447
Sphere 1.2794e-58 0.0033740
Booth 7.8886e-31 0.0106448
Matyas 2.1303e-53 0.0000466
Ackley -5.119100 -5.1154206

 Table 4.1: DE & DEBC fitness comparison

80

From the above table we can conclude that the fitness value for each test function become greater

while tested by the proposed hybrid algorithm than ordinary differential evolution. The

application of proposed hybrid algorithm is shown for Rastrgin Function upto 20th iteration-

 Fig.4.1: Ordinary Differential evolution Iteration vs Fitness plot for Rastrigin Function

 Fig.4.2: Hybrid Differential evolution Iteration vs Fitness plot for Rastrigin Function

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Iteration

F
itn

es
s

Iteration=20, Fitness=0.172426344

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Iteration

F
itn

es
s

Iteration=20, Fitness=1.350328169

81

 Fig.4.3: 3 Dimensional plot for Rastrigin Function

82

Refernces:-

[1] D.H. Wolpart,”No free Lunch Theorems for search”.

[2] M.A.Zmuda, M.M.Rizki, L.A.Tamburino, “Hybrid Evolutionary learning for synthesizing

multi class pattern recognition systems”. Applied Soft Computing, Vol.2, Issue 4, p.269-282,

February 2003.

[3] L.Wang, D.Zheng, “An effective hybrid optimization strategy for job

scheduling problems”. Computer and Operations Research, Vol.28, Issue.6, p.585-596, May

2001.

[4] E.A.Grimaldi, F.Grimaccia, M.Mussetta, P.Pirinoli, “Genetical Swarm

Optimization: a New Hybrid Evolutionary Algorithm for Electromagnetic Applications”. 18th

International Conference on Applied Electromagnetics and Communications, ICECom, Oct.

2005.

[5] E.A.Grimaldi, F.Grimaccia, M.Mussetta, P.Pirinoli, “Genetical Swarm

Optimization: a New Hybrid Evolutionary Algorithm for Electromagnetic Applications”. 18th

International Conference on Applied Electromagnetics and Communications, ICECom, Oct.

2005.

[6] C.Li, S.Yang, "An Island Based Hybrid Evolutionary Algorithms for

Optimization". Simulated Evolution and Learning Lecture Notes in Computer Science,

Vol.5361, p.180-189, 2008.

[7] H.A.Bashir, R.S.Neville, "A Hybrid Evolutionary Computation Algorithms for Global

Optimization". WCCI 2012 IEEE World Congress on Computational Intelligence, 2012.

[8] X.H.Shi, Y.H.Lu, C.G.Zhou, H.P.Lee, W.Z.Lin and Y.C.Liang, "Hybrid Evolutionary

Algorithms Based on PSO and GA". The 2003 Congress on Evolutionary Computation, 2003,

p.2393-2399 Vol.4.

[9] David H. Wolpart, William G. Macready, ‘No free lunch theorem for search’,SFI-TR-95-02-

010, The Santa Fe Institute, February 23,1996

[10] A. Sinha and D. Goldberg. A survey of hybrid genetic and evolutionary algorithms.

Technical Report 2003004, Illinois Genetic Algorithms Laboratory (IlliGAL), January 2003.

83

[11] Kenneth V. Price ,Rainer M. Storn Jouni A. Lampinen, ‘Differential Evolution- A Practical

Approach to Global Optimization’, Springer-Verlag Berlin Heidelberg 2005.

[12] Kevin M. Passino,”Biomimicry for Optimization, Control, and Automation”, Springer-

Verlag London Limited 2005 .

84

 CHAPTER-5

 Conclusion & Future Research Direction

This chapter briefly highlights the findings & contributions of the thesis. It briefly discusses the
real life applications of the hybridization of two optimization algorithms i.e., differential
evolution & bacterial foraging. It also introduces some of the future works for interested readers
that may be carried out in extension to the algorithms that have already been developed.

85

5.1 Conclusion :

Generally, heuristic algorithms are used to enhance the performance of evolutionary algorithm to

achieve the global optima.

In various cases it is observed that the steps of a particular evolutionary algorithm which is

giving an optimal value for a particular problem is giving undesired value in another problem,

thus the concept of hybridization was introduced.

There are two prominent issues of EAs in solving global and highly nonconvex optimization

problem. These are: (i) Premature convergence: The problem of premature convergence results

in the lack of accuracy of the final solution. The final solution is a feasible solution close to the

global optimal, often regarded as satisfactory or close-to-optimal solution. (ii) Slow

convergence: Slow convergence means the solution quality does not improve sufficiently

quickly. It shows stagnation or almost flat on a convergence graph (either a single iteration or the

average of multiple iterations).

Hybrid algorithms are two or more algorithms that run together and complement

each other to produce a profitable synergy from their integration

Chapter 4 has shown how these two optimization algorithms are hybridized.

The boundary condition checking after the mutation step in differential evolution algorithm is

hybridized by bacterial foraging algorithm. Thus we found our desired performance level.

5.2 Future research direction:-

• The proposed hybrid algorithm is tested on six CEC 2005 benchmark functions. The

same algorithm can be tested over other benchmark functions, like – Holder Table

function, Egg holder function, Cross-in-tray function, Himmelblau's function, Schaffer

function etc.

• Every search algorithm needs to address the exploration and exploitation of a search

space. Exploration is the process of visiting entirely new regions of a search space,

whilst exploitation is the process of visiting those regions of a search space within the

neighborhood of previously visited points. In order to be successful, a search algorithm

needs to establish a good ratio between exploration and exploitation. Further study of

86

exploration & exploitation through population diversity can be done in the field of

evolutionary algorithm.

• Moreover, the study can be done on hybridization of more than two number of

optimization algorithms.

Many new algorithms have been developed in recent years. For example, the bio-inspired

algorithms such as Artificial Bee Colony Algorithm (ABC)[1], Bat Algorithm (BA)[2], Cuckoo

Search (CS)[3], Firefly Algorithm (FA)[4], Flower Pollination Algorithm (FPA)[5], Glowworm

Swarm Algorithm (GlowSA)[6], Hunting Search Algorithm (HSA)[7], Eagle Strategy (ES)[8],

Roach Infestation Optimization (RIO)[9], Gravitational Search Algorithm (GravSA)[10],

Artificial Fish School Algorithm (AFS)[11], Artificial Plant Optimization Algorithm (APO)[12],

Krill Herd Algorithm (KHA)[13] and others.

These algorithms may possess entities and some novel characteristics for hybridization that

remain to be discovered in the near future.

In many works, hybrid algorithms seem to improve results in terms of the overall

convergence speed and accuracy. However, these convergence graphs are often

plotted with respect to the number of iterations. This simply means that the faster

convergence does not mean the true convergence rate because the hybrid usually

uses a higher number of (internal or implicit) iterations. For example, for collaborative

(sequential type) hybrid algorithm such as GA-PSO, a cycle, or one iteration comprises GA and

PSO. For a fair comparison, this should be considered as two cycles instead of one in the

convergence graph. To avoid this issue, the final run time should be utilized as a metric when

comparing a hybrid algorithm with non-hybrid algorithms.

87

Refernces:-

[1] Dervis Karaboga, Beyza Gorkemli, Celal Ozturk, Nurhan Karaboga, “A comprehensive

survey: artificial bee colony (ABC) algorithm and applications Published online: 11 March 2012

© Springer Science+Business Media B.V. 2012

[2] Xin-She Yang,A New Metaheuristic Bat-Inspired Algorithm” . NICSO 2010, SCI 284, pp.

65–74, 2010. springerlink.com © Springer-Verlag Berlin Heidelberg 2010

[3] Xin-She Yang, Suash Deb, Cuckoo Search via L´evy Flights” , 2009 World Congress on

Nature & Biologically Inspired Computing (NaBIC 2009)IEEE

[4] Xin-She Yang, Firefly algorithm, stochastic test functions and

design optimization”. Int. J. Bio-Inspired Computation, Vol. 2, No. 2, 2010”

[5] Mohamed Abdel-Basset,Laila A. Shawky, Flower pollination algorithm: a comprehensive

review”, Springer Science+Business Media B.V., part of Springer Nature 2018.

[6] HE Deng-xu, Liu Gui-qing, ZHU Hua-zheng,Glowworm swarm optimization algorithm for

solving multi-objective optimization problem”. 2013 Ninth International Conference on

Computational Intelligence and Security IEEE

[7] R. Oftadeh, M. J. Mahjoob,A new meta-heuristic optimization algorithm: Hunting Search”,

Center for Mechatronics and Automation, School of Mechanical Engineering, University of

Tehran, Tehran, Iran, 9781-4244-3428-2/09/2009 IEEE

[8] Xin-She Yang, Suash Deb, Xingshi He, Eagle Strategy with Flower Algorithm”. 2013

International Conference on Advances in Computing, Communications and Informatics

(ICACCI),IEEE.

[9] Timothy C. Havens, Christopher J. Spain, Nathan G. Salmon, James M. Keller, Roach

Infestation Optimization”, 2008 IEEE Swarm Intelligence Symposium St. Louis MO USA,

September 21-23, 2008.

[10] Norlina Mohd Sabri, Mazidah Puteh, Mohamad Rusop Mahmood, An Overview of

Gravitational Search Algorithm Utilization in Optimization Problems”, 2013 IEEE 3rd

International Conference on System Engineering and Technology, 19 - 20 Aug. 2013, Shah

Alam, Malaysia

[11] Jie Hu, Xiangjin Zeng, Jiaqing Xiao, Artificial Fish School Algorithm For Function

Optimization”,IEEE, 30 December 2010, Wuhan, China

88

[12] Ziqiang Zhao, Zhihua Cui, Jianchao Zeng, Xiaoguang Yue, Artificial Plant Optimization

Algorithm for Constrained Optimization Problems”, 2011 Second International Conference on

Innovations in Bio-inspired Computing and Applications,IEEE, Shenzhan, China.

[13] Amir Hossein Gandomi, Amir Hossein Alavi, Krill herd: A new bio-inspired optimization

algorithm”, Elsevier,2012

89

