Ref. No.: Ex/EE/T/423A/2019

B.E. ELECTRICAL ENGINEERING FOURTH YEAR SECOND SEMESTER EXAM 2019 NONLINEAR AND OPTIMAL CONTROL (SPECIAL PAPER-I)

Time: 3 hours Full Marks: 100

Answer any FIVE questions.

- 1. a) Explain few important behaviors of nonlinear systems with suitable examples.
- b) Describe various nonlinearities that are commonly found in electromechanical systems.

[8+12=20]

- 2. a) Write the advantages and limitations of Phase Plane method.
- b) Draw the Phase-portraits for a second order LTI system for (i) undamped, (ii) under-damped, (iii) critically-damped and (iv) overdamped cases clearly showing their distinct features. Hence comment on the phase portrait of a nonlinear second order system.

[4+16=20]

- 3. a) State and explain the general notion of stability from the concept of Lyapunov stability theorem.
- b) Explain the terms "Global asymptotic stability" and "Local asymptotic stability".
- c) Extend the Direct method of Lyapunov for linear time invariant system and hence comment on it.

[4+6+10=20]

- 4. a) Write a note on the basic approach of state-feedback linearization of nonlinear systems.
- b) Explain with example, the basic approach for the design of a state-feedback control law for a nonlinear system by Integrator Backstepping.

[10+10=20]

- 5. a) Define the following:
 - (i) Admissible control, (ii) Admissible trajectory, (iii) Functional
- b) What are the basic requirements to formulate an optimal control problem? Explain the basic procedure to formulate an optimal control problem for speed control of an electric drive system.

[6+14=20]

6. Describe the classification of optimal control problems based on various performance measures.

[20]

- 7. a) Explain the following:
 - (i) Closeness of functions, (ii) Increment of functional, (iii) Variation of a functional.

[Turn over

Ref. No.: Ex/EE/T/423A/2019

b) Explain how to derive the extreme values of the functions and functionals. Hence derive the fundamental theorem of the Calculus of Variations.

[6+14=20]

- 8. Write short note on any two from the following:
- (i) Describing function as analytical tool for nonlinear system.
- (ii) Linearization of mathematical model of nonlinear systems and its relation to Lyapunov's first method.
- (iii) Formulation of Lyapunov's Candidate Function.
- (iv) Formulation of optimal state regulator problem.