B.E. ELECTRICAL ENGINEERING EXAMINATION 2019

SECOND YEAR FIRST SEMESTER

ELECTRONICS - II

Full Marks: 100		(Use a separate answer script for each part) Time: 3		ours
		PART -I	Full Marks	s: 50
1.	Answer any FOUR	questions:		4x5
a.i) ii)	State De Morgan's Theorem. For a 16 term expression, all odd terms are true, except the last one. Find its minimized Boolean expression in SOP form.			2 3
b.i) ii)		be used as controlled inverter? sing minimum no of NAND gate.		2 3
c.i) ii)		om $(1010)_2$ using 2's complement method. tion $F(A,B,C)=\sum m(1,3,5,6)$ by using only 4:1:	multiplexer.	2 3
d)	Implement half sub	tractor circuit using minimum no. of NAND g	ates.	5
e.i) ii)	What are the asynch Realize D flip flop	nronous inputs of flip flop? Explain their functusing S-R flip flop.	ion.	2 3
2.	Answer any FIVE	questions:		5x6
a.i)	Consider the function $F(A,B,C,D)=\sum m(0,2,3,6,7) + \sum d(8,10,11,15)$. By using Karnaugh map, find out its (a) minimal SOP and (b) minimal POS expressions.			3+3
b)	Design a 4- bit para	llel adder. State its limitations.		4+2
c.i) ii)		al circuit diagram of 1:4 de-multiplexer. y using only 2:1 multiplexer.		4 2
d)		round condition appeared in a J-K flip flop? I ed in a Master Slave configuration.	Describe how the	3+3
e)	Design MOD-6 syn	chronous counterwith thehelpof J-K flip flop.		6
f)	What is shift registed D flip flop.	er? Implement Parallel In Serial Out (PISO) sl	nift register using	1+5

B. ELECTRICAL ENGINEERING 2ND YEAR 1ST SEMESTER EXAMINATION, 2019 ELECTRONICS-II

Time: 3 Hours Full Marks: 100

Use separate Answer - Script for each Part 50 marks for each part PART - IT

Answer any **Five (5)** Questions from the followings: 10×5

- 1. Give a circuit diagram of an integrated current mirror circuit using two transistors Explain how it works? Show that the source current *I* is closely mirrored in the collector of second transistor.
- 2. Make a comparative study between discrete regulator and IC regulator. Give the circuit diagram of IC 7805 full wave voltage regulator circuit and explain the operation of this circuit.
- 3. What do you meant by constant sources and sinks? Explain with suitable circuit diagram and output characteristic how a BJT circuit provides a constant current?
- 4. Design an OPAMP RC Phase shift oscillator for oscillation frequency 320 MHz. Assume that $C = 0.12 \ \mu\text{F}$ and $R_I > 15 \times R$ (Symbols have their usual meanings). Derive the necessary formula you use.
- 5. Differentiate between different multivibrators. Give the internal circuit diagram of 555 IC and explain its operation principle. Calculate the frequency (f), width (W) and duty cycle (D) of astable -multivibrator circuit using IC 555 with $R_I = 70 \text{ K}\Omega$, $R_2 = 35 \text{ K}\Omega$ and C = 45 nF (Symbols have their usual meanings).
- 6. Write down the salient feature of the Darlinton transistor? Show that for a Darlinton transistor $\beta_D = \beta_I \times \beta_2$ (Symbols have their usual meanings). How the input impedance of this transistor is calculated?
- 7. Give the circuit diagram of complementary MOSFET (CMOS) NAND circuit. Explain how it performs the NAND operation?
- 8. Write short note (any two of the followings): 2×5
 - a. Two input TTL NAND circuit
 - b. Transistorised series voltage regulator
 - c. Bootstrap circuit
 - d. Schmitt trigger circuit