Ex/EE/T/211/2019

B.E. ELECTRICAL ENGINEERING SECOND YEAR FIRST SEMESTER - 2019

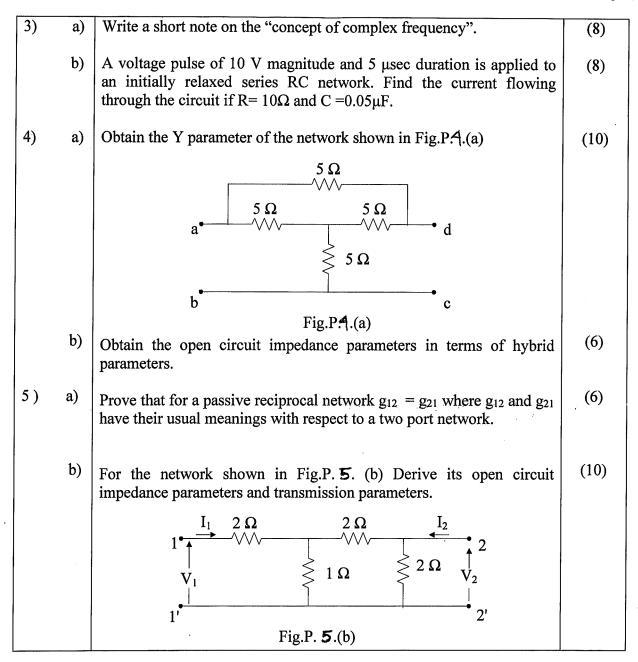
SUBJECT: - CIRCUIT THEORY

Time: Three hours

Full Marks: 100 (50 marks for this part)

Use a separate Answer-Script for each part		
No. of Question	PART -I Answer any Three Questions All the parts of a particular question are to be answered sequentially.	Marks
	(Two marks reserved for well organized answers)	
1) a)	A series combination of resistance R Ohm, inductance L Henry and capacitance C Farad is switched on across a DC voltage source of V volts. Derive the expression for the current in the circuit for the various roots of the characteristic equation. Assume that the initial current through the inductor = I_o Ampere and the initial voltage across the capacitor = v_o volts. Sketch the waveforms of the current.	(10)
b)	Find the Laplace transform of the periodic waveform as shown below	(6)
	f(t) 1 0 a 2a 3a 4a 5a t Fig.P.3.(b)	
2) a)	A series combination of inductance L and capacitance C (both initially relaxed) has been switched across a dc voltage source at $t=0$. Derive expression for the current in the circuit. Comment on the result.	(6)
b)	The network shown in Fig.P.2.(b) has reached its steady state with switch closed. The switch is opened at $t = 0$. Find the expression of $i_L(t)$ in the figure given below after the switch is opened. $ \begin{array}{c} 4\Omega \\ 0.05F \\ \hline \end{array} $ $ \begin{array}{c} i_L(t) \\ 0.05F \\ \end{array} $ $ \begin{array}{c} \bullet \\ V_c(t) \end{array} $ $ \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \end{array} $ $ \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \end{array} $ $ \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \end{array} $	(10)
·	Fig.P.2.(b)	

Ref No:


Ex/EE/T/211/2019

B.E. ELECTRICAL ENGINEERING SECOND YEAR FIRST SEMESTER - 2019

SUBJECT: - CIRCUIT THEORY

Time: Three hours

Full Marks: 100 (50 marks for this part)

Ref. No.: EX/EE/T/211/2019

B. ELECTRICAL ENGINEERING 2ND YEAR 1ST SEMESTER EXAMINATION, 2019

Subject: CIRCUIT THEORY Time: Three Hours Full Marks: 100

Part II (50 marks)

Answer All Questions

Question

No.

Marks

9

Q1 Answer (a) and (b) or (c) and (d)

Q1 (a) Using Source transformation solve for the currents through R_2 and R_3 in the circuit of Figure Q1(a).

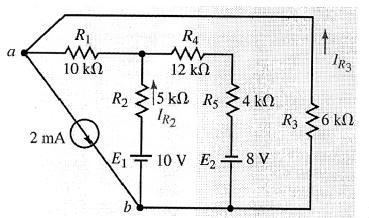
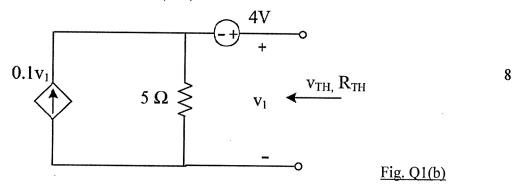
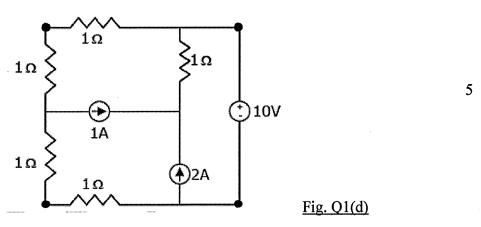
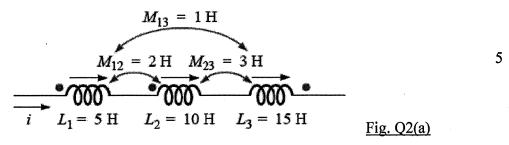



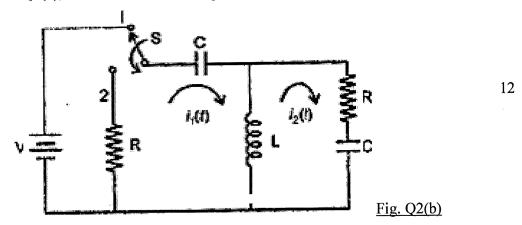
Fig. Q1(a)

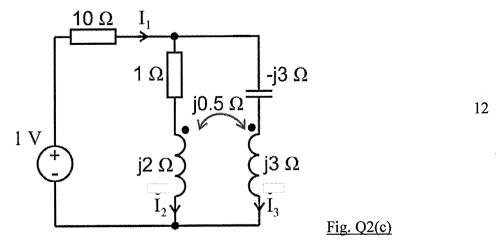
Q1 (b) For the circuit shown in Figure Q1(b), find the values of Thevenin's equivalent voltage (V_{TH}) and resistance (R_{TH}) .

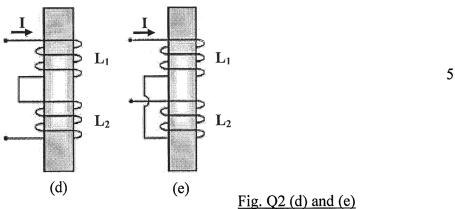


Ref. No.: EX/EE/T/211/2019


Q1 (c) Find the Thevenin's equivalent of the circuit shown in Figure Q1(c) across the terminals 'a-b'.

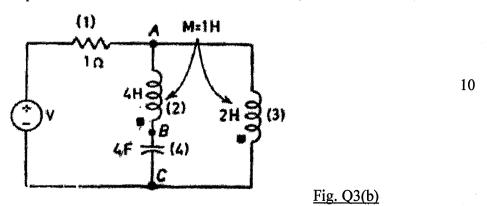

Q1 (d) In the circuit shown in Figure Q1(d), find the power supplied by the 10V voltage source.


- Q2 Answer (a) and (b) or (c) and (d)
- Q2 (a) Find the total inductance of the series coils shown in Figure Q2(a).


(b) Find the equations for the loop currents $I_1(s)$ and $I_2(s)$ for the circuit shown in Q2 Figure Q2(b), after the switch is brought from position 1 to position 2 at t = 0.

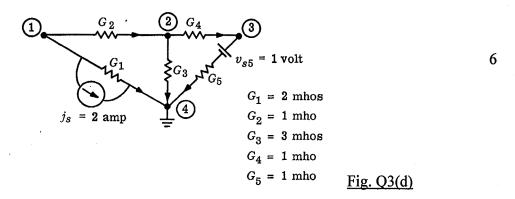
(c) Find the currents I_1 , I_2 and I_3 in the circuit shown in Figure Q2(c). Q2

Put dots to indicate polarities of the mutually coupled coils connected in series Q2 as shown in Figure Q2(d) and Q2(e).



Ref. No.: EX/EE/T/211/2019

Q3 Answer (a) and (b) or (c) and (d)


- Q3 (a) In the context of the Graph of an electrical network define the concept of Incident Matrix.

 Justify the following statement: "All Paths are Subgraph but all Subgraphs are not Path".
- Q3 (b) Draw the graph of the network shown in Figure Q3(b) and obtain the equilibrium equation in matrix form on the node basis.

- Q3 (c) Define Tie-set for a network graph.

 With the help of an example, show how Kirchhoff's Voltage law can be 2+8 written in terms of basic Tie-Set matrix.
- Q3 (d) For the circuit shown in Figure Q3(d), draw the graph to obtain the reduced incidence matrix **A** and show that **AJ=0**, where **J** represents the branch current vector, will yield the node equations.

