Bachelor of enginerring In
 Electrichl Engineerning Cxamination, 201\%)
 (1st Year, 1st Scmester, Sppplementary)
 Princtexes of tudecrical Enginelering - I

Time: Three Hours
Full Marks: 100
(50 marks for eacb part)

Use a separate Answer-script for each Part

PART-K

Answer any three questions

Two mavily are rescrved for neatness and well organized answer script
1.a) Derive the relationship betveen the voltage and current for a purely capacitive circuit. Also show that the average power consumed by the capacitive circuit is zero. Draw the appropriate phasor diagram showing voltage and current rolationship.
b) Calculate the rms and average valucs of current i represented by Fig. 1

Fig. 1
c) Explain the term apparent power, active power, reactive power and power factor.
2. a) A load consumes 7.5 KW at a lagging power factor of 0.6 when connected to a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ power line. Find the value of capacitor to raise the power factor to 0.85 . Show associated phasor diagram.
b) A voltage of 230 V at 50 Hz is applied across a non-inductive resistor connected in series with a capacitor. The current in the circuit is 1.2 A . The power loss in the resistor is 52.8 W . Assume that power loss in the capacitor is negligible. Calculate the resistance and capacitance.
3. a) From dimensional analysis, show that
i) $\sqrt{\frac{L}{C}}$ is dimensionally same as R.
ii) CR has the unit of time.
b) Find the value of total resistance between the terminals A and B of the circuit given in Fig. 2 .

Fig. 2
4. a) Find out Thevenin's equivalent circuit across terminals A and B of the network given in Fig. 3. All resistances are in ohm and current through 20 ohm resistor is 8 A .

Fig. 3
b) State maximum power transfer theorem considering a circuit with ac source with fixed source impedance delivering power to a load consisting of variable complex impedance.
5. Write short notes on any two: 8×2
a) Resonance in series R-L-C circuit.
b) Star-delta conversion of impedances.
c) Thevenin's and Norton's theorem and their relation.

BACHELOR OF ENGINEERING (ELECTRICAL ENGINEERING) FIRST YEAR FIRST SEMESTER SUPPLEMENTARY EXAM - 2018

Subject: PRINCIPLES OF ELECTRICAL ENGINEERING-I
Time: Three Hours
Full Marks: 100

Use separate Answer script for each part
PART-II (50 marks)
Answer any Three Questions
(Q. No. 1 carries 18 marls)

1. a) Define bot (Bi). Find the dimensions of Electric Potential (V) and Magnetic Flux (Φ) in emu unit system.

$$
2+4=6
$$

b) A. circuit consists of resistance R, and capacitive reactance $X c$ and connected. across $115 \mathrm{~V}, 50 \mathrm{~Hz}$ supply and takes 0.8 A current at a power factor of 0.3 leading. Find the value of R and $X c$.
c) Find the Thevenin's equivalent network for given the network.

2. a) State and explain the Superposition Theorem. Find the dimensions of i) $C R^{2}$ \& ii) $\frac{L}{k}$ in MKS unit system.

$$
4+4=8
$$

b) Find the r.m.s. and average value of current wave as shown below-

Subject: PRINCIPLES OF ELECTRICAL ENGINEERING-I

Time: Three Hours
Full Marks: 100
3. a) Discuss the effect of varying frequency upon the current drawn and power factor in a RLC series circuit.

4
b) Show that a non-ideal current source can be replaced by a non-ideal voltage source with similar V-I characteristics.

4
c) In the below network, the voltage across terminals $a \& b$ is 200 V (when they remain opened). When $a \& b$ are shorted, the current flowing through sorting is 10 A . i) Find the value of resistance that should connected across $a \delta b$, so that $5 A$ current flowing through that resistance. ii) Find the value of the resistance such that power delivered to the resistance is maximum. iii) Also find the maximum power that can be transferred to the resistance calculated in ii).

4. a) Derive the r.m.s. and average value of the Half Wave Rectified current.

8
b) An alternating current varying sinusoidally with a frequency of 50 Hz . It has a r.m.s. value of 10 A . Write down the equation for the instantaneous value and find this value for i) 0.0025 sec , i] 0.125 sec after passing through a positive maximum value. At what time measured from a positive maximum value, will the instantaneous current be 7.07 A .

8
5. a) Show that the power consumed by a pure capacitor over a full cycle of applied sinusoidal voltage is zero.

4
b) A coil of resistance 50Ω and inductance $0.12 H$ is connected in series with a capacitance of $80 \mu F$ across $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate i) the current in the circuit, ii) the potential differences across each element and iii) the frequency at which the current would have unity power factor.
c) For a RLC series circuit, discuss the nature of power factor for i) $X_{L}>X_{C}$ and ii) $X_{L}<X_{C}$ with suitable phasor diagram.

