Bachelor of Engineering Examination, 2019(Old)

(Electrical Engg., 1st Year, 2nd Sem)

Time:- Three hours

PHYSICS-IIB

Full Marks:-100

Answer any FIVE questions

- 1. (a) What are the characteristics of de Broglie's matter wave?
- (b) Explain the physical significance of wave function.
- (c) An electron has a speed of 600 m s⁻¹ with an accuracy of 0.005 %. Calculate the certainty with which we can locate the position of the electron. $h = 6.625 \times 10^{-34}$ J-s and mass of electron = 9.1×10^{-31} kg.
- (d) State and explain the basic postulates of quantum mechanics.
- (e) What do you mean by expectation value of a physical dynamical operator? Give one example.
- (f) What you understand by orthogonal and normalized wave functions?

3+3+5+3+3+3

- 2. (a) Write down the expression for energy eigen value of a particle moving inside a box with 'infinite square well potential. Also obtain the expression for the normalized wave function.
- (b) Calculate the expectation value $\langle p_x \rangle$ of the momentum of a particle trapped in a one dimensional box.
- (c) Determine the wavelength associated with an electron having kinetic energy equal to 1 MeV.
- (d) Does the concept of Bohr orbit violate the Heisenberg's uncertainty principle?
- (e) Write down the time independent Schrodinger equation for particle moving in a potential V.

(1+4)+6+4+3+2

- 3. (a) What are the postulates of classical statistical mechanics?
- (b) How do you calculate the number of phase cells in a given energy range of a linear harmonic oscillator?
- (c) Establish the Boltzmann relation between entropy and probability.
- (d) What do understand by macroscopic and microscopic distribution of a statistical system?

3+4+10+3

- 4. (a) Explain the postulate of equal a priori probability.
- (b) How do you interpret the number of microstates accessible to a macroscopic system?
- (c) Use statistical definition of entropy to show that the change in entropy between a state of volume V_i and a state of volume V_f (temperature and number of molecules remaining constant) is equal to $nRlog \frac{v_f}{v_i}$.

(d) Calculate the probability that the speed of oxygen molecule lies between 100 and 101 m/sec at temperature of 200 K.

4+5+8+3

5. (a) Consider an electron of momentum \vec{p} in the Coulomb field of a proton. The total energy is

$$E = \frac{p^2}{2m} - \frac{e^2}{4\pi\epsilon_o r}$$

where r is the distance of the electron from the proton. Assuming that the uncertainty Δr of radial coordinate is $\Delta r \approx r$ and that $\Delta p \approx p$, use Heisenberg's uncertainty principle to obtain an estimate of the size and the energy of the hydrogen atom in the ground state.

- (b) Explain what you understand by the terms potential well and potential barrier. How does a particle with energy lower than the barrier height, tunnel through it? Give one example.
- (c) Write down Schrodinger equation for a linear harmonic oscillator. In what way is the quantum mechanical description of a simple harmonic oscillator different from classical description?

6+(3+5+1)+(2+3)

- 6. (a) A sinusoidal emf is applied to a series LR circuit. Derive an expression for the instantaneous current.
- (b) Find an expression for the power consumed by the circuit.
- (c) A steady current of 2 A flows through a coil of self-inductance 30 mH when connected to a 20 V dc supply. Calculate the power dissipation in the coil when reconnected to a 200 V, 50 Hz ac supply.

8+6+6

- 7. (a) Starting from Maxwell's equations establish the transverse electromagnetic nature of light.
- (b) A fully charged capacitor is suddenly connected to a pure inductor in parallel. Discuss both mathematically and graphically how the charge on the capacitor will vary with time.
- (c) Find the dimensions of the quantity L/R.

10+8+2

- 8. (a) Write down Maxwell's electromagnetic equations. Mention the physical laws from which these equations have been derived.
- (b) Show that Maxwell's equations are consistent with the equation of continuity.
- (c) Distinguish between displacement current and conduction current.
- (d) What is Poynting vector? Find its dimensions.

8+4+4+4