Bachelor of Engineering in (Electrical

Engineering) Examination, 2019

(1st Year, 2nd Semester)
Mathematics - III F
Time: Three hours
Full Marks : 100
(50 marks for each part)
Use a separate Answer-Script for each part

PART - I

Symbols/Notations have theirusual meanings :
Answer any five questions.
$10 \times 5=50$

1. a) Show that the function $f(z)=u+i v$, where

$$
\begin{aligned}
& f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}(z \neq 0) \\
& f(0)=0
\end{aligned}
$$

is continuous and Cauchy-Riemann equations are satisfied at the origin. But does not exist.
b) Define analytic function and singular point.
2. a) Find an analytic function whose real part is

$$
u(x, y)=x^{3}-3 x y^{2}
$$

b) show that an analytic function with constant modulus is constant.
3. a) Find rthe nature and location of singularity of $(z+1) \sin \frac{1}{z-2}$
b) State Residue theorem. Using residue formula evalute $\int_{C} \frac{(z-3)}{z^{2}+2 z+5} d z$, where C is the circle
i) $|z|=1$,
ii) $|\mathrm{z}+1-\mathrm{i}|=2$
$4+6$
4. a) Expand $f(z)=\frac{1}{(z-1)(z-2)}$ in Laurent's series in the region
i) $1<|z|<2$,
ii) $0<|\mathrm{z}-1|<1$.
b) Evaluate the integral,

$$
\int_{C} \frac{\operatorname{Sin}^{2} z}{(z-\pi / 6)^{3}} d t, \text { where } C:|Z|=1
$$

5. Solve the one dimensional heat equation $\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}$ satisfying the conditions :

$$
\mathrm{u}(0, \mathrm{t})=\mathrm{u}(1, \mathrm{t})=0 \text { and }
$$

$$
\mathrm{u}(\mathrm{x}, 0)=\left\{\begin{array}{ccc}
\mathrm{x}, & \text { if } & 0 \leq \mathrm{x} \leq \frac{l}{2} \tag{10}\\
l-\mathrm{x}, & \text { if } & \frac{l}{2} \leq \mathrm{x} \leq l
\end{array}\right.
$$

6. Consider an infinite uniform plate bounded by the lines $x=0$, $x=a$ and $y=0$. The edge $y=0$ is maintained at temperature $\mathrm{f}(\mathrm{x})$ and the remaining edges at temperature 0°. Find the temperature distribution $u(x, y)$ from the equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \tag{10}
\end{equation*}
$$

7. Find the solution in series about for the differential equation

$$
\begin{equation*}
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0 \tag{10}
\end{equation*}
$$

PART - II

Symbols/Notations have their usual meanings :

Answer any five questions.

8. a) Find Laplace transform of (i) (ii) cos at sinhat
b) If $L\left[2 \sqrt{\frac{\mathrm{t}}{\pi}}\right]=\frac{1}{\mathrm{p}^{3 / 2}}$ then show that $\mathrm{L}\left[\sqrt{\frac{\mathrm{t}}{\pi \mathrm{t}}}\right]=\frac{1}{\mathrm{p}^{1 / 2}}$

$$
6+4
$$

9. a) Find the inverse Laplace transform of $\frac{3 p+1}{(p-1)\left(p^{2}+1\right)}$
b) Use convolution theorem to find $\mathrm{L}^{-1}\left[\frac{1}{\left(\mathrm{p}^{2}+\mathrm{a}^{2}\right)^{2}}\right] 5+5$
10. a) Find the Fourier transform of $f(x)$ defined by

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}
1-\mathrm{x}^{2}, & |\mathrm{x}| \leq 1 \\
0 & |\mathrm{x}|>1
\end{array}\right.
$$

b) Find Fourier sine transform of $2 e^{-5 x}+5 e^{-2 x}$.
11. a) Find the inverse Fourier transform of $\frac{\xi}{1+\xi^{2}}$
b) Find Fourier cosine transform of $\mathrm{te}^{-\mathrm{at}}$.
12. Solve the following differential equation by using Laplace transform :

$$
\begin{equation*}
\frac{d^{3} y}{\mathrm{dt}^{3}}+2 \frac{\mathrm{~d}^{2} y}{\mathrm{dt}^{2}}-\frac{\mathrm{dy}}{\mathrm{dt}}-2 \mathrm{y}=0, \quad \mathrm{y}(0)=1, \quad \mathrm{y}^{\prime}(0)=\mathrm{y}^{\prime \prime}(0)=2 \tag{10}
\end{equation*}
$$

13. Prove that

$$
\begin{align*}
\int_{-1}^{1} \mathrm{P}_{\mathrm{m}}(\mathrm{x}) \mathrm{P}_{\mathrm{n}}(\mathrm{x}) \mathrm{dx} & =0, \text { if } \mathrm{m} \neq \mathrm{n} \\
& =\frac{2}{2 \mathrm{n}+1} \text { if } \mathrm{m}=\mathrm{n}
\end{align*}
$$

14. Prove that
i) $\frac{\mathrm{d}}{\mathrm{dx}}\left\{\mathrm{x}^{\mathrm{n}} \mathrm{J}_{\mathrm{n}}(\mathrm{x})\right\}=\mathrm{x}^{\mathrm{n}} \mathrm{J}_{\mathrm{n}-1}(\mathrm{x})$
ii) $n P_{n}=x P_{n}^{\prime}-P_{n-1}^{\prime}$
