BACHELOR OF ENGINEERING IN ELECTRICAL ENGINEERING EXAMINATION, 2019

(1st Year, 1st Semester, Old)

MATHEMATICS - IIF

Time: Three hours Full Marks: 100

(50 marks for each Part)

Use a separate Answer-Script for each Part

PART - I

(Answer question no. 6 and any three from the rest)
(Symbols/Notations have their usual meanings)

1. a) If $\varphi(x,y,z)=c$ represents a surface. Show that $\overline{\nabla}\varphi$ is a vector whose modulus is $\frac{\partial \varphi}{\partial \eta}$ (rate of change of φ along normal) and direction is along the normal to the surface 10

b) If
$$\frac{d\overline{u}}{dt} = \overline{w} \times \overline{u}$$
, $\frac{d\overline{v}}{dt} = \overline{w} \times \overline{v}$,
Show that $\frac{d}{dt}(\overline{u} \times \overline{v}) = \overline{w} \times (\overline{u} \times \overline{v})$

2. a) What is the directional derivative of $\phi = xy^2 + yz^3$ at the point (2,-1,1) in the direction of the normal to the surface $x \log z - y^2 = -4$ at (-1, 2, 1).

[Turn over

[7]

b) Find the particular integral of

Solve:
$$\frac{d^2y}{dx^2} + 4y = x^4 + \cos^2 x.$$
13. Solve:
$$\frac{d^2y}{dx} + 4y = x^4 + \cos(\log x) + 3x.$$

where
$$D = \frac{d}{dx}$$
.

14. Explain the method of variation of parameters for solving a second order differential equation of the form

$$A(x) = A(x) + \frac{dy}{xb} + P(x) + \frac{d^2b}{xb}$$

and hence solve

$$10$$

b) Prove that

$$\overline{(\mathbf{d} \times \overline{\mathbf{V}}) \times \overline{\mathbf{A}} + (\overline{\mathbf{A}} \times \overline{\mathbf{V}}) \times \mathbf{d}} + \overline{\mathbf{d}}(\overline{\mathbf{V}} \cdot \overline{\mathbf{A}}) + \overline{\mathbf{A}}(\overline{\mathbf{V}} \cdot \overline{\mathbf{d}}) = (\overline{\mathbf{d}} \cdot \overline{\mathbf{A}})\overline{\mathbf{V}}$$

3. a) Verify Green's theorem in a plane to evaluate

$$\int_{\mathcal{S}} |(3x - 8y^2) dx + (4y - 6xy) dy$$

where c is the boundary of the region defined by x=0,

$$8 \qquad \qquad l = \gamma + x \text{ and } 0 = \gamma$$

b) If u, v, w are orthogonal curvilinear co-ordinates show

that $\frac{\partial \vec{l} \cdot \partial \vec{l} \cdot \partial \vec{l}}{\partial u \cdot \partial v \cdot \partial w}$ and $\nabla u, \nabla v, \nabla w$ are reciprocal system of vectors.

4. State Gauss Divergence theorem.

Verify Gauss Divergence theorem for $\overline{F} = 4xz\hat{i} - y^2\hat{j} + yz\bar{k}$ and S is the surface of the cube bounded by x = 0, y = 0, z = 0 and z = z, y = z, z = z.

5. a) Express the vector $\overline{A} = 2y\hat{i} - z\hat{j} + 3x\bar{k}$, in spherical polar co-ordinates and determine A_{γ} , A_{θ} , A_{ϕ} , A_{ϕ} 10

$$brove \frac{\sqrt{2} \sin^3 \sin^3 \sin^3 \theta}{\sqrt{2}} = \sin^3 \theta \sin^3 \theta$$

7

6. State Green's theorem.

b) Use cayley-Hamilton theorem to find the inverse of the matrix

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 5+5

10. a) Solve, by matrix inversion, the equations

$$x + 2y + 3z = 14$$

 $2x - y + 5z = 15$
 $2y + 4z - 3x = 13$.

- b) If $A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$, express $2A^5, -3A^4 4I$ as a linear polynomial in A.
- 11. a) Solve the differential equation

$$x \log x \frac{dy}{dx} + y = 2 \log x.$$

b) Find the integrating factor of the differential equation

$$(xy^3 + y)dx + (2x^2y^2 + 2x)dy = 0.$$
 5+5

12. a) Find the general solution of the differential equation

$$(D^4 - 1)y = e^x \cos x$$
, where $D \equiv \frac{d}{dx}$.

PART - II

Answer *any five* questions.

 5×10

7. a) Show that

$$\begin{vmatrix} b+c & a-c & a-b \\ b-c & c+a & b-a \\ c-b & c-a & a+b \end{vmatrix} = 8abc.$$

- b) Factorise $\begin{vmatrix} \alpha & \beta & 1 \\ \alpha^2 & \beta^2 & 1 \\ \alpha^3 & \beta^3 & 1 \end{vmatrix}$. 5+5
- 8. a) Find the rank of the matrix

$$\begin{pmatrix}
1 & 2 & 3 \\
2 & 1 & 0 \\
0 & 1 & 2
\end{pmatrix}$$

b) Find the value of K such that the following system of linear equations is consistant:

$$2x + y - z = 12$$
, $x - y - 2z = -3$, $3y + 3z = k$. $5+5$

9. a) Find the eigenvalues and the eigenvectors of the matrix

$$\begin{pmatrix} 3 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$

[Turn over

PART-II

 $01\times c$

7. a) Show that

Answer any five questions.

	a + 6	c - 3	a-5
	R – 0	c + s	$\mathfrak{I} - \mathfrak{Q}$
.2020 -	0 1	2 12	2 0
= 8abc.	a – b	3-6	3+4

b) Factorise $\begin{vmatrix} \alpha & \beta & 1 \\ \alpha^2 & \beta^2 & 1 \\ \alpha^3 & \alpha^3 & 1 \end{vmatrix}$

8. a) Find the rank of the matrix

7	Ţ	0)
0	Ţ	7
3)	7	IJ

equations is consistant:

 $b) \quad Find the value of K such that the following system of linear \\$

$$\lambda + \lambda = \lambda = \lambda$$
, $\lambda + 3\lambda = \lambda$, $\lambda + 3\lambda = \lambda$.

9. a) Find the eigenvalues and the eigenvectors of the matrix

$$\begin{array}{c|cccc}
\hline
I & S & I \\
\hline
I & S & I
\end{array}$$

[Turn over

b) Use cayley-Hamilton theorem to find the inverse of the

xinem

10. a) Solve, by matrix inversion, the equations

$$\lambda I = z\xi + \zeta \zeta + x$$

$$\xi I = z\xi + \zeta - x\zeta$$

$$\xi I = x\xi - z + \zeta \zeta$$

b) If $A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$, express $\frac{2A^5 - 3A^4 - 41}{4}$ as a linear

 $\varsigma + \varsigma$

.A ni lsimonyloq

11. a) Solve the differential equation

$$x \log x \frac{dy}{dx} + y = 2 \log x.$$

b) Find the integrating factor of the differential equation

$$c + \delta = \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2}$$

12. a) Find the general solution of the differential equation

$$(D^4 - I)y = e^x \cos x$$
, where $D = \frac{d}{dx}$.