Bachelor of Engineering in Electrical Engineering Examination, 2019
(1st Year, 1st Semester, Old)
Mathematics - IIF
Time: Three hours
Full Marks: 100
(50 marks for each Part)
Use a separate Answer-Script for each Part

PART - I

(Answer question no. 6 and any three from the rest)
(Symbols/Notations have their usual meanings)

1. a) If $\varphi(x, y, z)=c$ represents a surface. Show that $\bar{\nabla} \varphi$ is a vector whose modulus is $\frac{\partial \varphi}{\partial \eta}$ (rate of change of φ along normal) and direction is along the normal to the surface
b) If $\frac{d \bar{u}}{d t}=\bar{w} \times \bar{u}, \frac{d \bar{v}}{d t}=\bar{w} \times \bar{v}$,

$$
\begin{equation*}
\text { Show that } \frac{\mathrm{d}}{\mathrm{dt}}(\overline{\mathrm{u}} \times \overline{\mathrm{v}})=\overline{\mathrm{w}} \times(\overline{\mathrm{u}} \times \overline{\mathrm{v}}) \tag{6}
\end{equation*}
$$

2. a) What is the directional derivative of $\phi=x y^{2}+y z^{3}$ at the point $(2,-1,1)$ in the direction of the normal to the surface $\mathrm{x} \log \mathrm{z}-\mathrm{y}^{2}=-4$ at $(-1,2,1)$.

9I

 8

8

$$
\cdot \mathrm{I}=\Lambda+\mathrm{x} \text { pue } 0=\Lambda
$$

b) Use cayley-Hamilton theorem to find the inverse of the matrix

$$
A=\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1 \\
2 & 0 & 3
\end{array}\right)
$$

10. a) Solve, by matrix inversion, the equations

$$
\begin{aligned}
& x+2 y+3 z=14 \\
& 2 x-y+5 z=15 \\
& 2 y+4 z-3 x=13
\end{aligned}
$$

b) If $A=\left(\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right)$, express $2 A^{5},-3 A^{4}-4 I$ as a linear polynomial in A .
11. a) Solve the differential equation

$$
x \log x \frac{d y}{d x}+y=2 \log x
$$

b) Find the integrating factor of the differential equation

$$
\left(x y^{3}+y\right) d x+\left(2 x^{2} y^{2}+2 x\right) d y=0
$$

$$
5+5
$$

12. a) Find the general solution of the differential equation $\left(D^{4}-1\right) y=e^{x} \cos x$, where $D \equiv \frac{d}{d x}$.

PART - II

Answer any five questions.
7. a) Show that

$$
\left|\begin{array}{lll}
\mathrm{b}+\mathrm{c} & \mathrm{a}-\mathrm{c} & \mathrm{a}-\mathrm{b} \\
\mathrm{~b}-\mathrm{c} & \mathrm{c}+\mathrm{a} & \mathrm{~b}-\mathrm{a} \\
\mathrm{c}-\mathrm{b} & \mathrm{c}-\mathrm{a} & \mathrm{a}+\mathrm{b}
\end{array}\right|=8 \mathrm{abc} .
$$

b) Factorise $\left|\begin{array}{ccc}\alpha & \beta & 1 \\ \alpha^{2} & \beta^{2} & 1 \\ \alpha^{3} & \beta^{3} & 1\end{array}\right|$.
8. a) Find the rank of the matrix

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 0 \\
0 & 1 & 2
\end{array}\right)
$$

b) Find the value of K such that the following system of linear equations is consistant:

$$
2 x+y-z=12, \quad x-y-2 z=-3, \quad 3 y+3 z=k
$$

9. a) Find the eigenvalues and the eigenvectors of the matrix

$$
\left(\begin{array}{lll}
3 & 1 & 1 \\
1 & 5 & 1 \\
1 & 1 & 3
\end{array}\right)
$$

เəл๐ $\left.\operatorname{umn}_{L}\right]$

: ұUセłsisuoo sị suoṭenbo

§+؟
$0 I \times \varsigma$

II - LXVd
[$\mathcal{E}]$

$0=\kappa p\left(x_{Z}+{ }_{Z} \kappa_{Z} \mathrm{x} Z\right)+\mathrm{xp}\left(\Lambda+{ }_{\ell} \mathrm{X} \mathrm{x}\right)$

$\varsigma+\varsigma$

[t]

