11. a) Evaluate the limit: $\lim_{n\to\infty} \left[\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+3n} \right]$ as an integral.

b) Prove that
$$\int_{0}^{\infty} e^{-x^2} dx = \sqrt{\frac{\pi}{4}}$$
. 5+5

- 12. a) Examine the convergence of $\int_0^1 \frac{x^{p-1}}{1-x} dx$
 - b) Show that $\int_0^{\frac{\pi}{2}} \frac{x^m}{\sin^n x} dx$ is convergent iff n < 1 + m.

5+5

13. a) Prove that
$$\beta(m,n) = \int_0^1 \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx$$
.

- b) Prove that
 - i) $\gamma(1) = 1$.

ii)
$$\beta\left(\frac{3}{2}, \frac{1}{2}\right) = \frac{\pi}{2}$$
. 5+5

14. Let $f:[a,b] \to \mathbb{R}$, $g:[a,b] \to \mathbb{R}$ be both integrable on [a, b]. Then show that f + g is integrable on [a, b] and $\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g.$

BACHELOR OF ENGINEERING IN ELECTRICAL ENGINEERING EXAMINATION, 2019

(1st Year, 1st Semester, Old)

MATHEMATICS - IF

(50 marks for each Part)

Use a separate Answer-Script for each Part

Time: Three hours Full Marks: 100

PART-I

Answer any five questions.

- 1. State and prove Mean Value Theorem and give its geometrical interpretation with appropriate diagram. 10
- 2. If $y = e^{a \sin^{-1} x}$, prove that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} (x^2 + a^2)y_n = 0 \text{ and also find the value of } y_n \text{ for } x = 0.$
- 3. a) If $f(h) = f(0) + hf^{1}(0) + \frac{h^{2}}{2!}f^{11}(\theta h)$, $0 < \theta < 1$, find θ , when h = 1 and $f(x) = (1 x)^{5/2}$.
 - b) Expand log(1+x) in power of x in infinite series stating the condition under which the expansion is valid. 5+5
- 4. Evaluate

i) Lt
$$\left(\frac{\tan x}{x}\right)^{\frac{1}{x}}$$

[Turn over

i) Lt
$$\underset{x\to 0}{e^x - e^{-x} - 2x}$$
 6+4

5. State the necessary conditions for maximum and minimum with two variables. Find maxima and minima of the function.

$$4x^2 - xy + 4y^2 + x^3y + xy^3 - 4$$

- 6. a) State and prove Euler's theorem on homogeneous functions in two variables.
 - b) If $u = \tan^{-1} \frac{x^3 + y^3}{x y}$, show that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u.$$

7. If v is a function of x and y, then show that

$$\frac{\partial^2 \mathbf{v}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{v}}{\partial \mathbf{y}^2} = \frac{\partial^2 \mathbf{v}}{\partial \mathbf{v}^2} + \frac{1}{\mathbf{r}} \frac{\partial \mathbf{v}}{\partial \mathbf{r}} + \frac{1}{\mathbf{r}^2} \frac{\partial^2 \mathbf{v}}{\partial \theta^2}$$

where $x = r\cos\theta$ and $y = r\sin\theta$.

PART - II

Answer any five questions.

- 8. a) A function f is defined on [0, 1] by $f(x) = \begin{cases} x, & x \in [0,1] \cap Q \\ 0, & x \in [0,1] \setminus Q. \end{cases}$ Find $\int_{\underline{0}}^{1} f$ and $\int_{0}^{\overline{1}} f$. Deduce that f is not integrable on [0,1].
 - b) A function f is defined on [a, b] by $f(x) = e^x$. Find $\int_{\underline{a}}^{\underline{b}} f$ and $\int_{\underline{a}}^{\overline{b}} f$. Deduce that f is integrable on [a, b]. 5+5
- a) Let [a,b] ⊂ R and f:[a,b] → R be a function of bounded variation on [a, b]. Then prove that f is bounded on [a, b].
 - b) $f:[0,3] \to \mathbb{R}$ be defined by $f(x) = x^2 4x + 3$, $x \in [0,3]$. Show that f is a function of bounded variation on [0,3]. Calculate $V_0^3(f)$.
- 10. a) A function $f:[a,b] \to \mathbb{R}$ is bounded on [a, b] and for every $c \in (a,b)$, f is integrable on [c, b]. Prove that f is integral on [a, b].
 - b) Prove that $\frac{1}{2} < \int_{0}^{1} \frac{dx}{\sqrt{4 x^2 + x^3}} < \frac{\pi}{6}$. 5+5

[Turn over