11. a) Evaluate the limit: $\lim _{\mathrm{n} \rightarrow \infty}\left[\frac{1}{\mathrm{n}+1}+\frac{1}{\mathrm{n}+2}+\cdots+\frac{1}{\mathrm{n}+3 \mathrm{n}}\right]$ as an integral.
b) Prove that $\int_{0}^{\infty} \mathrm{e}^{-\mathrm{x}^{2}} \mathrm{dx}=\sqrt{\frac{\pi}{4}}$.
12. a) Examine the convergence of $\int_{0}^{1} \frac{\mathrm{x}^{\mathrm{p}-1}}{1-\mathrm{x}} d \mathrm{x}$
b) Show that $\int_{0}^{\frac{\pi}{2}} \frac{x^{m}}{\sin ^{n} x} d x$ is convergent iff $n<1+m$.
13. a) Prove that $\beta(m, n)=\int_{0}^{1} \frac{x^{m-1}+x^{n-1}}{(1+x)^{m+n}} d x$.
b) Prove that
i) $\gamma(1)=1$.
ii) $\beta\left(\frac{3}{2}, \frac{1}{2}\right)=\frac{\pi}{2}$.
14. Let $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbf{R}, \mathrm{g}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbf{R}$ be both integrable on $[a, b]$. Then show that $f+g$ is integrable on $[a, b]$ and $\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g$.

Bachelor of Engineering in Electrical Engineering

 Examination, 2019(1st Year, 1st Semester, Old)

Mathematics - IF

(50 marks for each Part)
Use a separate Answer-Script for each Part
Time: Three hours
Full Marks: 100

PART - I

Answer any five questions.

1. State and prove Mean Value Theorem and give its geometrical interpretation with appropriate diagram. 10
2. If $y=e^{a \operatorname{Sin}^{-1} x}$, prove that
$\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(x^{2}+a^{2}\right) y_{n}=0$ and also find the value of y_{n} for $x=0$.
3. a) If $f(h)=f(0)+h f^{1}(0)+\frac{h^{2}}{2!} f^{11}(\theta h), 0<\theta<1$, find θ, when $h=1$ and $f(x)=(1-x)^{5 / 2}$.
b) Expand $\log (1+x)$ in power of x in infinite series stating the condition under which the expansion is valid. $5+5$
4. Evaluate
i) $\underset{x \rightarrow 0}{\operatorname{Lt}}\left(\frac{\tan x}{x}\right)^{\frac{1}{x}}$
ii) $\operatorname{Lt}_{\mathrm{x} \rightarrow 0} \frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}-2 \mathrm{x}}{\mathrm{x}-\sin \mathrm{x}}$
$6+4$
5. State the necessary conditions for maximum and minimum with two variables. Find maxima and minima of the function.

$$
\begin{equation*}
4 x^{2}-x y+4 y^{2}+x^{3} y+x y^{3}-4 \tag{10}
\end{equation*}
$$

6. a) State and prove Euler's theorem on homogeneous functions in two variables.
b) If $u=\tan ^{-1} \frac{x^{3}+y^{3}}{x-y}$, show that

$$
\mathrm{x} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\mathrm{y} \frac{\partial \mathrm{u}}{\partial \mathrm{y}}=\operatorname{Sin} 2 \mathrm{u}
$$

7. If v is a function of x and y, then show that

$$
\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=\frac{\partial^{2} v}{\partial v^{2}}+\frac{1}{r} \frac{\partial v}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} v}{\partial \theta^{2}}
$$

where $x=r \cos \theta$ and $y=r \sin \theta$.
10

PART - II

Answer any five questions.

8. a) A function f is defined on $[0,1]$ by $f(x)=\left\{\begin{array}{ll}x, & x \in[0,1] \cap Q \\ 0, & x \in[0,1] \backslash Q .\end{array}\right.$ Find $\int_{\underline{0}}^{1} f$ and $\int_{0}^{\overline{1}} f$. Deduce that f is not integrable on $[0,1]$.
b) A function f is defined on $[a, b]$ by $f(x)=e^{x}$. Find $\int_{\underline{a}}^{b} f$ and $\int_{a}^{\bar{b}} f$. Deduce that f is integrable on $[a, b]$.
9. a) Let $[a, b] \subset R$ and $f:[a, b] \rightarrow \mathbf{R}$ be a function of bounded variation on $[a, b]$. Then prove that f is bounded on $[\mathrm{a}, \mathrm{b}]$.
b) $\mathrm{f}:[0,3] \rightarrow \mathbf{R}$ be defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-4 \mathrm{x}+3$, $x \in[0,3]$. Show that f is a function of bounded variation on $[0,3]$. Calculate $V_{0}^{3}(f)$.
$5+5$
10. a) A function $f:[a, b] \rightarrow \mathbf{R}$ is bounded on $[a, b]$ and for every $c \in(a, b)$, f is integrable on $[c, b]$. Prove that f is integral on $[a, b]$.
b) Prove that $\frac{1}{2}<\int_{0}^{1} \frac{\mathrm{dx}}{\sqrt{4-\mathrm{x}^{2}+\mathrm{x}^{3}}}<\frac{\pi}{6}$.
