Ref. No.: Ex/CE/T/321/2019

B. E. CIVIL ENGINEERING 3^{RD} YEAR 2^{ND} SEMESTER EXAMINATION 2019 TRANSPORTATION ENGINEERING – II

Time: 3 Hours Full Marks: 100

Answer Question No 1 and one each from each group

1. Draw a typical schematic plan of layout of an airport and name the major components. Explain one major function of each of the components.

1+3+6

5×5

GROUP - A

- 2. Illustrate the following
 - a. Analysis of Parking Survey Data
 - b. Representation of Accident Data
 - c. Delay & Its types
 - d. External Cordon Line and its characteristics
 - e. Automatic method of Volume Study
- 3. a) From the following observations of a moving car study determine the Average Density of flow (considering journey speed) of each direction AD & DA.

Vehicles met with Running Time Length Delay Section (m) (sec) (sec) Opposite Direction Overtaking Overtaken AB 600 23 19 156 48 28 В BC 400 17 17 14 190 6 C 58 16 ------CD 500 184 15 11 12 11 50 11 D ---___ DC 500 150 15 20 10 13 49 19 C 10 CB 400 190 25 29 7 50 17 --В 600 14 11 171 15 30 BA

b) Determine Overall Parking Load, Average Parking Index, Parking Volume, Average Turnover, and Average Duration from the following parking survey data collected in 10minutes frequency.

Time	1	2	3	4	5	6	7	8	9	- 10	11	12
0-10	7007	7402	2292	6725	2482	7197	·	9339	8191	9609	3040	5070
10-20	7007	7402	2292	6725	2482	7197	9484	9339	8191	9609	3040	5070
20-30	7007	7402	2292	6725	2482	7197	9484	9339	8191		3040	5070
30-40	7007	7402	2292	6725	0968.	7197	9484	9339	5162		3040	5070
40-50	7007		3483	6725	0968	7197		7305	5162		3040	5070
50-60	7007				0968	7197		7305	8313			5070

5

10

GROUP - B

movement, draw cases considering	neatly the possit the intersection	th and East-West direction both having dual 3-lane carriagewer perpendicularly at point X. Without considering any pede le two cases of 4-phase signalling and solve the optimum of the as good and approach traffic as given below. Assume a single us, amber phase and starting delay for all phases as 4secs and	strian ie two
From	Nimala		

		North			South			East			West	•
To flow	E 94	S 554	W 43	W 41	N 804	E 41	S -36	\\/	M	N	E	S 54

20

3+3

2 10

3+4

2

5.	a)	Explain in detail how	design	traffic	is co	mputed	for turning	streams	while	designing an	ontimum
. •		signal cycle.					3			designing an	Оринин

h)	Explain clearly the difference between				
\circ_j	Explain clearly the difference between	regulatory and	cautionary	type of road	cianage and weite
	ala and 11 00.	0	- and a contract y	type or road	signage and write
	short notes on different types of regulator	nry gionage			
	· · · · · · · · · · · · · · · · · · ·	ory orginago.			

C)	HVD 212 different tymes of all 1		
Ψ,	- Papiani unititient types of along the road ma	arkers based upon colours and the sun-	
	Explain different types of along the road ma	arkers based upon colours and fille type	.S.

GROUP - C

6.	a)	Draw a neat and typical structural cr	oss	section of a	flexible	pavement.	Explain the m	iaior
1		functions of the topmost layer.				p	Suprair the III	ajoi
	1.5	The state of the s		-				

b)	Explain the phenomenon	called	rutting	and its signific	ance in flexible	navement desic	m following
	IRC 2012	•	٠. ٠			· parement desig	,n ronowing

c)	Explain briefly the different applications	of	`Bitumen	in flexible	pavement construction

7.	(a)	Name the major two types of pavement and state the basic difference	among them	on the b	asis of
•		load transfer mechanism and failure character.			

b)	Explain the significance of providing spacer discs in a CBR mould
c)	Determine the CBR value of subgrade soil from the following laboratory test observations
	Penetration (mm) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0 7.5 10.0 12.5
	Load (kg) 0 5 17 29 42 50 58 70 78 92 102 108

GROUP - D

- Explain where and why Dowel Bars are provided. With a neat sketch describe the construction process of Dowel system
 - b) Without elaborating on the equations involved, explain the principle of determination of thickness of a rigid pavement slab.
 - Explain why contraction joints are provided in rigid pavement
 - d) Applying IRC (2002) methods, design the required joints and reinforcements at joints for a 300mm thick rigid pavement, considering the following data and the formulas -Design wheel load = 10,200Kg, Maximum permissible joint spacing = 25mm, Maximum seasonal temperature variation = 30°c, Modulus of sub-grade reaction= 8kg/cm³, Width of Slab= 3500mm, Coefficient of friction = 1.5, Diameter of dowel = 20mm, Diameter of tie = 12mm, Radius of equivalent contact area = 150mm, Modulus of elasticity of concrete = 3×10⁵kg/cm², Coefficient of thermal expansion of concrete = 1×10^{-5} /°c, Unit weight of concrete = 2400kg/cm^3 , Poisson's ratio of concrete = 0.15, Flexural strength of concrete = 40kg/cm², Tensile strength of

3

3+3

12

- Radius of Relative Stiffness, $l = \left[\frac{E.t^3}{12k(1-v^2)}\right]^{1/4}$
- Effective Length of Dowel $L_d = 5d \left[\frac{f_{st}}{f_{bc}} \times \frac{L_d + 1.5\delta}{L_d + 8.8\delta} \right]^{1/2}$
- Capacity of a Dowel: Shear = $0.785d^2f_{SS}$; Bending = $\frac{2d^3f_{SL}}{L_d + 8.8\delta}$; Bearing = $\frac{dL_d^2f_{bc}}{12.5(L_d + 1.5\delta)}$
- Area of Tie = $\frac{L_Y \mu \gamma_c t}{f_{ct}}$
- Length of Tie = $\frac{f_{st}}{d_{tie}f_{st}}$ 2 f_{bc}
- **9**. a) Explain Vehicle Distribution Factor how it can be computed for a known axle category and its significance in IRC method of Design of Flexible Pavements
 - b) Explain the basic failure mechanism of a flexible pavement against which the structural design is made.
 - c) How is the design traffic calculated from present day traffic survey data? Explain why different equations are used to calculate traffic at the end of construction and design life.
 - d) Applying IRC (2012) method and the given pavement design catalogue, design suitable flexible pavement section and draw neatly a scaled cross-section diagram of it for a dual 3-lane carriageway in each direction considering Subgrade CBR 4.5%; Annual traffic growth rate 7.5%, construction period of 2 years and design life 20 years. The present day traffic as recorded is as follows –

	Traffic Volume (in veh/day)								
Direction of flow	Tander	n Axle	Single Axle						
	12.0t	10.0t	8.0t	6.0t	5.0t	3.0t			
Onward	1000	2500	5000	4500	2500	1300			
Return	1500	1500	7500	4000	3000	1200			

Pavement Design Catalogue (IRC:37 - 2012)

ent besign Catalogue (IRC.57 – 2012)							
	Cumulative Traffic (in msa)	PAVEMENT COMPOSITION (Thickness in mm)					
		Wearing Course	Base Course	Subgrade CBR 4%		Subgrade CBR 5%	
				Surface	Sub-base	Surface	Sub-base
				Course	Course	Course	Course
	<u> </u>	20	225		255		205
	2	20	225	. 50	265	50	215
	3	- 20	250	50	280	50	230
	5	25	250	60	285	55	250
	10	40	250	80	330	70	300
	20	40	250	110	330	100	300
	30	40	250	130	330	120	300
	• 50	40	250	160	330	140	300
	100	50	250	170	330	150	300
Ī	150	50	250	190	330	170	300