6. (a) Find the complete integral of $\mathrm{p}^{2}=\mathrm{qz}$.
(b) Solve the partial differential equation

$$
\begin{equation*}
\frac{\partial^{2} z}{\partial x^{2}}-4 \frac{\partial^{2} z}{\partial x \partial y}+4 \frac{\partial^{2} z}{\partial y^{2}}=e^{2 x-y} \tag{8}
\end{equation*}
$$

(c) Solve :

$$
\begin{equation*}
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial x \partial y}-6 \frac{\partial^{2} z}{\partial y^{2}}=\cos (2 x+y) \tag{8}
\end{equation*}
$$

7. A string of length ℓ fixed at both ends is initially at rest in its equilibrium position and motion is started by giving each of its points a velocity given by

$$
\begin{aligned}
v & =c x, \text { if } 0 \leq x \leq \frac{\ell}{2} \\
& =c(\ell-x) \text { if } \frac{\ell}{2} \leq x \leq \ell
\end{aligned}
$$

Find the displacement function $y(x, t)$ of the string.

BACHELOR OF CIVIL ENGINEERING EXAMINATION, 2019
(2nd Year, 1st Semester, Old Syllabus)

Mathematics - III C

Time : Three hours
Full Marks : 100

Answer any five questions.

1. (a) Show that the differential equation

$$
\frac{d y}{d x}=\frac{\tan y-y-2 x y}{\sec ^{2} y-x \tan ^{2} y+x^{2}+2}
$$

is an exact equation and solve it.
(b) Solve the differential equation $\frac{d y}{d x}+y \cos x=\frac{1}{2} \sin 2 x$
(c) State the order and degree of the differential equation :
$\frac{d^{2} y}{d x^{2}}=\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}$
(d) Solve :
$\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+4 y=e^{3 x}+\cos 5 x$
2. (a) Find the solution of the differential equation in series form near the origin :

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=0 . \tag{8}
\end{equation*}
$$

(b) Prove that
(i) $n P_{n}(x)-(2 n-1) x P_{n-1}(x)+(n-1) P_{n-2}(x)=0$
(ii) $\mathrm{x}_{\mathrm{n}}^{\prime}(\mathrm{x})-\mathrm{P}_{\mathrm{n}-1}^{\prime}(\mathrm{x})=\mathrm{n} \mathrm{P}_{\mathrm{n}}(\mathrm{x})$ where $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$ is Legendre polynomial of degree n. $\quad 6+6$
3. (a) Prove that

$$
\begin{aligned}
\int_{-1}^{1} P_{m}(x) P_{n}(x) d x & =0 \quad,(m \neq n) \\
& =\frac{2}{2 n+1}, m=n, n=0,1,2, \ldots \quad 10
\end{aligned}
$$

(b) Establish the relation

$$
e^{\frac{x}{2}\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty} t^{n} J_{n}(x)
$$

where $\mathrm{J}_{\mathrm{n}}(\mathrm{x})$ is Bessel function of order n . 10
4. (a) Find the Fourier series for

$$
\begin{align*}
& \mathrm{f}(\mathrm{x})=\mathrm{x}^{2} \text { in }-\pi \leq \mathrm{x} \leq \pi \text { and deduce that } \\
& \frac{\pi^{2}}{6}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots . \tag{12}
\end{align*}
$$

(b) Find the Fourier sine series for the function $f(x)=\pi-x$ in $0<x<\pi$.
5. (a) State the convolution theorem for Laplace transform. By using convolution theorem find

$$
\begin{equation*}
L^{-1}\left[\frac{1}{\left(S^{2}+1\right)\left(S^{2}+4\right)}\right] \tag{10}
\end{equation*}
$$

(b) Solve by the method of Laplace transform the following differential equation :
$\frac{d^{2} y}{d x^{2}}+8 \frac{d y}{d x}+25 y=0$
subject to the conditions

$$
\begin{align*}
& y=4 \quad \text { when } x=0 \\
& \frac{d y}{d x}=-16 \tag{10}
\end{align*}
$$

