
Ex./CE/MATH/T/211/2019(OLD)

BACHELOR  OF  CIVIL ENGINEERING  EXAMINATION, 2019

(2nd Year, 1st Semester, Old Syllabus)

Mathematics - III C

Time : Three hours Full Marks : 100

Answer any five questions.

1. (a) Show that the differential equation
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is an exact equation and solve it. 5

(b) Solve the differential equation
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(c) State the order and degree of the differential
equation :
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(d) Solve :
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6. (a) Find the complete integral of p2 = qz. 4

(b) Solve the partial differential equation
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(c) Solve :
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7. A string of length   fixed at both ends is initially at
rest in its equilibrium position and motion is started
by giving each of its points a velocity given by

, 0
2

( )
2

v cx if x

c x if x

  

  




 

Find the displacement function y(x,t) of the
string. 20
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2. (a) Find the solution of the differential equation in
series form near the origin :
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(b) Prove that
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Legendre polynomial of degree n. 6+6

3. (a) Prove that
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(b) Establish the relation
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where J
n
(x) is Bessel function of order n. 10

4. (a) Find the Fourier series for

f(x) = x2 in –  x and deduce that
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(b) Find the Fourier sine series for the function

f(x) = – x in 0 < x < . 8

5. (a) State the convolution theorem for Laplace
transform. By using convolution theorem find
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(b) Solve by the method of Laplace transform the
following differential equation :
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subject to the conditions

y = 4      when x = 0
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