10. (a) Prove that the straight lines
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and
$4 x-3 y+1=0=5 x-3 z+2$, are coplanar.
(b) Find the point where the line joining the points $(2,-3,1)$ and $(3,-4,-5)$ cuts the plane

$$
2 x+y+z=7
$$

11. (a) Find the equation of sphere having the circle $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-10 \mathrm{y}+2 \mathrm{z}-8=0, \mathrm{x}+\mathrm{y}+\mathrm{z}=2$ as a great circle.
(b) Find the values of c for which the plane $x+y+z=c$ touches the sphere

$$
x^{2}+y^{2}+z^{2}-2 x-2 y-2 z-6=0
$$

BACHELOR OF CIVIL ENGINEERING EXAMINATION, 2019

 (1st Year, 1st Semester, Old Syllabus)Mathematics - II C
Time : Three hours
Full Marks : 100

Use separate Answer-Scripts for each part.

PART - I

Answer any five questions.

1. (a) Find the eigen values and corresponding eigen vector of the matrix

$$
\mathrm{A}=\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right]
$$

(b) If $A=\left(\begin{array}{ccc}1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0\end{array}\right)$, then verify

Cayley Hamilton theorem for the matrix A and hence find A^{-1}.
$5+5$
2. (a) Solve the system of equations by Cramer's rule : $x+2 y-3 z=1,2 x-y+z=4, x+3 y=5$.
(b) Define eigen values of a matrix show that if λ is an eigen value of a non singular matrix A , then λ^{-} ${ }^{1}$ is also an eigen value of A^{-1}.
$5+5$
3. (a) Expand by Laplace's method to prove that

$$
\left[\begin{array}{cccc}
a & b & c & d \\
-b & a & d & -c \\
-c & -d & a & b \\
-d & c & -b & a
\end{array}\right]=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)^{2}
$$

(b) Solve, if possible, the system of equations

$$
\begin{aligned}
& x_{1}+2 x_{2}-x_{3}=10 \\
& -x_{1}+x_{2}+2 x_{3}=2 \\
& 2 x_{1}+x_{2}-3 x_{3}=2
\end{aligned}
$$

4. (a) Test for convergence of the following series
(i) $\frac{5}{1.2 .4}+\frac{7}{2.3 .5}+\frac{9}{3.4 .6}+\frac{11}{4.5 .7}+\ldots$.
(ii) $\frac{1}{3}+\left(\frac{2}{5}\right)^{2}+\left(\frac{3}{7}\right)^{3}+\ldots \ldots .+\left(\frac{n}{2 n+1}\right)^{n}+\ldots \ldots$.
(b) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent. $6+4$
(b) Find the area of the triangle having the vertices at

$$
\vec{P}(1,2,3), \vec{Q}(2,-1,1), \vec{R}(-1,2,3)
$$

8. (a) Find out unit vector parallel to the $x y$ plane and perpendicular to the vector $4 \hat{i}-3 \hat{j}+\hat{k}$.
(b) Prove that

$$
\vec{A} \times(\vec{B} \times \vec{C})+\vec{B} \times(\vec{C} \times \vec{A})+\vec{C} \times(\vec{A} \times \vec{B})=0
$$

9. (a) A plane passing through a fixed point (a, b, c) cuts the axis in $\mathrm{A}, \mathrm{B}, \mathrm{C}$ show that the locus of the center of the sphere OABC is

$$
\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2
$$

(b) Show that the unit vector perpendicular to both the vectors $(3 \hat{i}+\hat{j}+2 \hat{k})$ and $(2 \hat{i}-2 \hat{j}+4 \hat{k})$ is $\frac{1}{\sqrt{3}}(\hat{i}-\hat{j}-\hat{k})$ and the angle between them is $\sin ^{-1} \frac{2}{\sqrt{7}}$.
(b) Prove the acute angle between the lines whose direction cosines are given by the relations
$l+m+n=0$ and $l^{2}+m^{2}-n^{2}=0$ is $\frac{\pi}{3}$
8. (a) Prove that the straight lines whose direction cosines are given by
$a l+b m+c n=0$ and fmn $+g n l+h l m=0$,
are perpendicular if

$$
\frac{f}{a}+\frac{g}{b}+\frac{h}{c}=0 .
$$

and parallel if

$$
\sqrt{a f} \pm \sqrt{b g} \pm \sqrt{c h}=0 .
$$

(b) Find the point where the line joining the points $(2,-3,1)$ and $(3,-4,-5)$ cuts the plane

$$
2 x+y+z=7
$$

9. (a) Find the equation of the image of the line

$$
\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-4}{4}
$$

in the plane

$$
3 x+y-4 z+21=0
$$

5. (a) Expand θ in powers of $\tan \theta$.
(b) If $\frac{Z-i}{Z+1}$ is purely imaginary, then show that the point Z lies on a circle.
6. (a) If $a+\frac{1}{a}=2 \cos \alpha$, then show that

$$
a^{n}+\frac{1}{a^{n}}=2 \cos n \alpha, a^{n}-\frac{1}{a^{n}}=2 i \sin n \alpha
$$

(b) If $\mathrm{Z}=\operatorname{Cos}+\mathrm{i} \sin \theta$ and n is a $(+)$ ve integer, then show that
$(1+z)^{n}+\left(1+\frac{1}{z}\right)^{n}=2^{n+1} \operatorname{Cos}^{n} \frac{\theta}{2}+\cos \frac{n \theta}{2}$.

PART - II (50 marks)

Answer any five questions.
All questions carry equal marks.
7. (a) Find the vector \vec{d} which is perpendicular to both $\vec{a}=4 \hat{i}+5 \hat{j}-\hat{k} ; \vec{b}=\hat{i}-4 \hat{j}+5 \hat{k}$ and $\vec{d} \cdot \vec{c}=21$ where

$$
\vec{c}=3 \hat{i}+\hat{j}-\hat{k}
$$

