B.C.E. 1ST YEAR 2ND SEMESTER 2019

(1st / 2nd-Semester / Repeat / Supplementary / Annual / Bianual)

SUBJECT: Computer Programming & Numerical Methods

Time: Two hours/Three hours/Four hours/ Six hours

Full Marks 100 (50 marks for each part)

	(50 marks for each par	
	Use a separate Answer-Script for each part PART – I	
	Answer any THREE from Q.1 and any TWO from Q.2	
1.a)		
	X 10 20 40 50 56 Y 100 110 120 150 200	10
b)	Find inverse of [A] by Gauss Jordan Method. Hence find solution of x_1 , x_2 and x_3 of the equation [A] $\{x\} = [B]$ by matrix inversion method.	
	$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix} \qquad [B] = \begin{bmatrix} 2 \\ 3 \\ 6 \end{bmatrix}$	10
c)	Using Runge Kutta Method of order 4, find y (0.2) given that $dy/dx = (2x^2+y^2)$, y (0) = 1.5. Take h=0.1.	10
d)	Obtain Newton's Forward Interpolating Polynomial for the following data and interpolate the value at x= 1.6	10
·	X 1.0 1.4 1.8 2.2 Y 3.49 4.82 5.96 6.50	
2. a)	Derive the difference form of first and second derivative of y w.r.t x when y is known at 3 points (x_{i-1}, y_{i-1}) , (x_i, y_i) , (x_{i+1}, y_{i+1}) .	10
b)	Find the largest eigen-value and corresponding eigen-vector of [P] using Power method with initial approximation $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$.	
	$[P] = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$	10
c)	Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using i) Trapezoidal Rule ii) Simpson's 1/3 rd rule. Take h=1. Compare the result with actual value.	10

B.C.E. 1ST YEAR 2ND SEMESTER 2019

(1st / 2nd-Semester /-Repeat / Supplementary /- Annual / Bianual)

SUBJECT: Computer Programming & Numerical Methods

Full Marks 100 (50 marks for each part)

Time: Two hours/Three hours/Four hours/Six hours

TIMIC.	Two nodes/ Timee nodes/ Four nodes/ Six nodes (50 marks to	(50 marks for each part)	
	Use a separate Answer-Script for each part PART – II		
	Q.1 and Q2 are compulsory and any two from Q3 to Q5.		
1.	Define FLOW CHART. Describe flow chart of:,IF, IFELSE, CASE SWITCH, FOR LOOP, WHILE LOOP And DO LOOP.	15	
2.a)	Explain FORTRAN Data Type.		
b)	Write briefly Arithmetic Expressions and Operand evaluation order of a FORTRAN program.	5+5+5=15	
c)	What are Overloaded operators?		
3. a)	State briefly Execution Control in FORTRAN PROGRAMMING. (Can explain writing any simple program)		
b)	What is a FUNCTION? What is a Procedure? Describe Differences between a Function and Procedure.	4+4+2=10	
c)	Write a Complete program describing a procedural call to find out the area of a Circle.		
4. a)	What are Intrinsic Functions? What are Key Words? Explain one Intrinsic Function Briefly.		
b)	Write a 3x3 Matrix Multiplication program in FORTRAN.	5+5=10	
5.	State the meaning of following functions: i. ALL(MASK, dim) ii. COUNT(MASK, dim) iii. BTEST(I, POS) iv. IOR(I, J)	10	
	v. ISHFTC(I, SHIFT, size) vi. DIGITS(X) vii. PRECISION(X) viii. LOGICAL(L, kind)	·	
	ix. IACHAR(C) ×. INDEX(STRING, SUBSTRING, back)		