15. Solve the one dimensional wave equation :

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1 \partial^{2} y}{c^{2} \partial t^{2}}, 0 \leq x \leq \ell, t>0
$$

satisfying the boundary conditions : $y(0, t)=0=y(a, t)$ for all t .

BACHELOR OF CIVIL ENGINEERING EXAMINATION, 2019

(1st Year, 2nd Semester, Old Syllabus)
Mathematics - III C

Time : Three hours
Full Marks : 100

Use a separate answer script for each part.
Notations/Symbols have their usual meanings.
PART - I (50 marks)
Answer any five questions.

1. Solve the following equations :
(a) $\frac{d y}{d x}+x \sin 2 y=x \cos ^{2} y$
(b) $\sin y \frac{d y}{d x}=\cos x\left(2 \cos y-\sin ^{2} x\right)$
2. Solve :
(a) $(x-3 y+2) d x-(2 x-7 y+5) d y=0$
(b) $\left(D^{2}-1\right) y=x^{2}$.
3. (a) Construct a differential equation by eliminating the parameter λ from the equation

$$
\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}=1
$$

where a and b are fixed constants.
(b) Solve :

$$
(5+2 x)^{2} \frac{d^{2} y}{d x^{2}}-6(5+2 x) \frac{d y}{d x}+8 y=8(5+2 x)^{2}
$$

4. Find the series solution of Bessel equation.
5. (a) Prove the recurrence formula

$$
P_{n}^{\prime}(x)=x P_{n-1}^{\prime}(x)+n P n-1(x)
$$

(b) Find the Fourier series for the function

$$
\begin{aligned}
f(x) & =-x, \quad-\pi<x<0 \\
& =2 x, 0<x<\pi .
\end{aligned}
$$

6. Find the series solution near $x=0$ of the differential equation

$$
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}+\left(x^{2}+x\right) \frac{d y}{d x}+(x-9) y=0 \tag{10}
\end{equation*}
$$

11. Solve :
(a) $\frac{y^{2} z}{x} p+x z q=y^{2}$
(b) $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y$
12. Solve :
(a) $z=p^{2} x+q^{2} y$
(b) $z p q=p+q$
13. Determine the solution of the Laplace's equation :

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} z}{\partial x^{2}}=0, \quad 0<x<a, \quad 0<y<b
$$

subject to the following initial and boundary conditions : $\mathrm{u}(0, \mathrm{y})=\mathrm{u}(\mathrm{a}, \mathrm{y})=0$ for $0 \leq \mathrm{y} \leq \mathrm{b}$ and $\mathrm{u}(\mathrm{x}, 0)=0$, $u(x, b)=f(x)$ for $0 \leq x \leq a$.
14. Solve the one dimensional heat equation :

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<\pi, \quad t>0
$$

satisfying the following conditions :
$u_{x}(0, t)=u_{x}(\pi)=0$ and $u(x, 0)=\sin x$.
(b) Let $\mathrm{f}(\mathrm{z})=\mathrm{u}(\mathrm{x}, \mathrm{y})+\mathrm{iv}(\mathrm{x}, \mathrm{y})$ be an analytic function. Then show that,
(i) u and v are harmonic functions.
(ii) The family of curves $u(x, y)=c_{1}$ and $v(x, y)=c_{2}$ are orthogonal to each other.

OR

(a) Find the general solution of the following partial differential equations :
$\frac{\partial^{2} z}{\partial x^{2}}+2 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=3 x+2 y$
(b) Find the complementary function of the following partial differential equations :
$\frac{\partial^{3} z}{\partial x^{3}}-4 \frac{\partial^{2} z}{\partial x^{2} \partial y}+4 \frac{\partial^{3} z}{\partial x \partial y^{2}}=0$
10. (a) Form the partial differential equation by eliminating the arbitrary constants a and b from the following :
(i) $z=a x+b y+a b$
(ii) $z=\left(x^{2}+a\right)\left(y^{2}+b\right)$
(b) Solve the following partial differential equation :

$$
\frac{\partial^{2} z}{\partial x \partial y}=\cos (2 x+3 y)
$$

7. Prove that

$$
\begin{equation*}
J_{n}(x) J_{-n}^{1}(x)-J_{n}^{1}(x) J_{-n}(x)=-2 \frac{\sin (n \pi)}{x \pi} . \tag{10}
\end{equation*}
$$

PART - II (50 marks)

Answer any five questions.
8. (a) Find Laplace transform of $t \sin a t$.
(b) Use covolution theorem to find inverse Laplace transform of $\frac{1}{(s+1)(s-1)}$.
(c) Use Laplace transform method to solve the following differential equation :

$$
\frac{d^{2} x}{d t^{2}}-2 \frac{d x}{d t}+2 x=0, x(0)=x^{\prime}(0)=1
$$

9. (a) Prove that
$\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \log \left|f^{\prime}(z)\right|=0$
If $f(z)$ is an analytic function.
