[4]

13. Prove that

a)
$$nP_n(x) - (2n-1)xP_{n-1}^{(x)} + (n-1)P_{n-2}^{(x)} = 0$$

b)
$$xP'_{n}(x) - P'_{n-1}(x) = nP_{n}(x)$$

where P_n is Legendre polynomial of degree n. 10

14. a) From partial differential equation from the relations :

i)
$$xyz = \varphi(x + y + z)$$

$$ii) \quad z = f(x^2 - y^2)$$

b) Solve: $\frac{\partial^2 z}{\partial x^2} + z = 0$

subject to the condition
$$z = e^y$$
, $\frac{\partial z}{\partial x} = 1$

when x = 0.

15. a) Solve by Charpit's method :

$$Z = p^2 x + q^2 y$$

b) Solve by Lagrange's method :

$$(mz - ny)p + (nx - lz)q = ly - mx$$

where
$$p = \frac{\partial}{\partial x}$$
, $q = \frac{\partial}{\partial y}$. 10

Ex/ChE/Math/T/215/2019

BACHELOR OF ENGINEERING IN CHEMICAL ENGINEERING

EXAMINATION, 2019

(2nd Year, 1st Semester)

MATHEMATICS - III

Time : Three hours

Full Marks: 100

(50 marks for each Part)

Use a separate Answer-Script for each Part

PART - I

Answer question no. 7 and *any four* from the rest.

1. a) If L[f] be the Laplace Transform of f(x) prove that

 $L[f''(x)] = s^{2}L[f(x)] - sf(0) - f'(0).$

b) If f(x) and f'(x) are Laplace Transformable and ifL[f(x)] = F(s) then prove that

$$\lim_{s \to \infty} sF(s) = \lim_{x \to 0} f(x)$$
 12

2. a) Find the Laplace transform of

i)
$$t^{2} + \cos 2t \cos t + \sin^{2} 2t$$

ii) $t e^{-t}Cost$ 12

b) Find Inverse Laplace transform of

$$\frac{1+2s}{(s+2)^2(s-1)^2}$$

[Turn over

[2]

- 3. Using Laplace Transform method, solve $\frac{d^2y}{dt^2} + \frac{dy}{dt} = t^2 + 2t$,
 - given that y = 4 and y' = -2 when t = 0.
- 4. Find the Fourier series for $f(x) = x^2$ in $-\pi \le x \le \pi$ and hence deduce that

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$$
 12

- 5. a) Find the half range Fourier sine series of f(x) = x in 0 < x < 2.
 - b) Find the Fourier cosine series of $f(x) = \pi x$ in $(0, \pi)$.

12

12

- 6. a) Find the Fourier transform of $f(x) = x e^{-x}$ for $0 \le x < \infty$.
 - b) Show that $f(x) = e^{\frac{-x^2}{2}}$ is self-reciprocal with respect to Fourier transform. 12
- 7. If u(n) = k, $n \ge 0$ be a constant sequence k, k, then show that the z-transform of u(n) is $\frac{kz}{z-1}$.

[3]

PART - II

Answer any five questions.

8. Solve the following differential equations :

a)
$$\frac{dy}{dx} + x \sin 2y = x^{3} \cos^{2} y$$

b)
$$p^{3} - 4xyp + 8y^{2} = 0$$

c)
$$y = 2p + 3p^{2} \text{ where } p = \frac{dy}{dx}$$
10

9. Solve:
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = x^2 + e^x + \sin 2x$$
 10

10. Solve by the method of variation of parameters :

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = \frac{e^x}{1 + e^x}$$
 10

11. Find the series solution of

 $(x^{2}+1)y'' + xy' - xy = 0$

about x = 0.

- 10
- 12. find the series solution of the initial value problem :

$$xy'' + y' + 2y = 0$$

where $y = 1$, $y' = 2$ at $x = 2$
in powers of $(x - 1)$. 10

[Turn over