BACHELOR OF ENGINEERING IN CHEMICAL ENGINEERING EXAMINATION, 2019

(1st Year, 2nd Semester)

PHYSICAL CHEMISTRY

Time: Three hours Full Marks: 100

(50 marks for each Group)
Use separate answer script for each Group

GROUP - A

- 1 a) "pH at the end point of a titration of a weak acid with a strong base is not 7" Justify or criticize.
 - b) How would you experimentally determine the equivalent conductance of sodium chloride solution at infinite dilution?
- c) Explain Grotthuss mechanism. What is its impact?
- d) For the reaction $AB + CD \rightarrow AD(\downarrow) + CB$, predict the variation of conductance when CD solution is gradually added to a solution of AB.

(Given: The medium is water. AB, CD and CB are water soluble salts and AD is water insoluble)

$$5 + 5 + (3+2) + 6 = 21$$

- 2 a) Draw, with justification, the variation of conductance of a NH₄OH solution as a function of volume of hydrochloric acid solution gradually added to it from the burette.
 - b) To determine the transport number of K⁺ ion in 0.1 N KCl solution by moving boundary method CdCl₂ solution is used as the indicator electrolyte. The solutions are taken in a capillary of internal diameter 2.124 mm. The cationic boundary shifts by 100 mm when a steady current of 14 mA is passed for 497 sec. Find out the transport number of K⁺ ion.

$$5 + 8 = 13$$

- 3 a) Represent the Daniell cell and write the overall reaction taking place in the cell.
 - b) A real electrochemical cell can not have a negative potential Explain.
 - c) For the cell $Zn \mid Zn^{2+}$ ($a_{\pm} = 0.05$) $\mid Cu^{2+}$ ($a_{\pm} = 0.01$) Cu, calculate at 25 °C E_{Cell}^0 , ΔG^0 and the equilibrium constant for the cell reaction. Given: Standard oxidation potentials of Zn/Zn^{2+} and Cu/Cu^{2+} systems at 25 °C are 0.776 and -0.337 volts respectively.

$$(3+2)+3+(2+3+3)=16$$

Turn over

Ref. No.: Ex/ChE/Chem/T/126/2019(Old)

B. E. Chemical Engineering First Year Second Semester (Old) – 2019

Physical Chemistry

Part - II

- 1. a) Define surface tension. Give its unit.
- b) What is capillary action?
- c) Calculate the height to which a liquid will rise in a glass capillary if the radius of the tube is 0.02 cm. The surface tension of liquid is 56.7 dynes cm⁻¹.
- d) Deduce Laplace equation of excess pressure acting a bubble.

3+4+3+3

- 2. a) Write down Eotvos equation. At what temperature the surface tension will be zero?
- b) How does surface tension of water vary when a surfactant is dissolved?
- c) What is CMC?
- d) Draw the curve surface tension vs. concentration of surfactant and explain.

3+4+2+4

- 3. a) What is zeta potential?
- b) What is coagulation? State Hardy-Schulze rule for power of coagulation. Arrange the following in increasing order of flocculation value for a positively charged sols Mg Cl₂, Al₂(SO₄)₃, Na₃PO₄.
- c) What is Gold Number?

2+5+2

- 4. a) Distinguish between physical adsorption and chemisorptions.
- b) How can you show Freundlich adsorption isotherm is a special case of Langmuir isotherm?
- c) Volume of nitrogen gas (measured at S.T.P.) required to cover a sample of silica gel with unimolecular layer is $129 \text{ cm}^3 \text{ g}^{-1}$. Calculate surface area per gram of silica gel if each nitrogen molecule occupies $16.2 \times 10^{-20} \text{ m}^2$.
- d) What do you understand by positive and negative adsorption?

3+2+2+2

5. What are nano-dispersions? How does nanodispersion get stability? What are the applications of nanodispersions?

2+2+2