Ex/ChE/Math/T/123/2019 (Old)

BACHELOR OF ENGINEERING IN CHEMICAL ENGINEERING EXAMINATION, 2019

(1st Year, 2nd Semester)

MATHEMATICS - II

Time: Three hours Full Marks: 100

Part - I

Answer any four questions. $12.5 \times 4 = 50$

1. (a) Show that the necessary and sufficient condition for a vector function $\overrightarrow{F}(t)$ to have direction magnitude is

$$\overrightarrow{F}(t) \times \frac{d\overrightarrow{F}(t)}{dt} = 0$$

(b) Find the angle between two surfaces

$$xy^2z = 3x + z^2$$
 and $3x^2 - y^2 + 2z = 1$ at $(1, -2, 1)$.

2. Prove that:

(i)
$$\operatorname{curl} \operatorname{grad} \phi = 0$$
 (ii) $\operatorname{div} \operatorname{curl} \overrightarrow{F} = 0$

3. State Stoke's theorem. Verify Stoke's theorem where

$$\overrightarrow{F} = y\overrightarrow{i} + (x - 2xz)\overrightarrow{j} - xy\overrightarrow{k}$$

and the surface S is the part of the sphere

$$x^2 + y^2 + z^2 = a^2$$

above xy plane.

- 4. (a) Evaluate $\int_C \overrightarrow{F} \cdot d\overrightarrow{r}$ where $\overrightarrow{F} = (x^2 + y^2) \overrightarrow{i} 2xy \overrightarrow{j}$ and the curve C is the rectangle in the xy plane bounded by y = 0, x = a, y = b, x = 0.
- (b) Find the directional derivative of a scalar point function f(x, y, z) along any line whose direction cosines are l, m, n.
- 5. State Gauss Divergence theorem. Verify Gauss Divergence theorem for $\overrightarrow{F} = 4x \overrightarrow{i} 2y^2 \overrightarrow{j} + z^2 \overrightarrow{k}$ taken over the region bounded by $x^2 + y^2 = 4$, z=0 and z=3.
- 6. (a) If \overrightarrow{A} and \overrightarrow{B} are irrotational, then prove that $\overrightarrow{A} \times \overrightarrow{B}$ are solenoidal.
- (b) Show that $\overrightarrow{F} = (2xy + z^3)\overrightarrow{i} + x^2\overrightarrow{j} + 3xz^2\overrightarrow{k}$ is a conservative field and find a function ϕ such that $\overrightarrow{\nabla}\phi = \overrightarrow{F}$.

Part - II

Answer any four questions.

 $12.5 \times 4 = 50$

7. (a) Express

$$\left[\begin{array}{ccc}
2 & 3 & -3 \\
4 & 5 & 6 \\
-5 & 8 & 9
\end{array}\right]$$

as the sum of a symmetric and a skew symmetric matrix.

(b) Define orthogonal matrix. If A is an orthogonal matrix, show that $\mid A \mid = \pm 1$.

8. Find an orthogonal matrix which diagonalize the matrix

$$A = \left[\begin{array}{ccc} 6 & 4 & -2 \\ 4 & 12 & -4 \\ -2 & -4 & 13 \end{array} \right]$$

Also, Diagonalise A.

9. (a) Obtain the equation of the plane through the straight line

$$3x - 4y + 5z - 10 = 0$$
, $2x + 2y - 3z - 4 = 0$,

and parallel to the line

$$x = 2y = 3z.$$

(b) Prove that the straight lines

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
 and $4x - 3y + 1 = 0 = 5x - 3z + 2$,

are coplanar.

(c) Find the point where the line joining the points (2, -3, 1) and (3, -4, -5) cuts the plane

$$2x + y + z = 7.$$

10.(a) Find the equation of sphere having the circle

$$x^{2} + y^{2} + z^{2} - 10y + 2z - 8 = 0$$
, $x + y + z = 2$

as a great circle.

(b) Find the values of c for which the plane x + y + z = c touches the sphere

$$x^2 + y^2 + z^2 - 2x - 2y - 2z - 6 = 0$$

11. (a) Find the shortest distance between the lines

$$\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$$
 and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$.

(b) Find the volume of the tetrahedron whose vertices are

12. (a) Solve the system of equations by Cramer's rule:

$$x + 2y - 3z = 1$$
, $2x - y + z = 4$, $x + 3y = 5$.

(b) Define eigen values of a matrix . Show that if λ is an eigen value of a non singular matrix A, then λ^{-1} is also an eigen value of A^{-1} .

13 (a) If

$$A = \left(\begin{array}{ccc} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{array}\right),$$

then show that $A^2 - 4A - 5I_3 = 0$.

Hence obtain a matrix B such that $AB = I_3$.

(b) Find the eigen values and the corresponding eigen vector of the matrix

$$A = \left(\begin{array}{ccc} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{array}\right),$$