B.E. CHEMICAL ENGINEERING FIRST YEAR FIRST SEMESTER EXAM 2019 (OLD)

FUNDAMENTALS OF CHEMICAL ENGINEERING

Use separate answer scripts for each part.

Time: Three hours

Full marks: 100 (50 marks for each part)

PART I

Answer any five questions Assume any missing data

1. Using Newton's backward difference formulae, fit a polynomial through the data points given in the following table [10]

Х	-1	0	1	2	3
У	-5	8	19	40	83.

2. Find the composition of vapour that is in equilibrium with a binary liquid solution containing 25% A and 75% B at 95 °C. Also determine the total pressure. [10] The vapour pressure of A and B are given by

A:
$$log_{10}P(mm Hg) = 6.906 - \frac{1211}{T(oC) + 220.8}$$

B:
$$log_{10}P(mm Hg) = 6.9533 - \frac{1343.9}{T(oC) + 219.38}$$

- **3.** (a) A gaseous fuel after combustion contains 10 wt% methane, 2 wt% carbon monoxide, 60 wt% carbon dioxide and the rest nitrogen. What is the average molecular weight of the mixture and the mole fraction of carbon dioxide in the mixture?
 - (b) Writer short notes on (i) Importance of Cox chart (ii) Duhring plot [6+4]
- **4.** (a) The specific gravity of sulphuric acid is 1.8. 90g of water is added to 90 g of sulphuric acid. The specific gravity of the mixture is 1.5, Determine the percentage difference in volume between the mixture and the component water and sulphuric acid?
 - (b) Name three important dimensionless number in chemical engineering and their importance? [5+5]
- **5.** Water is present in nitrogen at 30 °C and 1000 mm Hg. Determine the absolute humidity if the relative humidity is 70%. [10]

The vapour pressure of water is given by

$$log_{10}P(mm Hg) = 8.07131 - \frac{1730.63}{T(oC) + 233.426}$$

6. Consider a liquid in a cylindrical container in which both the container and the liquid are rotating as a rigid body (solid-body rotation). The elevation difference *h* between the center of the liquid surface and the rim of the liquid surface is a function of angular velocity fluid density gravitational acceleration, and radius. Use Buckingham pi theorem to find a dimensionless relationship between the parameters. [10]

B.E. CHEMICAL ENGINEERING FIRST YEAR FIRST SEMESTER EXAM 2019 (OLD)

FUNDAMENTALS OF CHEMICAL ENGINEERING

Part-II

Use separate answer scripts for each part.

Time: Three hours

Full marks: 100 (50 marks for each part)

Answer any five questions. All questions carry equal marks. Assume any missing data.

- 1. In a fan-assisted convection oven, the heat transfer rate to a roast, \dot{Q} (energy per unit time), is thought to depend on the heat capacity of air, c_n , temperature difference, Θ , a length scale, L_s , air density, ρ , air viscosity, μ , and air speed, V. Use Buckingham Pi theorem to
 - (a) determine the number of dimensionless groups needed to characterize the
 - (b) obtain the Π parameters considering Θ , L_s , ρ , V as repeating parameters.

2+8

2. The Arrhenius equation which relates the rate of reaction with temperature is as follows

$$k = Ae^{-E/RT}$$

In investigating a certain chemical reaction, following data were obtained.

T(K)	k (sec ⁻¹)
375	1.06×10^{-16}
380	1.07×10^{-15}
392	9.30×10^{-15}
400	6.94×10^{-14}

Evaluate E and A using a semilogarithmic graph paper. $R = 8.314 \, \text{JK}^{-1} \text{mol}^{-1}$

10

3. Consider the vapor-liquid equilibrium of a two component system (B and T which are similar in chemical nature) at 75°C. For equimolar mixture of B and T in the liquid phase what is the system pressure and the composition of the vapor?

B:
$$\log_{10}(\text{bar}) = 5.0768 - \frac{1659.793}{T(K) - 45.854}$$

B:
$$\log_{10}(\text{bar}) = 5.0768 - \frac{1659.793}{T(\text{K}) - 45.854}$$

T: $\log_{10}(\text{mm Hg}) = 7.2316 - \frac{1277.03}{T(^{\circ}\text{C}) + 273.23}$

- 4. (a) Write a short note on Henry's law.
 - (b) Discuss significance of dimensional analysis in Chemical Engineering.
 - (c) What is wet bulb temperature?

3+4+3

5. A fluid of unknown density is used in two manometers- one sealed end, the other across an orifice in a water pipeline. The readings shown here are obtained on a day when barometric pressure is 756 mm Hg. What is the pressure drop from point (a) to point (b) in N/m², mm Hg and psi?

10

- 6. (a) Write a short note on liquid-liquid extraction.
 - (b) How would you measure heat of vaporization of a substance using Clausius-Clapeyron equation.

5+5