Bachelor of Engineering Examination, 2019 (1st Year, 1st Semester) CHEMISTRY

Time: Three hours

Full Marks: 100

[USE SEPARATE ANSWERSRIPTS FOR CHEMISTRY-I, CHEMISTRY-II and CHEMISTRY-III]

CHEMISTRY-I

CO 1

Answer any three questions of the following:

Q 1	Ĺ,
-----	----

(a) State Bohr postulates for the H atom and derive the necessary energy expression	of the
electron in terms of Bohr concept.	2 + 3
(b) What would be the wavelength of the 3rd line in the Lyman series in the emission spo	ectra o
the H atom? [Given $R_{\infty} = 109677 \text{ cm}^{-1}$]	2
(c) Calculate the ionization energies of He ⁺ and Li ²⁺ .	3
Q 2.	
(a) Write a short explanatory note on the "Heisenberg Uncertainty Principle".	2
(b) Considering $\lambda = h/mv$, after de Broglie, derive Bohr's postulate of $mvr = nh/2\pi$	3.
(c) Two minute particles having masses 1×10^{-12} grams and 3×10^{-14} grams are running	ng with
velocities of 1×10^7 cm/sec and 5×10^9 cm/sec respectively. What would be the wave	length
associated with their motions?	3
(d) Mention limitations of Bohr's theory.	2

Q 3.

(a) Construct the Born-Haber cycle for the formation of NaCl. From the following data provided in kJ/mole calculate the lattice energy of NaCl.

 $Na(s) \rightarrow Na(g): +109; \ Na(g) \rightarrow Na^+(g): +494; \ \ ^{\prime}\!\!{}_{2}\text{Cl}_{2}(g) \rightarrow \text{Cl}(g): +121;$

 $Cl(g) \rightarrow Cl^{-}(g)$: -347; heat of formation of NaCl(s): -414.

3 + 3

(b) Predict the shapes of the following species (any two) using any theory of your choice

XeF₂, SF₄, I₃⁻, BrF₃, XeF₄

 $2 \times 2 = 4$

Q 4.

(a) Arrange the following compounds in the increasing order of their melting points:

CaF2, CaCl2, CaBr2, CaI2

2

(b) What do you mean by a buffer solution? Give examples. Discuss mechanism of buffer action. What is buffer capacity? 2+1+3+2

Q 5.

- (a) What will be the pH of an aqueous solution of 1×10^{-3} M acetic acid? Given: pK_a of acetic acid = 4.74.
- (b) Define ionic product of water. Discuss the effect of temperature on it.

2 + 2

(c) A solution containing 0.5 M acetic acid and 0.5 M sodium acetate has a pH of 4.74. What would be the pH of the solution upon the addition of 1mL of 0.01 M HCl to 1 L of the above solution. (K_a of acetic acid = 1.81 × 10⁻⁵).

<u>CO2</u>

Answer any two questions of the following:

Q 6.		÷
(a) Write a short note on rusting of iron.		5
(b) What do you mean by nano-particles? Describ	oe any method for the preparation o	f silver or
gold nano particles.		2 + 3
	×t	·
Q 7.		
(a) Derive $t_{1/2} = 0.693/\lambda$ where symbols have their	r usual meaning, for a single step r	adioactive
disintegration process.		4
(b) What are the essential differences between a	a radioactive reaction and a purely	chemical
reaction?		3
(c) How does nuclear stability depend on the n/p ra	itio?	3
	\$	
Q 8.		
(a) Explain α and β decay with regard to a radioact	ive nuclei.	3
(b) If the half-life of Radon is 3.824 days, how	long would it take for 60% of the	sample to
disintegrate?		3
(c) Name the experimental techniques by which a t	nano particle can be characterized.	2
(d) Show that corrosion is an electrochemical phen	omenon.	2
Q 9.		
(a) Write short notes on any two of the following		$2\times3=6$
(i) Principle of radio-carbon dating	(ii) Magic Number	
(iii) π-meson theory	(iv) Fission	٠.
(b) How can corrosion be prevented? Discuss in si	hort.	3
(c) Mention one application of a pano particle	*	1

CHEMISTRY - II

CO₃

Answer Question No. 10 and any two from the rest:

Q 10.

What is the use of spectroscopy? State and explain the Lambert-Beer Law. Which of the following molecules give rotational spectra H₂, HCl, CH₄, CH₃Cl and O₂?

2+2+1

Q 11.

- (a) What is electrochemical cell?
- (b) Represent an electrochemical cell where the following chemical reaction takes place: $Zn(s) + Cu^{2+}(aq) \rightarrow Cu(s) + Zn^{2+}(aq)$.
- (c) Why is a salt bridge used?

1+2+1

Q 12.

- (a) On passing monochromatic light through a solution of 0.004 M in a cell of 10 mm thickness the intensity of the transmitted light was reduced by 50 %. Calculate the molar extinction coefficient with its unit.
- (b) Why is potential measured by a potentiometer and not by a voltmeter?

2+2

Q 13.

- (a) Write down a short note on fuel cell.
- (b) How are battery's voltage output and current ratings determined?

2+2

CO₄

Answer any three questions of the following

Q14.

- (a) What is the difference between crystalline solid and amorphous solid? Give one example of each type.
- (b) Arrange simple cubic, body centred cubic, face centred cubic lattice in decreasing order of the fraction of the unoccupied space. 2+1+1

Q 15.

- (a) If the Miller indices of a plane be 120, what are its Weiss indices?
- (b) $a \neq b \neq c$, $\alpha = \gamma = 90^{\circ}$, $\beta \neq 90^{\circ}$. Identify the crystal system.
- (c) For which plane Weiss indices and Miller indices are the same?

2+1+1

Q 16.

- (a) Describe the classification of unit cells.
- (b) In body centred cubic unit cell how many lattice points are there? Describe with diagram.

2+2

Q 17.

Silver crystalizes in fcc unit cell. Each side of the unit cell is 400 pm. Calculate the radius of the silver atom.

4

CHEMISTRY - III

<u>CO5</u>

Q18.

Define electrophile or nucleophile.

1

Q19. Answer any four questions of the following:

3 x 4

- (a) Write the mechanism of nitration of benzene. Draw the corresponding energy profile diagram.
- (b) Write stereospecific reaction with suitable example. Why is it so called?
- (c) Write R/S or E/Z (as applicable) of <u>any three</u> of the following compounds

iv)
$$H_{2}$$
 $CH_{2}CH_{3}$ III Br F $IIII$ CH_{2} H_{2} $CH_{2}OH$ H_{2} H_{2} H_{2} H_{3} H_{2} H_{2} H_{3} H_{4} H_{2} H_{5} H_{5}

(d) Comment on the relative stability of the following pairs of ionic species with proper reason (any two).

i)
$$\bigoplus_{\text{CH}_2}$$
 and $\bigoplus_{\text{H}_3\text{C}}$ \bigoplus_{CH_2} \bigoplus_{CH_3} \bigoplus_{CH_2} $\bigoplus_{\text{CH}_3\text{CH}_2}$ $\bigoplus_{\text{CF}_3\text{CH}_2}$

6 | Page

(e) Accomplish the following conversions (any two) (No mechanism required).

(f) Predict the product(s) with mechanism of the following reactions (any two).

Q 20. Answer any four questions of the following:

 3×4

(a) What is peptide linkage of protein? Draw the possible structure of dipeptides formed by the following α -amino acids.

CH3CHNH2COOH and NH2CH2COOH

(b) Write any one method for determination of the N-Terminal amino acid of the following tripeptide [A].

$$H_2N-CH(R^1)-C(=O)NH-CH(R^2)-C(=O)NH-CH(R^3)-COOH$$
 (A)

- (c) Outline the industrial synthesis of phenol from benzene by cumene hydroperoxide method.
- (d) What is osazone reaction? Why do D-glucose and D-mannose give same osazone?
- (e) Write the steps involved in detection of the aldehyde group of D-glucose (Use RCHQ as the structure)
- (f) What is meant by saponification of lipids? Discuss with suitable example.
- (g) Write short notes on any two:
 - i) Rancidity of fat, ii) Mutarotation; iii) Iodine number of fat.