B.E. COMPUTER SCIENCE AND ENGINEERING FOURTH YEAR SECOND SEMESTER EXAM 2019

Image Processing

Time: Three Hours Full Marks: 100

Answer question number ONE and any FOUR from the rest

- 1. Answer the following short questions in brief.
 - a) What is Chess-Board Distance?
 - b) Define Power Law Transformation.
 - c) What is Bit-plane slicing?
 - d) Define Euler number (as a topological descriptor).
 - e) What is the range (in nanometers) of visible spectrum?
 - f) What is convex deficiency?
 - g) Write the formulations for Butterworth high-pass and low-pass filters.
 - h) What is unsharp masking?
 - i) What is Sobel's edge detection operator?
 - j) What is Alpha-trimmed mean filter?

 (10×2)

- 2. a) What is Chain Code representation of a digital image? Discuss with an example.
 - b) What is intensity slicing in pseudo-colour image processing?
 - c) Consider the following image segment. Compare between 3x3 *Median filter* and 3x3 *Average filter* and generate the resultant images. Ignore computation of pixels at the boundaries.

123	127	128	119	115	130
140	145	148	153	167	172
133	154	183	192	194	191
194	199	207	210	198	195
164	170	175	162	173	151

(4+6+10)

- 3. a) Discuss the conversion formulation from RGB to HIS model and vice-versa.
 - b) What is zigzag encoding? Why is it used?
 - c) Consider the image segment shown below. Let $V=\{0,1\}$ and compute the lengths of the shortest 4-, 8-, and m-paths between p and q. Repeat for $V=\{1,2\}$. If a path does not exist between these two points explain why.

(5+5+10)

4. a) Write the algorithm for construction of a Huffman Tree. Use Huffman Coding to encode/decode the following text "this is an example of a huffman tree". Create the frequency table, Huffman tree and show the encoding and decoding steps with examples.

(20)

- 5. a) Briefly discuss Gaussian, Rayleigh and Gamma noise models.
 - b) Discuss the effects of Harmonic and contra harmonic mean filters for the removal of salt and pepper noise.
 - c) Write the basic formulation for DFT and Inverse DFT. What are the basic steps for image filtering in Frequency domain?

(6+4+10)

- 6. a) What are morphological Open & Close operations? Design simple morphological operations for boundary extraction of an object.
 - b) What is Adaptive Median Filtering?
 - c) Discuss the Minimum-Perimeter Polygons algorithm for polygonal approximation with an example.

(6+4+10)

- 7. Write short notes on the following.
 - a) Laplacian filtering
 - b) Histogram-equalization algorithm
 - c) Wiener filtering
 - d) CIE Chromaticity Diagram

(5+5+5+5)