Ex/CSE/T/325A/2019

B.E. COMPUTER SCIENCE AND ENGINEERING THIRD YEAR SECOND SEMESTER
EXAMINATION 2019

DESIGN AND ANALYSIS OF ALGORITHMS
Time: Three hours Full Marks: 100

Answer FIVE questions by choosing one question from each group

GROUP A
1. a) Let o and B be real numbers such that 0< o, < f. Show that n® is in O(n®), but n? is not in
O(n%)
b) State Master theorem. For what type of algorithm, Master theorem is applicable. Give a
detailed proof for Master theorem. 5 + 15 =20 marks
OR
2. a) Consider following function written in C style and compute the time complexity.
void funl(int n)
{. .
nt 1;
for(i=1; i <n*n*n; i=i*2)
{/f Do some O(1) works
) .
}

b) Show that "Cy = O(n*). Use Limit method to prove it.
¢) Compute the value of the following recurrence equation using recursion tree.
T(n) <3T(n/2)+n when n>2, and T(2)<I 5+ 5+10 =20 marks

GROUP B
3. a) Differentiate (with a suitable example) between the following algorithm design strategies:

“Divide and Conguer” and “Dynamic Programming”.

b) Recall the elementary —school level algorithm for multiplying integers, which computes a
partial product by muitiplying each digit of a number x separately by another number y, and then
add up all partial products. Explain the time complexity of the elementary—school level algorithm.
Write an efficient algorithm that uses Divide and Conquer Approach to this problem. Compare its
time complexity with that of the elementary—school level algorithm. 5 +15 =20 marks

' OR
4. a) Explain the basic characteristics of greedy algorithm. Discuss with a suitable example.

b) Consider the following coin changing problem and suggest a greedy algorithm for the problem:
Given currency denominations: C,, C,, ---C,, an amount X is to be paid to the customer using the
fewest number of coins. Write a greedy algorithm for finding optimal set of coins which combine
the amount X. Give a suitable example to show how the algorithm works. Does greedy algorithm
always give optimal solution to coin changing problem?—explain, 5+ 15 =20 marks

[Turn over

GROUPC
5. Differentiate between the time complexities of the linear queue based implementation and the
priority queue based implementation of Dijkstra’s shortest path algorithm.

Apply Dijkstra’s shortest path algorithm on the following graph and find the shortest paths of
each vertex of the graph from the source vertex S. show also the order in which vertices get
removed from the linear queue? What is the resulting shortest-path tree?

5+ 15 =20 marks

OR

6. A) Differentiate between the time complexities of linear queue based implementation and
priority queue based implementation of Prim’s algorithm for finding minimum spanning tree
in a weighted graph.

b) Write a randomized version of Quicksort algorithm and compute its expected running time.
5+ 15 = 20 marks

GROUPD
7. a) Prove correctness of the bubble sort algorithm.

b) Formulate 0-1 Knapsack problem without repetition for solving it with Dynamic
programming. (Show up to formulation only).
@) What is the time complexity of dynamic programming based algorithm for 0-1 Knapsack
problem. [s it linear in input size?—explain. 10 + 5+ 5=20 marks
OR

8. a) Consider the items, their values and weights as shown in the following table and find the
solution to the 0-1 KNAPSACK problem with dynamic programming when knapsack
capacity, W=8

Item i Value vi Weight wi
1 15 1
2 10 5
3 9 3
4 5 4

b) Prove correctness "for the Insertion sort algorithm. 10 + 10 =20 marks

9.

GROUPE

a) Consider that a minimum cost communication network will be set up among the major
cities of a country in such a way that there will a communication path between any two cites.
You may consider each city as a vertex and each communication link as the edge between
two vertices. The weight of an edge is the cost of constructing the link represented by the
edge. Every connected sub -graph that includes all the vertices represents a feasible solution,
Under the assumption that all weights are non-negative, suggest an efficient algorithm for
finding the optimal solution with minimum-cost. Formulate the problem as the graph problem
first and discuss which and how the efficient graph algorithms can be used to solve this
problem. How the running time of your algorithm differs from the brute force algorithm?

b) Is 2-SAT problem a NP-complete problem?-explain your answer with justifications.
¢) Can a problem be in NP-hard, but not in NP? -Explain . 10+ 5+ 5 =20 marks

OR

. a) Discuss with a suitable example an efficient algorithm for string alignment problem.

Explain how this algorithm is useful in designing a spell checker (Only write the outline of
the spell checker algorithm).

b} Prove the following statement
Suppose X is an NP-complete problem, then X is solvable in polynomial time if and only if
P=NP

c) Is Halting problem an NP-complete problem? -briefly explain.

10 + 5 + 5= 20 marks

