B. CSE 2ND YEAR 2ND SEMESTER EXAMINATION 2019

MICROPROCESSOR AND ASSEMBLY LANGUAGE PROGRAMMING

Time: Three Hours Full Marks: 100

Different parts of the same question must be answered TOGETHER

Answer any one from the following Q1 and Q2	Answer anv one	from the	following	01	and O2	?:
---	----------------	----------	-----------	----	--------	----

1. a) What is addressing mode? Describe different addressing modes of 8085 μP with examples.

2+10

15

- b) Let the instruction MVI A, 15_H is stored from m/m location 2500_H. Write the sequence of steps of fetch cycle and execution cycle to execute the instruction.
- c) Write the functions of the (i) MOV A, M (ii) LXI H, 2050_H (iii) LHLD 3000_H and (iv) RAR instructions with proper examples. 2+2+2+2
- 2. a) Describe the different operating modes of the 8255 PPI.
 - b) Describe with a schematic diagram the sequence of steps for asynchronous serial data transfer between μP and peripheral using a UART.

Answer the following Q3:

- 3. (a) Interface 6K memory as two memory chips (modules) of 4K (M1) and 2K (M2) beginning at address 4000_H using suitable decoders. Explain its address decoding technique and find its RAM address range. Assume/generate appropriate signals and pins.
 - b) What is partial decoding? Explain foldback memory using the data given in Q3. (a). 5+5

Answer any two from the following Q4 - Q6:

- 4. a) Describe the sequence of steps required for data transfer between microprocessor and an I/O device with appropriate schematic diagram.
 - b) Name the different types of hardware and software interrupts? 3+2
 - c) How is ISR executed when a vectored interrupt occurs?

5 5

- d) Write the differences between m/m mapped I/O device and I/O mapped I/O device.
- a) There are N (8-bits) data bytes stored from m/m location 2500_H. The value of N is stored in 2000_H. Write an 8085 program to copy the even and odd integers into the m/m locations starting from 5050_H and 6050_H, respectively.
 - b) There are N bytes stored from m/m location 2500_H. The value of N is stored in 2400_H. Write an 8085 program to interchange the bits D_5 D_4 with D_3D_2 , respectively and store them into the m/m locations starting from 2600_H.
- 6. b) N bytes are stored from m/m location 2500_H. Write a program (with comments) to find the sum of these N bytes after complementing the D_{θ} and D_{7} bits. The value of N is stored in 2200_H. Store the result in locations 2300_H and 2301_H.
 - b) Write a delay program for 1.0 ms in a 2 MHz microcomputer system.