Ex/CSE/Math/T/121A/2019(Old)

Bachelor of Engineering in Computer Science

Engineering Examination, 2019

(1 st Year, 2nd Semester)
Mathematics - III
Time : Three hours
Full Marks: 100
(50 marks for each part)
Use a separate Answer-Script for each group.
PART - I
Answer any five questions :

1. a) Define group Lat $G=\left\{\binom{\mathrm{a} a}{\mathrm{a} a}: \mathrm{a} \neq 0 \mathrm{E} / \mathrm{R}\right\}$. Does G form a commnlative group w.r.t matrix multiplication ? Justify your answer.
$2+3$
b) i) Let G be a group in a such the order of each non identify emement be 2. Show that G is a communlative group.
ii) Let Q be a group and $\mathrm{a}, \mathrm{b}, \&$ G such that 0 (a) $=5$ and $a^{3} b=b a^{3}$. Show that $a b=b a$. $\quad 2+3$
2. a) Define centre of a group. Show that the centre of a group G is a subgroup of G . If a is the only elemen of order 2 in a group G then show that a $E Z(G)($ centre of $G) .1+2+2$
b) Define cycticgroup. Show that (Q, t) is not a cyclim
group. Hence conclude that (R, t) is not a cyclic group.

$$
1+2+2
$$

3. a) State Lagrangels Theoem of group. Is the convense of Lagrange is Theorem hold ? Justify your answer. $\quad 2+3$
b) Define normal subgroup of a group. Show that $\operatorname{SL}(2, / \mathrm{R})$ is a normal subgroup of GL $(2, / \mathrm{R})$ $2+3$
4. a) State first isomirphism theorem of group. Show that anyepimorphism from (D, t) onto itself is an isomorphism.
b) Define Quotiemtgroup. Show that $\mathrm{D} / \mathrm{nZ} \cong \mathrm{D}_{\mathrm{n}} \quad 2+3$
5. a) Define ring. Show that anyring of prime order in commntative.
$2+3$
b) Define integral domain and fiels. Shoe that every finite integral domain is a field.
6. a) Define ideal of a ring. Show that a fiedl E has only two ideals $\{0\}$ and F
b) Define prime ideal and maximal ideal of an commntativ ring R. Show that $\{x\}$ is a maximal ideal of $Q[x]$ but $[x]$ is a maximal ideal of $\mathrm{Q}[\mathrm{x}]$
7. a) Define Principle ideal domain (PID). Show that every Enclidean Domain(ED) is a principal ideal domain (PID).
b) Define aljebraic field extension. Show that every finite field extension is an algebraic field extension. Is $Q^{N_{2}} / Q$ an algebraic field extension? Justify you answer. $2+2+1$ The figures in the margin indicate full marks.

PART - II

Answer any five questions
10×5
(All question carry equal marks)
8. a) Evaluate the detueminant

$$
\left|\begin{array}{ccc}
a^{2} & (s-a)^{2} & (s-a)^{2} \\
(s-b)^{2} & b^{2} & (s-b)^{2} \\
(s-c)^{2} & (s-c)^{2} & c^{2}
\end{array}\right| \text { where } 2 s=a+b+c
$$

b) Show that

$$
\left|\begin{array}{ccc}
(b+c)^{2} & c^{2} & b^{2} \\
c^{2} & (c+a)^{2} & a^{2} \\
b^{2} & a^{2} & (a+b)^{2}
\end{array}\right|=2(b c+c a+a b)^{3} \quad 5+5
$$

9. a) Define symmetric and skew symmetric diterminants. Prove that a skew -symmetric diterminant of order 4 is a perfect square.
b) Solve the following system of equations using Cramir's rule:

$$
\begin{aligned}
& 3 x+y+2 z=3 \\
& x-5 y-z=6 \\
& 2 x+3 y+2 z=0
\end{aligned}
$$

10. a) If

$$
\mathrm{A}=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 9 & 3 \\
1 & 4 & 2
\end{array}\right], \mathrm{B}=\left[\begin{array}{ccc}
1 & 2 & 0 \\
2 & 3 & -1 \\
1 & -1 & 3
\end{array}\right] \text { verify that }(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}
$$

b) Determine the rank of the following matrix :

$$
\left[\begin{array}{cccc}
0 & 1 & -3 & -1 \\
1 & 0 & 1 & 1 \\
3 & 1 & 0 & 2 \\
1 & 1 & -2 & 0
\end{array}\right]
$$

11. a) Find the eigen volums and corresponding eigen vector of the following matrix :

$$
\left[\begin{array}{ccc}
2 & -2 & 3 \\
1 & 1 & 1 \\
1 & 3 & -1
\end{array}\right]
$$

b) State and prove caylay Hamilton Theorem. $6+4$
12. a) Prove that the intersection of two subspaces of a vector space V over a field F is a subspace of V, but the union of two subspaces of V is not, in general a subspace of V .
b) Let S be a finite set of vectors in a vector space V over a field F. Show that the set of all linear combination of the vectors in S forms a subspace of V and this is the smallest subspace containing S. 5+5
13. a) Define basis and demension of a vector space with an example.

Let. $\mathrm{S}=\left\{(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathrm{E} \mathbb{R}^{3} \mid \mathrm{x}+\mathrm{y}+\mathrm{z}=0\right\}$ Prove that S is a subspace of \mathbb{R}^{3}. Find a basis and dimension of S.
b) State and prove Deletion Theorem in relation with a vector space.
14. a) Let U and W be two subspaces of a finite dimensional vector space V our a field F . When prove that $\operatorname{dim}(\mathrm{U}+\mathrm{W})=\operatorname{dim}(\mathrm{U})+\operatorname{dim}(\mathrm{W})-\operatorname{dim}(\mathrm{U} \cap \mathrm{W})$
b) Define complement of a subspace U in a vector space V. Let $\mathrm{U}=\mathrm{L}\{(1,2,1),(2,1,3)\}$. Find two different complements of U in \mathbb{R}^{3}
$6+4$

