
DISSERTATION

On

Developing Fuzzy Dilation and Pooling Based Deep Convolutional
Neural Network

Thesis Submitted in the partial fulfillment of the requirements for the degree of

Master of Engineering

In

Computer Science & Engineering

Submitted By

Rangan Das

Examination Roll number: M4CSE19030

Registration number: 140768 of 2017-2018

Under Guidance of

Prof. (Dr.) Ujjwal Maulik

Jadavpur University

Dept. of Computer Science & Engineering

Faculty Council of Engineering and Technology

JADAVPUR UNIVERSITY

KOLKATA – 700032

2018 – 2019

 2

Department of Computer Science & Engineering

Faculty Council of Engineering and Technology

JADAVPUR UNIVERSITY, KOLKATA – 700032

Certificate of Recommendation

This is to certify that Rangan Das (Examination Roll number: M4CSE19030) has completed
his dissertation entitled “Developing Fuzzy Dilation and Pooling Based Deep Convolutional
Neural Network”, under the supervision and guidance of Prof. (Dr.) Ujjwal Maulik, Jadavpur
University, Kolkata. We are satisfied with his work, which is being presented for the partial
fulfillment of the degree of Master of Engineering in Computer Science & Engineering,
Jadavpur University, Kolkata - 700032.

 Prof. (Dr.) Ujjwal Maulik
Teacher in Charge of Thesis

Professor, Dept. of Computer Science & Engineering
Jadavpur University, Kolkata – 700 032

Prof. (Dr.) Mahantapas Kundu
HOD, Dept. of Computer Science & Engineering

Jadavpur University, Kolkata – 700 032

 Prof. (Dr.) Chiranjib Bhattacharjee
Dean, Faculty Council of Engineering and Technology

Jadavpur University, Kolkata – 700 032

 3

Faculty Council of Engineering and Technology

JADAVPUR UNIVERSITY, KOLKATA – 700032

Certificate of Approval*

The foregoing thesis entitled “Developing Fuzzy Dilation and Pooling Based Deep
Convolutional Neural Network”, is hereby approved as a creditable study of Master of
Engineering in Computer Science & Engineering and presented in a manner satisfactory to
warrant its acceptance as a prerequisite to the degree for which it has been submitted. It is
understood that by this approval the undersigned do not necessarily endorse or approve any
statement made, opinion expressed or conclusion therein but approve this thesis only for the
purpose for which it is submitted.

Final Examination for Evaluation of the Thesis

Signature of Examiners

* Only in case the thesis is approved.

 4

Declaration of Originality and Compliance of Academic Ethics

I hereby declare that this thesis contains literature survey and original research work by the
undersigned candidate, as part of her Master of Engineering in Computer Science &
Engineering.

All information in this document has been obtained and presented in accordance with
academic rules and ethical conduct.

I also declare that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

Name: Rangan Das

Exam Roll Number: M4CSE19030

Registration number: 140768 of 2017-2018

Thesis Title: Developing Fuzzy Dilation and Pooling Based Deep
Convolutional Neural Network

Signature with date:

 5

Acknowledgements

This dissertation would not have been possible without the support of many people. First and

foremost, I would like to thank my advisor, Dr. Ujjwal Maulik, Professor, Department of

Computer Science and Engineering, Jadavpur University, Kolkata. He has provided with

provided me with the perfect balance of guidance and freedom. He is the first person who

introduced me to the world of deep learning and provided me with the guidance that was

essential in making this dissertation. I also want to thank him for his perspective and helping

me pursue and define projects with more impact.

I would also like to thank Mr. Sagnik Sen, Research Scholar, Department of Computer Science

and Engineering, Jadavpur University for his immense contribution to my knowledge of deep

learning and bioinformatics. A lot of this dissertation would not have happened without the

long, brainstorming sessions and the technical discussions we had during the coffee breaks

at the university. He has questioned me at every step of the way, allowing me to make

numerous improvements on my project. In many ways, he has shown me the path for how

to apply, develop and understand deep learning.

This dissertation would be incomplete without the support of Ms. Ashmita Dey, Research

Scholar, Department of Computer Science and Engineering, Jadavpur University. I would not

be able to complete this dissertation without her support and encouragement. She helped me

a lot by proof-reading my papers and suggesting necessary changes. I’m also thankful to Mrs.

Kakuli Mishra, Research Scholar, Department of Computer Science and Engineering,

Jadavpur University for her invaluable suggestions regarding this dissertation.

Finally, I would like to thank Jadavpur University for providing me with the opportunity to

work in such a productive environment. I would also like to thank all the other professors

and research scholars of the department who have extended their helping hands whenever I

needed help.

Date:

Place:

Rangan Das, M.E in CSE,

Exam Roll: M4CSE19030

 6

Contents

Abstract 9

Chapter 1: Introduction 10

 Background 11

 Motivation 12

 Implementation Framework 12

 Organization of thesis work 14

Chapter 2: Literature Survey 15

 Integrated Models 22

 Ensemble Models 38

 Sequential Models 38

 Parallel Models 45

 Applications 48

Chapter 3: Methodology 50

 Fuzzy Dilated Convolutions 51

 Overview of Convolution 51

 Dilation in Convolution 55

 Fuzzy Dilation 56

 Comparison between Dilation and Fuzzy Dilation 59

 Fuzzy Pooling 60

 Overview of Pooling 60

 Using OWA aggregation operator to combine pooling schemes 62

Chapter 4: Data Description and Results 65

 Data Description 66

 Results 68

 MNIST Handwritten Digits 69

 CIFAR-10 70

 Breast Cancer Histopathology Images 71

Chapter 5: Conclusion and Future Scope 74

 7

List of Figures

1. Overview of Deep Learning Architectures using Fuzzy Logic.

2. A fuzzy restricted Boltzmann Machine with fuzzy parameters set θ̅ visible vector x
and hidden units h.

3. Pythagorean Fuzzy Deep Belief Network (PFDBM)
4. Fuzzy Deep Learning architecture for tracking lung tumors
5. Stacked auto-encoders
6. Framework of the CDBN-FG that combines fuzzy granulation and deep belief

networks for continuous data
7. Structure of the hierarchical Fused Fuzzy Deep Neural Network
8. Overview of the Convolution operation
9. Stacking activation maps after convolving with different kernels
10. Dilated convolution: Convolving a 3×3 kernel over a 7×7 input with a dilation

factor of 2, stride 1 and padding 0
11. Receptive fields of kernels having dilation 1, 2 and 3
12. Receptive fields of fuzzy dilated kernels.
13. Comparison between Dilation and Fuzzy Dilation
14. a. How pooling is used for layer by layer subsampling of activation maps.

b. Illustration of max pooling with 2x2 filter or window and with stride 2.
15. Toy example illustrating the drawbacks of max pooling and average pooling.
16. Comparison of images processed using max pooling, average pooling and fuzzy

pooling.
17. MNIST handwritten digits dataset
18. CIFAR-10 images dataset
19. Breast cancer histopathology image patches showing non-IDC and IDC images
20. Baseline model for MNIST dataset
21. Comparison of performance of different variants of the CNN on the MNIST

dataset
22. Baseline model for CIFAR-10 dataset
23. Comparison of performance of different variants of the CNN on the CIFAR-10

dataset
24. Baseline model for Breast Cancer Histopathology images dataset
25. Comparison of performance of different variants of the CNN on the Breast Cancer

Histopathology images dataset

 8

List of Tables

1. A Chronological Overview of Deep Learning Architectures using Fuzzy Logic

2. Performance of the different variants of the CNN on the MNIST dataset

3. Performance of the different variants of the CNN on the CIFAR-10 dataset

4. Performance of the different variants of the CNN on the Breast Cancer

Histopathology images dataset

 9

ABSTRACT

Convolutional neural networks are a class of deep learning algorithms that are

commonly used for processing data that has a grid like topology. It is commonly

used for processing image data. Convolutional neural networks are

computationally intensive, but certain techniques such as dilation and pooling help

reduce the computational requirements. However, they do come with their

drawbacks that may reduce the expressive power of the network.

The goal of this work is to improve dilation and pooling by incorporating fuzzy

systems so that it convolutional neural networks provide better performance with

the same amount of training.

 10

Chapter 1:

Introduction

 11

Introduction

Background

Deep Learning is a family of machine learning algorithms that progressively extracts complex

features from the data, as opposed to task specific algorithms. [1] The idea of deep learning

has been inspired from the organization of the mammalian brain. The classic experiments by

Hubel and Wiesel [2] are fundamental to our understanding of how neurons along the visual

pathway extract increasingly complex information from the pattern of light cast on the retina

to construct an image. This is what deep neural networks try to replicate. Modern day deep

learning architectures are extensively used in areas of image analysis and computer vision,

natural language processing, time series data analysis, biomedical and computational biology

along with many other areas [3].

Most deep learning techniques use the same fundamental architecture which is based on

layers of perceptrons or artificial neurons. Perceptrons are non-linear processing units that

are organized in the form of layers. These layers are stacked one after the other and each

layer successively extracts more complex features. The learning is based on backpropagation

algorithm, where the error in the final layer is propagated backwards through the preceding

layers while tweaking the parameters of these layers [4]. An artificial neural network is called

“deep”, when it has more than 2 hidden layers. However, with increasing number of hidden

layers, the conventional learning algorithms often fail. Furthermore, deep learning is also

computationally intensive, and does not guarantee optimality [5].

Modern day deep learning architectures have been hybridized with other machine learning

paradigms for improved performance on certain tasks. In this context a seldom explored area

is the use of fuzzy systems. Previously, neural networks were extensively combined with

fuzzy logic to create neuro-fuzzy models [6]. This, often, provided better performance with

little or no extra performance cost, and in certain cases, it has also reduced the computational

requirements. Fuzzy systems have also been used in other machine learning domains, most

prominently, in data clustering [7] since the idea of fuzzy sets align well with the concept of

partitioning.

 12

Fuzzy systems are often employed to denote partial truth [8]. It is a mathematical tool that

helps represent vagueness and imprecise information. In daily life, we often use

terminologies such as big/small, high/low, near/far, and other without expressing quantities

precisely using numeric values. This is exactly what fuzzy systems deals with. Fuzzy sets, as

opposed to classical sets, allow an item to belong to a set with a certain degree of membership.

For instance, in a classical set, which is also known as a ‘crisp’ set, an item can either be in a

set or not. The boundary between what is in a set and what is not is distinct or ‘crisp’. In case

of a fuzzy set, that is not the case. So, “integers less than 10” is a crisp set, whereas “integers

near 10” is a fuzzy set. Similarly, fuzzy logic has been used to extend Boolean logic by

allowing truth values to be any real number between 0 and 1.

Different areas of fuzzy systems have also been implemented in a few deep learning

architectures. This includes fuzzy sets, fuzzy logic and fuzzy numbers. Exploring the

hybridization between contemporary deep learning architectures and fuzzy systems can help

us uncover newer architectures that have better performance in certain applications. In this

thesis, certain areas of convolutional neural networks are enhanced by implementing fuzzy

systems. This has shown performance gains over traditional non-fuzzy systems.

Motivation

Convolutional neural network is a deep learning model that is extensively used in the many

domain including image analysis [9]. The process of convolution helps extract features from

the image data that is used in the classification of data. Convolutional neural networks

heavily rely on two operations: convolution and pooling. Improving the performance of these

operations by tweaking the algorithm can help in creating neural networks that can be

trained with fewer parameters.

Implementation Framework

In this thesis, two different deep convolutional neural networks are developed. In CNNs, two

CNNs, the convolution operation is performed on the input data, along with pooling, a

technique that is used to subsample the data and reduce computation.

The convolution operation uses a “kernel” matrix to extract relevant features from the input

data matrix [10]. The kernel matrix slides over the input matrix, extracting the features that

 13

are local to the overlapping regions. The larger the size of the kernel, the more global features

the kernel can extract. However, a larger kernel also increases computational complexity.

Dilation is an inexpensive way for a smaller kernel to extract features from a larger area by

excluding parts of the input. In fuzzy dilation, no part of the input is excluded when the

smaller kernel is dilated. This provides marginal gains in terms of classification accuracy.

To speed up computation, CNNs also use pooling. Commonly used pooling methods include

max pooling and average pooling. These methods naively discard a large fraction of the data

for subsampling. A fuzzy pooling operation combines different pooling operations and

performs the subsampling to reduce data loss.

The proposed models were implemented using the Python programming language and using

an open source machine learning library for Python, called PyTorch.

Python allows wiring clear, concise and readable code and is extensively used for developing

machine learning algorithms. PyTorch is a machine learning library that offers strong GPU

acceleration and extensive interoperability with other popular Python libraries such as

NumPy. One of the best features of PyTorch is how easy it is to construct the custom

operations that are performed during the training and testing of the neural networks. This

was an essential requirement since implementing fuzzy systems in convolutional neural

networks meant rewriting the code of the whole operations. PyTorch allows programmers

to easily declare tensors (n-dimensional vectors) and perform basic operations using them on

GPUs.

To test the performance of any deep learning architecture, it is crucial to have a proper

dataset. The performance often depends on how well the data is curated in the first place.

Both the models were tested on two standard image datasets that are used for verifying the

performance of deep learning models:

The first dataset is the MNIST dataset, which is a set of 10,000 grayscale images of

handwritten digits. The digits have been size-normalized and centered in a fixed-size image,

and hence is a great starting point for experimenting with CNNs.

The second dataset is the CIFAR-10 (Canadian Institute for Advanced Research) image

dataset, which is one of the most commonly used image datasets for machine learning

experiments. The CIFAR-10 dataset contains 60,000 32x32 color images in 10 different classes.

 14

We have also tested both the models on another dataset containing digital pathology data.

These are histopathology images containing Invasive Ductal Carcinoma (IDC), the most

common type of breast cancer. The dataset contains over 200,000 image patches belonging to

two classes: IDC and non-IDC.

Organization of thesis work

Chapter 1 introduces the thesis. This section provides an overview of deep neural networks

and fuzzy systems, and how they have been used. This section also further discusses how the

experiments has been implemented.

Chapter 2 provides a detailed literature survey. The extensive literature survey introduces

the concept of fuzzy systems in deep neural networks and discusses in details previously

studied models.

Chapter 3 introduces the methodologies that have been proposed. Two different methods

have been proposed in the thesis – fuzzy dilated convolution and fuzzy pooling.

Chapter 4 discusses the experimental results. A total of nine experiments are performed using

three different neural network models and three datasets.

Chapter 5 concludes the thesis and discusses future scope of the project.

 15

Chapter 2:

Literature Survey

 16

Literature Survey

Deep neural networks (DNNs) learn representations of the data in a hierarchical manner,

building complex features out of simple features. DNNs are an extension of multi-layer

perceptrons (MLPs). Such networks typically organize artificial neurons in a fixed topology

connected by predefined links. Neurons are non-linear processing elements are organized

into columns, called layers. The output of one layer is the input of the succeeding layer.

The first layer which takes the input data is called the input layer. The intermediate layers

are called hidden layers since they are hidden from the output. The last layer is called the

output layer. The learning algorithm propagates the input forward through the layers of

the processing elements and finds the error or the loss in the output layer. An increased

number of layers allow the network to learn complex representations of the data, but new

challenges arise when it comes to the training of such networks.

The target of training any deep neural network is to minimize the loss or error given an

input vector. For every neural network, a loss function is defined that is used to calculate

the loss of error for the input. The loss or the error is minimized by changing the weights

of the network. The most common method for weight updating is by using gradient

descent, which is a calculus-based method that iteratively computes the local minima of

the error surface. The objective is to get to these minima by moving opposite to the

direction of the slope. The obvious drawback of the calculus-based method is that it may

not find the global minima of the error surface [11]. Furthermore, this process can be

computationally intensive as well.

Gradient descent has three primary variations that is determined by what fraction of the

input data we use to calculate the loss function. The parameters of the network are updated

based on the time needed for the update as well as the volume of data used for the training

process. The standard gradient descent computes the gradient of the loss function with

respect to the parameters θ for the entire dataset, stochastic gradient descent or SGD

performs the update for each training example. In between these two is mini-batch

gradient descent that makes the update for every batch of n tuple. However, there are some

common difficulties faced by all the variants of gradient descent.

These primarily include:

 17

• Choosing a proper learning rate: Learning rate is a hyperparameter that the user

has to supply. Finding the optimum value of the learning rate is done by trial and

error. If it is too small, the network takes a lot of time to converge, whereas a value

too big may even prevent the network from reaching the minima. Learning rate

schedules which change the learning rate during the training process alleviate the

problems a little, but these have to be defined in advance. Therefore, it becomes

difficult to determine the threshold and schedules in advance without looking at

the dataset. Depending on the architecture, they may also be other

hyperparameters that are to be tuned manually [12].

• Minimizing highly non-convex error functions: Another key challenge is to avoid

getting trapped in multiple local optima. The problem arises in the saddle points,

where the value of the gradient is extremely small across all dimensions [13].

These challenges are somewhat tackled using gradient descent optimization methods such

as Momentum [14], Nesterov accelerated gradient (NAG) [15], Adagrad [16], Adadelta [17],

RMSprop [18], Adam [19], AdaMax and Nadam (Nesterov-accelerated Adaptive

Momentum Estimation) [20]. Most of these strategies aim to provide improved

convergence for MLPs with a larger number of layers. Some other techniques such as early

stopping, gradient noise, batch normalization, shuffling and curriculum learning are used

in conjunction. Furthermore, a lot of problems suffer from low sample size, have noisy

samples or heterogeneous samples, or have severe class imbalance issues. These are some

of the major drawbacks of deep learning techniques at present.

Besides, deep learning models needs a lot of data for training. Since it requires such copious

amounts of data, the training time is also significant. Once trained, the model can be used

for performing a very specific task. To deal with a slightly different problem, the entire

system requires retraining. Another problem of deep learning is the computation power

that is required for the training procedure, even though it is being addressed now through

GPU-based parallel computing frameworks. Deep learning models work well with

homogeneous features. If the features are of the same type (pixels, words count, etc.), then

the deep learning model can be easily developed. But when the features are heterogeneous,

the weight updates in the network happens on different scales. Hence, the input data

should be normalized using some method.

 18

An alternative method that is seldom explored in optimizing the performance of deep

neural networks is by forming a hybrid model with fuzzy systems. Fuzzy systems allow

dealing with the uncertainties and the ambiguities of real-world data. Fuzzy learning has

been previously used in solving multiple real-world problems including image processing,

computer vision, computational biology and bioinformatics, brain and cognition modelling,

portfolio management and motor control. Fuzzy systems have also been extensively used

in combination with neural networks to give rise to neuro-fuzzy systems. However, it has

not been extensively used in conjunction with modern day deep learning architectures.

To specifically address the drawbacks of deep learning, multiple approaches have been

proposed. Some models, such as Fuzzy Restricted Boltzmann Machines use the concept of

fuzzy numbers to denote the network weights. An implementation of this was proposed

for airline passenger profiling and for an early warning system for industrial accidents.

Another way in which fuzzy systems are integrated into deep learning is by using fuzzy

logic units instead of perceptrons in the network, which is similar to the neuro-fuzzy

approach. Fuzzy systems have also been implemented to train some of the network

parameters of a deep neural network.

 19

Table 1: A Chronological Overview of Deep Learning Architectures using Fuzzy Logic.

Year Model Key Feature

2014

Deep Belief Networks with

Fuzzy Granulated Inputs

[Zhang et al. 2014][21]

• First deep neural network architecture to

use fuzzified time-series input data

• Effectively reduces noise and redundant

information

2014

Deep Belief Network with

fuzzified outputs

[Zhou et al.

2014][22]

• Extends a deep binary classification model

by implementing fuzzy memberships.

2015

Fuzzy Restricted Boltzmann

Machine [Chen et al. 2015]

[23]

• Extends the concept of RBM by implementing

fuzzy weights

• Fuzzy weights search for optima over a larger

space

• Handles noisy data well

2016

Fuzzy Deep

Learning for

tumor variation

prediction [Park

et al. 2016] [24]

• Uses fuzzy logic operator instead of ANNs.

• Reduced number of parameters drastically

improves training times.

2016

Deep Learning with Fuzzy

Feature Points [Wang et al.

2016] [25]

• Uses radial basis function to fuzzify input

data

• Makes use of traditional deep CNN

2017

Restricted Boltzmann

Machine with Fuzzy Inputs

[Chopade and Narvekar

2017] [26]

• Uses fuzzy logic to understand semantic

similarity between input vectors and assign

importance value to input vectors - RBM is

used for feature extraction

 20

2017

Pythagorean Fuzzy Deep

Boltzmann machine

[Zheng et al. 2017] [27]

• Extension of Fuzzy Restricted Boltzmann

Machine

• Uses Pythagorean fuzzy numbers as weights

• Can effectively handle noisy or incomplete

data

• Implements a Biogeography based learning

2017

Hierarchical Fused Fuzzy

Deep Neural Network

[Deng et al. 2017] [28]

• Extracts deep representation and fuzzy

membership values of data in parallel

• Implements multi-modal learning

2018

Stacked Auto Encoder

trained using Fuzzy Logic

[El Hatri and Boumhidi

2018] [29]

• Fuzzy logic system is used to adjust multiple

neural network parameters

• Fuzzy logic is also used to adjust learning rate

2018

Deep Convolutional Neural

Networks using Weighted

Fuzzy Active Shape Model

[Tabrizi et al. 2018] [30]

• Uses Gabor filter to fuzzify input data and

reduce noise.

• Makes use of traditional deep CNN

 21

Figure 1: Overview of Deep Learning Architectures using Fuzzy Logic.

 22

Integrated Models

This section describes in details the models that make use of fuzzy systems as a part of the

learning mechanism.

Fuzzy Restricted Boltzmann Machines

Figure 2. A fuzzy restricted Boltzmann Machine with fuzzy parameters set �̅�, visible

vector x and hidden units h.

The Fuzzy Restricted Boltzmann Machine [21] is one of the first works in integrating fuzzy

systems with a deep learning architecture. The Restricted Boltzmann Machine (RBM) plays

a significant role in current deep neural network architecture and learning. Architectures

such as the deep auto-encoder, deep belief networks, and the deep Boltzmann machines

have a wide range of applications. Prior to this, most research focused on improving the

learning algorithms for RBMs. Gaussian RBMs, temporal RBMs and recurrent RBMs were

also proposed. However, regular RBMs or their variations have some drawbacks. RBMs

have a set of visible units and a set of hidden units organized in form of a bipartite graph.

A set of parameters θ are the weights of the edges between the hidden and the visible units

and the biases associated with each unit. This architecture has a few drawbacks. The first

drawback is the constant parameters that determine how the visible and the hidden units

h

θ

x

 23

are related. This reduces the representation capability of the RBMs. Secondly, the

performance of the RBM heavily degrades with the presence of noise. Finally, during the

learning procedure, a very small space is searched for the optimal parameters. Hence Fuzzy

Restricted Boltzmann Machines (FRBMs) are used to overcome the inaccuracy and the

linear relationships between the cross-layer units.

A Boltzmann machine is defined in terms of the combined state of the visible and the

hidden units. The state is commonly known as energy, the value of which is determined

by using a probability function. The relationship between the energy and the probability is

given as p (v,h) ∝ e−E(v,h)

where p(v,h) is the joint probability and E(v,h) is the joint energy. For a given training set,

the objective is to maximize the product of the probabilities of a training sample. This is

the same as trying to maximize the expected log probability. Hence, an RBM can be said to

be an energy-based probabilistic model. It is defined as:

𝑃(𝑣, ℎ, 𝜃) =
𝑒−𝐸(𝑣,ℎ,𝜃)

𝑍

where Z is called the partition function. It is used for normalization. Z is defined as:

𝑍 =∑∑𝑒−𝐸(�̃�,ℎ̃,𝜃)

ℎ̃�̃�

The partition function is all the possible number of configurations that can be taken up by

the hidden and the visible unit. The energy function is given as:

𝐸(𝑣, ℎ, 𝜃) = −𝑏𝑇𝑣 − 𝑐𝑇ℎ − ℎ𝑇𝑊𝑣

where 𝑏𝑗 and 𝑐𝑖 are the offsets and 𝑊𝑖𝑗 is the weight of the connection from the 𝑗𝑡ℎ visible

unit to the 𝑖𝑡ℎ hidden unit and 𝜃 = {𝑏, 𝑐,𝑊}. The crisp energy function is given as follows:

ℱ(𝑣, 𝜃) = −log∑𝑒−𝐸(𝑣,ℎ̃,𝜃)

ℎ̃

For the visible vector v, the free energy is the configuration of the nodes that is required to

have the same probability as that of all the configurations with v.

 24

In case of a fuzzy restricted Boltzmann machine (FRBM), the connection weights and biases

are determined by 𝜃, which is a fuzzy parameter. For this, the fuzzy energy function is derived

from the crisp energy function and it is defined as

𝐸(𝑣, ℎ, 𝜃) = −𝑏
𝑇
𝑥 − 𝑐

𝑇
ℎ − ℎ𝑇𝑊𝑣

where 𝐸(𝑣, ℎ, 𝜃) is the fuzzified energy function and 𝜃 is a set containing 𝑏, 𝑐,𝑊 is the set

of fuzzy parameters. Correspondingly, the free energy function implementing fuzzy numbers,

which is given as ℱ is as follows.

ℱ(𝑣, 𝜃) = −log∑𝑒−𝐸(𝑣,ℎ̃,𝜃)

ℎ̃

The probability defined using a fuzzy free energy function gives us fuzzy probability [34]

which is an NP-hard problem and hence is intractable [32]. Next, using the centroid method,

it is defuzzified. This converts the fuzzy optimization problem into a real valued one. The

centroid of a fuzzy number [33] is determined using the following formula

ℱ𝑐(𝑣, 𝜃) =
∫ 𝜃ℱ(𝑣, 𝜃)𝑑𝜃

∫ (𝑣, 𝜃)𝑑𝜃
, 𝜃 ∈ 𝜃

Now, converting the fuzzy energy function into a crisp one using the above method, the

probability can be defined as

𝑃𝑐(𝑣, 𝜃) =
𝑒−ℱ𝑐(𝑣, 𝜃)

𝑍
, 𝑍 = ∑

�̃�

𝑒−ℱ𝑐(�̃�,𝜃)

Here, the negative log-likelihood objective function is defined as

ℒ(𝜃, 𝐷) = −∑ log
𝑣∈𝐷

𝑃𝑐(𝑣, 𝜃)

Where D represents the training dataset.

Here, the optimization problem is finding the value of 𝜃 that is, the parameters, so that the

objective function ℒ(𝜃, 𝐷). is minimized. For the learning algorithm, 𝛼-cuts of the fuzzy

function are used to approximate the integral that required to determine the centroid of the

fuzzy number. The 𝛼 -cut of ℱ𝑐(𝑣, 𝜃) can be given as follows:

 25

ℱ𝑐(𝑣, 𝜃)[𝛼] = ℱ𝑐(𝑣, 𝜃[𝛼]) = [ℱ𝑐(𝑣, 𝜃𝑅),ℱ𝑐(𝑣, 𝜃𝐿)]

Here, 𝜃𝐿 and 𝜃𝑅 are the lower and upper bounds of the triangular fuzzy membership function.

Therefore, the approximate value of the centroid is as defined as follows:

ℱ𝑐(𝑣, 𝜃) ≈
∑ 𝛼𝑖[ℱ(𝑣, 𝜃𝑖𝐿) + ℱ(𝑣, 𝜃𝑖𝑅)]
𝑀
𝑖=1

2∑ 𝛼𝑖
𝑀
𝑖=1

where 𝛼 = (𝛼1, … , 𝛼𝑁), 𝛼 ∈ [0,1]
𝑁 and 𝜃[𝛼𝑖] = [𝜃𝑖𝐿 , 𝜃𝑖𝑅]. Since all the 𝛼 - cuts are fuzzy

intervals, only the special case where 𝛼 = 1 is considered. This allows us to define the free

energy function as:

ℱ𝑐(𝑣, 𝜃) ≈
1

2
[ℱ(𝑣, 𝜃𝑖𝐿) + ℱ(𝑣, 𝜃𝑖𝑅)]

To perform gradient descent-based optimization, the derivative of the negative log-likelihood

is done with respect to the parameters, 𝜃. This is done as follows:

−
𝜕log𝑃(𝑣, 𝜃)

𝜕𝜃
=
ℱ𝑐(𝑣, 𝜃)

𝜕𝜃
−
1

𝑍
∑

�̃�

𝑒−ℱ𝑐(�̃�,𝜃)
𝜕ℱ𝑐(�̃�, 𝜃)

𝜕𝜃

=
ℱ𝑐(𝑣, 𝜃)

𝜕𝜃
−∑𝑃

�̃�

(�̃�)
𝜕ℱ𝑐(�̃�, 𝜃)

𝜕𝜃

=
ℱ𝑐(𝑣, 𝜃)

𝜕𝜃
− 𝐸𝑝[

𝜕ℱ𝑐(𝑣, 𝜃)

𝜕𝜃
]

Here, 𝐸𝑝 is the expectation of the target probability distribution P. In the case of the defuzzied

free energy function, the derivative is performed with respect to 𝜃𝐿 and 𝜃𝑅 . Therefore, we

will have the following equations:

−
𝜕log𝑃𝑐(𝑣, 𝜃)

𝜕𝜃𝐿
 =

ℱ𝒸(𝑣, 𝜃𝐿)

𝜕𝜃𝐿
− 𝐸𝑝 [

𝜕ℱ𝒸(𝑣, 𝜃𝐿)

𝜕𝜃𝐿
]

−
𝜕log𝑃𝑐(𝑣, 𝜃)

𝜕𝜃𝑅
 =

ℱ𝒸(𝑣, 𝜃𝑅)

𝜕𝜃𝑅
− 𝐸𝑝 [

𝜕ℱ𝒸(𝑣, 𝜃𝑅)

𝜕𝜃𝑅
]

 26

For these equations, it can be challenging to compute the gradients. To find the value of

𝐸𝑝 [
𝜕ℱ𝒸(𝑣,𝜃𝐿)

𝜕𝜃𝐿
] or 𝐸𝑝 [

𝜕ℱ𝒸(𝑣,𝜃𝑅)

𝜕𝜃𝑅
], we simply find the expectation over all possible configurations

for the input x. Assuming there are 𝒩 samples, then the gradient can be approximated as

−
𝜕log𝑃𝑐(𝑣, 𝜃)

𝜕𝜃
≈ −

𝜕ℱ𝒸(𝑣, 𝜃)

𝜕𝜃
−

1

|𝒩|
∑

𝜕ℱ𝒸(�̃�, 𝜃)

𝜕𝜃
�̃�∈𝒩

For an RBM, the conditional probability is defined as

𝑃(ℎ|𝑣) =
𝑒−𝐸(𝑣,ℎ)

∑ ℎ 𝑒−𝐸(𝑣,ℎ)

𝑃(𝑣|ℎ) =
𝑒−𝐸(𝑣,ℎ)

∑ �̃� 𝑒−𝐸(�̃�,ℎ)

In case of the RBMs that use binary units, 𝑣𝑖 and ℎ𝑗 ∈ 0,1. Hence the above equations can be

written as

𝑃(ℎ𝑖 = 1|𝑣) =
𝑒𝑐𝑖 + 𝑊𝑖𝑣

1 + 𝑒𝑐𝑖 + 𝑊𝑖𝑣
 = 𝜎(𝑊𝑖𝑣 + 𝑐𝑖)

𝑃(𝑣𝑗 = 1|ℎ) =
𝑒𝑏𝑗 + 𝑊𝑗

𝑇ℎ

1 + 𝑒𝑏𝑗 + 𝑊𝑗
𝑇ℎ

 = 𝜎(𝑊𝑗
𝑇ℎ + 𝑏𝑗)

𝜎 is the logistic expression, 𝑊𝑖 and 𝑊𝑗 determine the 𝑖𝑡ℎ and the 𝑗𝑡ℎ column of W. For fuzzy

RBMs, the equations can be written as

𝑃(ℎ𝑖 = 1|𝑣) = 𝜎(𝑐𝑖 + 𝑊𝑖𝑣)

𝑃(𝑣𝑗 = 1|ℎ) = 𝜎 (𝑏𝑗 + 𝑊𝑗

𝑇
ℎ)

Next, the Monte Carlo Markov Chain (MCMC) method is used to sample from the conditional

distributions. This approximation alleviates the challenges of calculating the expression itself.

Now, the 𝛼 - cut of the probabilites are found using a certain value of 𝛼.:

𝑃(ℎ𝑖 = 1|𝑣)[𝛼] = [𝑃𝐿(ℎ𝑖 = 1|𝑣), 𝑃𝑅(ℎ𝑖 = 1|𝑣)]

𝑃(𝑣𝑗 = 1|ℎ)[𝛼] = [𝑃𝐿(𝑣𝑗 = 1|ℎ), 𝑃𝑅(𝑣𝑗 = 1|ℎ)]

 27

𝑃𝐿(ℎ𝑖| 𝑣) , 𝑃𝑅(ℎ𝑖| 𝑣), 𝑃𝐿(𝑣𝑗| ℎ) and 𝑃𝑅(𝑣𝑗| ℎ) are all conditional probabilities in terms of the

lower bounds and upper bounds of the parameters that define the model. These have the

following forms:

𝑃𝐿(ℎ𝑖| 𝑣) = 𝑃(ℎ𝑖| 𝑣; 𝜃𝐿) = 𝜎(𝑐𝑖
𝐿 + 𝑊𝑖

𝐿𝑣)

𝑃𝑅(ℎ𝑖| 𝑣) = 𝑃(ℎ𝑖| 𝑣; 𝜃𝑅) = 𝜎(𝑐𝑖
𝑅 + 𝑊𝑖

𝑅𝑣)

and

𝑃𝐿(𝑣𝑗| ℎ) = 𝑃(𝑣𝑗| ℎ; 𝜃𝐿) = 𝜎(𝑏𝑗
𝐿 + 𝑊𝑗

𝐿ℎ)

𝑃𝑅(𝑣𝑗| ℎ) = 𝑃(𝑣𝑗| ℎ; 𝜃𝑅) = 𝜎(𝑏𝑗
𝑅 + 𝑊𝑗

𝑅ℎ)

Therefore, we have six parameters for the hidden and the visible units that we have to tune

energy function and consequently the negative log-likelihood. The six parameters are lower

bound of the connection weight 𝑊𝑖𝑗
𝐿, the visible bias 𝑏𝑗

𝐿 , the hidden bias 𝑐𝑖
𝐿, and the respective

upper bounds 𝑊𝑖𝑗
𝑅, 𝑏𝑗

𝑅 and 𝑐𝑖
𝑅. For simplicity, the energy function can be represented using

the terms that are associated with one hidden unit.

𝐸(𝑣, ℎ) = −𝜇(𝑣) −∑𝜙𝑖(𝑣, ℎ𝑖)

𝑚

𝑖=1

where

𝜇(𝑣) = 𝑏𝑇𝑉, 𝜙𝑖(𝑣, ℎ𝑖) = −ℎ𝑖(𝑐𝑖 +𝑊𝑖𝑣)

A simplified expression of free energy of an RBM with binary units can be given as

ℱ(𝑥) = −𝑏𝑇𝑣 −∑𝑙

𝑚

𝑖=1

𝑜𝑔(1 + 𝑒(𝑐𝑖+𝑊𝑖𝑣))

Now, the gradients can be easily calculated when the energy function has the form of 𝐸(𝑣, ℎ).

 28

−
𝜕log𝑃𝑐(𝑣)

𝜕𝑊𝑖𝑗
𝐿 = 𝐸𝑃[𝑃𝐿(ℎ𝑖| 𝑣). 𝑣𝑗

𝐿] − 𝑃𝐿(ℎ𝑖|𝑣). 𝑣𝑗
𝐿

−
𝜕log𝑃𝑐(𝑣)

𝜕𝑏𝑗
𝐿 = 𝐸𝑃[𝑃𝐿(ℎ𝑖| 𝑣)] − 𝑣𝑗

𝐿

−
𝜕log𝑃𝑐(𝑣)

𝜕𝑐𝑖
𝐿 = 𝐸𝑃[𝑃𝐿(ℎ𝑖| 𝑣)] − 𝑃𝐿(ℎ𝑖|𝑣)

−
𝜕log𝑃𝑐(𝑣)

𝜕𝑊𝑖𝑗
𝑅 = 𝐸𝑃[𝑃𝑅(ℎ𝑖| 𝑣). 𝑣𝑗

𝑅] − 𝑃𝑅(ℎ𝑖|𝑣). 𝑣𝑗
𝑅

−
𝜕log𝑃𝑐(𝑣)

𝜕𝑏𝑗
𝑅 = 𝐸𝑃[𝑃𝑅(ℎ𝑖| 𝑣)] − 𝑣𝑗

𝑅

−
𝜕log𝑃𝑐(𝑣)

𝜕𝑐𝑖
𝑅 = 𝐸𝑃[𝑃𝑅(ℎ𝑖| 𝑣)] − 𝑃𝑅(ℎ𝑖|𝑣)

Where 𝑃𝑐(𝑣) is the centroid probability.

The expectations are then approximated. The samples of 𝑃𝐿(𝑣) and 𝑃𝑅(𝑣) can be obtained

by running two separate Markov chains, using Gibbs sampling as the transition operator.

Since Gibbs sampling is computationally intensive, we run it for a smaller number of steps.

This is known as Contrastive Divergence. CD-k uses of Gibbs sampling for k-steps.

 29

Pythagorean Fuzzy Deep Boltzmann Machines

Figure 3. Pythagorean Fuzzy Deep Belief Network (PFDBM)

Zheung et al. [27] extend the Fuzzy Restricted Boltzmann Machine by proposing a Fuzzy

Deep neural network that uses a Pythagorean Type Fuzzy Deep Boltzmann Machine. This

model is used for airline passenger profiling where data is often incomplete and vague data.

Fuzzified neural networks are known to handle both labelled and unlabeled data as well as

incomplete features. Moreover, fuzzy deep Boltzmann machine performs parameter learning

over a larger area. The fuzzy DBM proposed by Zheung et al. incorporates the concepts of

Deep Boltzmann Machines, Pythagorean Fuzzy Sets and Pythagorean Fuzzy Numbers

A standard Deep Boltzmann machine [35] is an extension of the restricted Boltzmann

machine where the number of hidden layers is more than one. The increased number of

hidden layers allow capturing more complex correlations of the activities of the preceding

layers [36]. For a DBM with two hidden layers, the set of layers is {𝑥, ℎ1, ℎ2}. This makes the

free energy function as follows:

𝐸(𝑥, ℎ1, ℎ2, 𝜃) = −𝑥
𝑇𝑊1ℎ1 − ℎ1

𝑇𝑊2ℎ2

𝜃 = [𝑊1,𝑊2] is the vector containing the set of parameters. Now, the probability of the

model assigning a certain parameter to the input vector x is simply

v v
i

v
D

h h h

h
L1

h
Lj

h
LPL

W₁
~

W₂
~

W
L

~

 30

𝑃(𝑣, 𝜃) =
1

𝑍(𝜃)
∑ ∑𝑒−𝐸(𝑥,ℎ1,ℎ2,𝜃)

ℎ2ℎ1

The basic RBM works with binary data. To work with real-valued data, the real value is

transformed into a binary vector using Gaussian-Bernoulli RBM (GRBM). GRBM, as the name

implies, makes use of Gaussian units. The energy function is defined as

𝐸(𝑥, ℎ, 𝜃) =∑
(𝑥𝑖 − 𝑏𝑖)

2

2𝜎𝑖
2 − ∑∑𝑊𝑖𝑗ℎ𝑗

𝑥𝑖

𝜎𝑖
2

𝑃

𝑗=1

𝐷

𝑖=1

𝐷

𝑖=1

−∑𝑐𝑗ℎ𝑗

𝑃

𝑗=1

Where the Gaussian visible neuron 𝑥𝑖(1 < 𝑖 < 𝐷) has standard deviation 𝜎𝑖.

Now, the concept of the basic fuzzy sets is extended by Intuitionistic fuzzy set (IFS) [37] that

introduces a non-membership degree besides the standard membership degree. Pythagorean

fuzzy sets [38] is a further extension of IFS where the sum of the squares of the membership

degree lies from 0 to 1.

A Pythagorean Fuzzy Set (PFS), P, is defined as the following mathematical object:

𝑃 = {< 𝑥, 𝑃(𝜇𝑝(𝑥), 𝑣𝑝(𝑥)) > |𝑥 ∈ 𝑆}

Here, 𝜇𝑝(𝑥): 𝑆 → [0,1] and 𝑣𝑝(𝑥): 𝑆 → [0,1] are respectively the membership degree of the

element x to S in P, satisfying the expression 𝜇𝑝(𝑥)
2 + 𝑣𝑝(𝑥)

2 ≤ 1. The hesitant degree of

𝑥 ∈ 𝑋 is written as

𝜋𝑝(𝑥) = √1 − 𝜇𝑝2(𝑥) − 𝑣𝑝2(𝑥)

If 𝛽 = 𝑃(𝜇𝛽 , 𝑣𝛽) is a Pythagorean Fuzzy Number (PFN) which satisfied 𝜇𝛽 , 𝑣𝛽 ∈ [0,1] and

𝜇𝛽
2 + 𝑣𝛽

2 ≤ 1, then the following operations are defined on the PFN:

 31

𝛽𝐶 = 𝑃(𝑣𝛽 , 𝜇𝛽)

𝛽1 + 𝛽2 = 𝑃 (√𝜇𝛽1
2 + 𝜇𝛽2

2 − 𝜇𝛽1
2 𝜇𝛽2

2 , 𝑣𝛽1 , 𝑣𝛽2)

𝛽1 + 𝛽2 = 𝑃 (√𝜇𝛽1
2 + 𝜇𝛽2

2 − 𝜇𝛽1
2 𝜇𝛽2

2 , 𝑣𝛽1 , 𝑣𝛽2)

𝜆𝛽 = 𝑃 (√1 − (1 − 𝜇𝛽
2)

𝜆
, 𝑣𝛽

𝜆)

𝛽𝜆 = 𝑃 (𝜇𝛽
𝜆 , √1 − (1 − 𝑣𝛽

2)
𝜆
)

Using these operations, two more functions are defined that are used to rank a PFN. These

are as follows:

𝑠(𝛽) = 𝜇𝛽
2 − 𝑣𝛽

2

ℎ(𝛽) = 𝜇𝛽
2 + 𝑣𝛽

2

𝑠(𝛽) is known as the score function and ℎ(𝛽) is the accuracy function. Based on these the

ranking of two PFN 𝛽 = 𝑃(𝜇𝛽1 , 𝑣𝛽1) and 𝛽 = 𝑃(𝜇𝛽2 , 𝑣𝛽2) is performed as follows:

1. If 𝑠(𝛽1) < 𝑠(𝛽2) then 𝛽1 < 𝛽2.

2. If 𝑠(𝛽1) = 𝑠(𝛽2), then

a. If ℎ(𝛽1) < ℎ(𝛽2), then 𝛽1 < 𝛽2

b. If ℎ(𝛽1) = ℎ(𝛽2), then 𝛽1 = 𝛽2

The Pythagorean Fuzzy Deep Belief Network (PFDBN) is built upon the DBM by using PFNs

in place of the standard real-valued paramters. This fuzzy neural network can work with

fuzzy and/or incomplete data [39][40]. Furthermore, fuzzy parameters provide a better

representation of the data using fuzzy probability. Moreover, the parameter learning space

of the DBM increases with the introduction of the PFS.

The associated PFN parameters can learn new features, and also sees how much a certain

feature influences the output

Given the fuzzy parameters are �̃� = [𝑊1̃, … ,𝑊�̃�] of a PFDBM with layers , ℎ1, … , ℎ𝐿 , then the

energy function can be written as:

 32

�̃�(𝑣, ℎ1, … , ℎ𝐿 , �̃�) = −𝑣
𝑇𝑊1̃ℎ1 −∑ℎ𝑙−1

𝑇 𝑊�̃�

𝐿

𝑙=2

ℎ𝑙

And the corresponding probability is

�̃�(𝑣, �̃�) =
1

�̃�(�̃�)
∑ . . .

ℎ1

 ∑

ℎ𝐿

𝑒−�̃�(𝑣,ℎ1,…,ℎ𝐿,�̃�)

Now, the objective of the learning algorithms is to learn a set of optimal parameters such that

the log likelihood is maximized (or the negative log likelihood is minimized).

max
�̃�
ℒ̃(�̃�, 𝐷) = ∑ log

𝑣∈𝐷

(�̃�(𝑣, �̃�))

However, in general, fuzzy optimization problems are quite intractable. So, using the scoring

functions, it is converted to a crisp optimization problem. Now, the PFDBM is trained using

a combination of gradient descent and metaheuristic techniques.

The PFDBM is trained by iteratively using greedy layer-wise training and Biogeography

based learning algorithm since traditional methods are suboptimal. Evolutionary algorithms

have been used previously for ANNs too, but not widely DNNs [41][42][43]. The

biogeography-based learning algorithm is a metaheuristic optimization method that is

inspired by biogeography.

The training algorithm randomly initiates a population of n solutions and a local topology.

Next, it uses gradient-descent to train the network weights. Then immigration and

emigration operation, along with mutation operation is performed. Then again, gradient

descent is used to optimize the network. The old solution is replaced with a new one if the

new one provides better values. Until the termination condition is satisfied, this process is

continued.

Fuzzy Deep Learning for Lung Tumor Tracking

The synergy of Deep learning and fuzzy logic has also been demonstrated by Park et al. [24]

in a machine that is used to predict the intra- and inter-fractional variation of lung tumors.

In image-guided radiation therapy, it is important to monitor the target of the radiation very

 33

precisely to prevent damage to the surrounding healthy tissues. Features are extracted from

respiratory signals, from which multiple metrics are first computed as done in previous

studies too [44][45][46][47], such as "Standard deviation of time series data", "maximum

likelihood estimates", "breathing frequencies" and more. Based on these values, the patients

are clustered according to the similarity of the breathing features. For each patient group, the

FDNN in trained to predict the two different types of variation.

Figure 4. Fuzzy Deep Learning architecture for tracking lung tumors

The fuzzy deep learning (FDL) model is a fuzzy logic system that is organized in form of a

neural network. Since the neural network is more than two layers deep, it is called a deep

network. In the network, the functional units are fuzzy rules instead of traditional artificial

neurons with activation functions.

The neural network architecture gives the fuzzy logic system a self-learning feature that

allows it to set its parameters automatically by using a variation of the gradient descent

algorithm. In FDL, a small number of fuzzy parameters determine the weight values between

the nodes. These are the prediction parameters. Furthermore, since there are fewer

parameters, the performance is optimal for real-time prediction.

 34

The network has four layers. These are summarized as follows:

The layer 1 assigns membership values based on certain membership functions to the input.

The functions take in a set of parameters 𝑀 = {𝑚𝑖,1, 𝑚𝑖,2, 𝑚𝑖,3}. Then T-norm operation in

performed in the next layer, that is layer 2. In layer 3 based in the set of input parameters

𝑅 = {𝑟𝑖,1, 𝑟𝑖,2, 𝑟𝑖,3}, linear regression is done and finally, layer 4 provides the output of the

entire network by providing an additive outcome depending on the fuzzy if-then rules.

According to Fig. 5, the fuzzy if-then rules, which is the same as the number of nodes in

layers 2 and 3, are given as follows:

1: If 𝐼1 is 𝐴1 and 𝐼2 is 𝐵1, then 𝑓1 = 𝑟1,1𝐼1 + 𝑟1,2𝐼2 + 𝑟1,3

2: If 𝐼1 is 𝐴2 and 𝐼2 is 𝐵2, then 𝑓2 = 𝑟2,1𝐼1 + 𝑟2,2𝐼2 + 𝑟2,3 Here, 𝐼1 and 𝐼2 are the inputs of the

network and 𝐴𝑖 and 𝐵𝑖 are the fuzzy sets.

Layer 1: The output of the first layer, 𝑂1,𝑖, is given as:

𝑂1,𝑖 =

{

 𝜇𝐴𝑖(𝐼1) =

1

[1 + |(1 −𝑚𝑖,3)/𝑚𝑖,1|]
2𝑚𝑖,2

 1 ≤ 𝑖 ≤ 2

𝜇𝐵𝑖−2(𝐼2) =
1

[1 + |1 − 𝑚𝑖,3/𝑚𝑖,1|]2𝑚𝑖,2
 3 ≤ 𝑖 ≤ 4

Where for the fuzzy sets 𝐴𝑖 and 𝐵𝑖, 𝜇𝐴𝑖(𝐼1) and 𝜇𝐵𝑖−2(𝐼2) are the membership functions.

The training procedure chooses the membership parameters 𝑚𝑖,1, 𝑚𝑖,2, 𝑚𝑖,3.

Layer 2: Layer 2 performs a product of all the inputs coming from the preceding layer.

𝑂2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖(𝐼1). 𝜇𝐵𝑖(𝐼2) 1 ≤ 𝑖 ≤ 2

Multiplication is analogous to the T-norm operator and determines the output determines

the degree of influence of the rule.

Layer 3: In the third layer, the ratio of the ith rule’s degree of influence and the total

degree of influence of all the rules is used to perform linear regression.:

𝑂3,𝑖 =
𝑤𝑖
∑ 𝑤𝑗𝑗

(𝑟𝑖,1𝐼1 + 𝑟𝑖,2𝐼2 + 𝑟𝑖,3) 1 ≤ 𝑖 ≤ 2

Where {𝑟𝑖,1, 𝑟𝑖,2, 𝑟𝑖,3} is the set of learning rate parameters determined from the training

procedure.

 35

Layer 4: This layer performs the mean as follows:

𝑂4,1 = 𝑓 = ∑
𝑤𝑖
∑ 𝑤𝑖𝑗

𝑓𝑖 =
∑ 𝑤𝑖𝑖 𝑓𝑖
∑ 𝑤𝑖𝑖

The FDL is trained using a Hybrid Training Algorithm for Feed-forward Neural Networks as

in [31]. The training procedure finds the parameters set M and R which provides the

membership values and the regression parameters. These parameters are then used to train

the network. Intra- and inter-fractional variation data is acquired from the CyberKnife

dataset. For this data, variable number of nodes are used. The dataset has 3D coordinates and

for each channel, a seperate network is employed. This also changes the number of nodes in

each layer. For instance, both layer 2 and layer 3, in this case, will have 27 nodes. The rules

are modified as follows:

Rule 1: If 𝐼1 is 𝐴1 and 𝐼2 is 𝐵1 and 𝐼3 is 𝐶1, then 𝑓1 = 𝑟1,1𝐼1 + 𝑟1,2𝐼2 + 𝑟1,3𝐼3 + 𝑟1,4

Rule 27: If 𝐼1 is 𝐴3 and 𝐼2 is 𝐵3 and 𝐼3 is 𝐶3, then 𝑓27 = 𝑟27,1𝐼1 + 𝑟27,2𝐼2 + 𝑟27,3𝐼3 + 𝑟27,4 Here,

the input vector {𝐼1, 𝐼2, 𝐼3} corresponds to the three channels of the CyberKnife machine. 𝐴𝑖 ,

𝐵𝑖 and 𝐶𝑖 are the fuzzy sets. The computation of the output of the initial layer is now given

as:

𝑂1,𝑖 =

{

 𝜇𝐴𝑖(𝐼1) =

1

[1 + |(1 −𝑚𝑖,3)/𝑚𝑖,1|]
2𝑚𝑖,2

 1 ≤ 𝑖 ≤ 3

𝜇𝐵𝑖−3(𝐼2) =
1

[1 + |1 − 𝑚𝑖,3/𝑚𝑖,1|]2𝑚𝑖,2
 4 ≤ 𝑖 ≤ 6

𝜇𝐶𝑖−6(𝐼3) =
1

[1 + |1 − 𝑚𝑖,3/𝑚𝑖,1|]2𝑚𝑖,2
 7 ≤ 𝑖 ≤ 9

Where the different membership functions, 𝜇𝐴𝑖 , 𝜇𝐵𝑖−3 and 𝜇𝐶𝑖−6 , are determined by the 𝑀 =

{𝑚𝑖,1, 𝑚𝑖,2, 𝑚𝑖,3}. Similarly, the output of the succeeding layer is given as

𝑂2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑘(𝐼1). 𝜇𝐵𝑙(𝐼2). 𝜇𝐶𝑚(𝐼3) 1 ≤ 𝑖 ≤ 27

For the third layer, it is

𝑂3,𝑖 =
𝑤𝑖
∑ 𝑤𝑗𝑗

(𝑟𝑖,1𝐼1 + 𝑟𝑖,2𝐼2 + 𝑟𝑖,3𝐼3 + 𝑟𝑖,4) 1 ≤ 𝑖 ≤ 2

Where {𝑟𝑖,1, 𝑟𝑖,2, 𝑟𝑖,3, 𝑟𝑖,4} is the set of LR parameters. Finally, the output is calculated as

 36

𝑂4,1 = 𝑓 = ∑
𝑤𝑖
∑ 𝑤𝑖𝑗

𝑓𝑖 =
∑ 𝑤𝑖𝑖 𝑓𝑖
∑ 𝑤𝑖𝑖

The final layer produces a single coordinate, that is, x, y or z estimate. The IIFDL uses 3 FDL

for each of the coordinates, allowing the estimation of 3D coordinates.

The model was tested using CyberKnife patient databases and was compared with two ANN-

based models - a CNN and a hybrid implementation of the extended Kalman filter (HEKF) .

The IIFDL model outperformed the CNN both in terms of prediction accuracy and training

speed. Since the IIFDL has fewer parameters, the training process is much faster. Prediction

accuracy was measured using root means square error for different time intervals

Stacked Auto Encoder trained using Fuzzy Logic

Figure 5. Stacked auto-encoders

Hatri et al. proposed a deep learning model that uses fuzzy logic to train some of the network

parameters that improve the learning speed and has a higher probability to reach a better

global optimum [29]. The deep learning network is based on stacked-auto encoders (SAE)

that are trained using backpropagation but the learning rate and the momentum are

determined using fuzzy logic systems.

 37

A stacked auto-encoder is constructed using a series of auto-encoders (AE), one on top of the

other where the output of one auto-encoder is the input of the auto-encoder that is above it.

In the simplest form, an auto-encoder is a neural network with a single hidden layer. The

input layer nodes and output layer nodes are same in number. The number of nodes in the

hidden layer is fewer.

The auto-encoder tries to replicate the input at the output by passing it through a fewer

number of nodes. As the data is passed through the hidden layers, which are fewer in number,

the network compresses the data and learns only the important features. For a set of input

vectors {𝑥(1), 𝑥(2), 𝑥(3), … } where each input 𝑥(𝑖) ∈ ℝ𝑑 , the autoencoder first encodes every

input 𝑥(𝑖) to a compressed form 𝑦(𝑥(𝑖)) which extracts the dominant features and then

reconstructs or decodes that compressed representation into 𝑧(𝑥(𝑖)). This is given as:

𝑦(𝑥) = 𝑓(𝑊1. 𝑥 + 𝑏1)𝑧(𝑥) = 𝑔(𝑤2. 𝑦(𝑥) + 𝑏2)

Where 𝑊1 and 𝑏1 are the encoding of weights and bias, and 𝑊2 and 𝑏2 are the encoding of

weights and bias. The training process can be done using traditional backpropagation. The

error or the loss is calculated as

𝐸(𝑋 , 𝑍) =
1

2
∑|𝑥𝑖 − 𝑧𝑖|

2
𝑁

𝑖−1

Where the number is samples is N, x is the sample set and Z is the output that is constructed

by the AE. When training an SAE, each autoencoder is trained individually, layer by layer.

This means for a three-layer SAE, the first auto-encoder is trained first and we obtain the

weights 𝑊1
1 and 𝑊1

2. Then, for each AE i (𝑖 = 1,2,3), the current autoencoder is trained using

the output of the preceding one, that is, 𝑦𝑖−1, in such a way that 𝑊1
𝑖 and 𝑊2

𝑖 are obtained. In

this method, the SAE is trained.

The fine-tuning strategy that is used in this case is the simple back-propagation algorithm.

During fine-tuning, from a high level, all the SAEs are treated as a single model. Therefore,

the tuning process improves all the weights of the auto-encoders in a single iteration. Hence,

the error of the entire network is defined as

𝐸(𝑡) =
1

2
|𝑒(𝑡)|2

 38

Where e(t) is the error value. This difference between the input and the output determines

the changes in the network weights, which is given as

△𝑤𝑗(𝑡 + 1) = 𝜂 (
𝛿𝐸(𝑡)

𝛿𝑤𝑗
) + 𝛼 △ 𝑤𝑗(𝑡)

Here, 𝜂 is the learning rate parameter and 𝛼 is a positive value called the momentum. The

learning rate and the momentum is dynamically adjusted using a fuzzy logic control system.

A fuzzy logic control is used to adaptively adjust the neural network parameters such that

the mean squared error (MSE) is reduced. To create the fuzzy logic system, four parameters

are used. These include:

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟: 𝑅𝐸(𝑡) = 𝐸(𝑡) − 𝐸(𝑡 − 1)

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟: 𝐶𝑅𝐸 = 𝑅𝐸(𝑡) − 𝑅𝐸(𝑡 − 1)

𝑆𝑖𝑔𝑛 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟: 𝑆𝐶(𝑡) = 1 − ||
1

2
(𝑠𝑖𝑔𝑛(𝑅𝐸(𝑡 − 1)) + 𝑠𝑖𝑔𝑛(𝑅𝐸(𝑡))||

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑖𝑔𝑛 𝑐ℎ𝑎𝑛𝑔𝑒: 𝐶𝑆𝐶 = ∑ 𝑆

𝑡

𝑚=𝑡−4

𝐶(𝑚)

Using the fuzzy logic system, the change of learning rate and the change of momentum are

done.

The system was used to predict traffic incidents while using an urban traffic simulator to

synthesize training and testing data. When compared to deep neural network, the FDNN had

much better training times and marginally better accuracy when detecting traffic incidents.

Ensemble models

The following models use fuzzy logic and deep learning in a sequential or parallel fashion.

The input vector to the deep neural network is either pre-processed using a fuzzy logic

system, or the input is transformed by the deep neural network and fuzzy systems in parallel.

Sequential Models

This section lists all the sequential models. Sequential models either make use of fuzzified

inputs to existing deep learning architectures, or provides a fuzzy output. Based on the nature

 39

of the input and output, this section is further divided into two parts: Models with fuzzy

inputs and models with fuzzy outputs.

Models with Fuzzy Inputs

Deep Learning using Fuzzy Feature Points:

Wang et al. proposed a model that uses Deep Learning with Fuzzy Feature Points for damaged

fingerprint classification [25]. The model essentially involves fuzzyfying the input data and

then providing the input to a simple convolutional neural network. Since it provides a very

generic model that uses image data, the model can be leveraged for other visual recognition

tasks too.

Before the data it fed to a CNN, it undergoes preprocessing, feature extraction and matching.

The fuzzy features that are fed to the model is created from the preprocessed fingerprint

image data. This involves the core and delta extraction, as well as endpoint and branch point

extraction. To extract the core and delta points, the Poincare formula is used.

Once the feature points are extracted, they are fuzzified using the radial basis function. Here,

the radial basis function is used for interpolation of the data points.

A radial basis function is given as 𝜙(𝑥) = 𝜙(|| 𝑥 ||). There are various types of radial basis

functions. The Gaussian type is given as 𝜙(𝑟) = 𝑒−(𝜖𝑟)
2
 where 𝑟 = ||𝑥 − 𝑥𝑖||. In this case,

the "Gauss distribution function of Kriging method" is used, which is given as 𝜙(𝑟) =

𝑒−(𝑟/𝜎)
2
. The goal here is to reduce the influence certain defective fingerprint lines so that

the relationship between the different feature points are highlighted. Weakening the specific

positions of the feature points provide a higher degree of rotational invariance. The fuzzy

graph of the feature points is then provided to a CNN which predicts the class of the

fingerprint. A generic deep CNN using sigmoidal activation function is used in the

classification of the fuzzified data.

This provided a marginally improved recognition rate over the pre-processed original

fingerprint image and is massively outperforms the CNN trained with the original fingerprint

image.

 40

Deep Convolutional Neural Networks using Weighted Fuzzy Active Shape Model:

A similar model where deep learning and fuzzy logic is used for image segmentation is

proposed in [30]. In this case, 3D ultrasound images of kidneys are performed. The idea is

quite simple: fuzzy clustering is performed on the image data for better characterization of

the different parts of the images. Furthermore, to reduce the noise of the image and to

enhance the edges, an omni-directional Gabor-filter is used.

The model is compared with manual segmentation of 3D ultrasound images of kidneys, and

the performance of the DNN is at par with the manual process. This process can be used for

segmentation of other medical images and even in other areas of computer vision.

The DNN has two convolution layers. They are succeeded by two fully connected layers.

Each layer uses a rectified linear unit. The last layer uses the SoftMax probability function

that is used to evaluate the position, orientation and scale. To reduce overfitting, a dropout

rate of 0.4 was set in the last fully connected layer.

Deep Belief Networks with Fuzzy Granulated Inputs:

Zhang et al. propose a model utilizing fuzzy granulation and DBN for predicting time series

data [25]. The concept of information granules comes from granular computing. Information

granules are groups of entities that are numerically similar. The similarity can be because of

their similar functionality, similar physical properties, or because of any other attributes that

are similar numerically. The aim is to decompose a problem into simpler problems while

removing some irrelevant information. In this case, fuzzy information granulation is done on

time series data before it is used to train and test deep belief networks for continuous data

(CDBN).

 41

Figure 6. Framework of the CDBN-FG that combines fuzzy granulation and deep belief

networks for continuous data

In fuzzy information granulation, the data is granulated into three sets, or in this context,

granules, given as Low, Mid, High, using multiple different granulation methods. Ruan et al.

proposed five fuzzy granulation methods in - triangular membership function-based

granulation, trapezoidal membership function-based granulation, gaussian membership

function-based granulation, fuzzy c-means based granulation and min-max based

granulation. The time series data is first split into multiple windows. Given that 𝑇 =

𝑡1, 𝑡2, … , 𝑡𝑛 is a time series data and w is the length of the granulation windows where 1 ≤

𝑤 ≤ 𝑛, the time series data can be split as

{𝑡1, 𝑡2, … , 𝑡𝑤}, {𝑡𝑤+1, 𝑡𝑤+2, … , 𝑡𝑤+𝑤},… , {𝑡([𝑛/𝑤]−1)𝑤+1, 𝑡([𝑛/𝑤]−1)𝑤+2, … , 𝑡([𝑛/𝑤]−1)𝑤+𝑤}. [𝑛/

𝑤]. The granulation methods are described as follows: Triangular MF based granulation:

𝑙𝑜𝑤𝑖 =
2∑ 𝑡𝑗′

𝑖𝑤/2
𝑗=1

𝑤/2
−𝑚𝑒𝑑𝑖𝑎𝑛(𝑡1′

𝑖 , 𝑡2′
𝑖 , … , 𝑡𝑤′

𝑖)

𝑚𝑖𝑑𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑡1′
𝑖 , 𝑡2′

𝑖 , … , 𝑡𝑤′
𝑖)

𝑢𝑝𝑖 =
2∑ 𝑡𝑗′

𝑖𝑤
𝑗=𝑤/2+1

𝑤/2
−𝑚𝑒𝑑𝑖𝑎𝑛(𝑡1′

𝑖 , 𝑡2′
𝑖 , … , 𝑡𝑤′

𝑖)

Time Series Data

CDBN_Low CDBN_Mid CDBN_Up

Trade Strategy

Window 1 Window 2 Window Last. . .

Low Mid UpLow Mid UpLow Mid Up . . .

 42

Trapezoidal MF based granulation:

𝑙𝑜𝑤𝑖 =
2∑ 𝑡𝑗′

𝑖𝑤/2
𝑗=1

𝑤/2
− 𝑡(𝑤/2)′

𝑖

𝑚𝑖𝑑𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑡1′
𝑖 , 𝑡2′

𝑖 , … , 𝑡𝑤′
𝑖)

𝑢𝑝𝑖 =
2∑ 𝑡𝑗′

𝑖𝑤
𝑗=𝑤/2+1

𝑤/2
− 𝑡(𝑤/2+1)′

𝑖

Minmax-based granulation function:

𝑙𝑜𝑤𝑖 = 𝑡1′
𝑖

𝑚𝑖𝑑𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑡1′
𝑖 , 𝑡2′

𝑖 , … , 𝑡𝑤′
𝑖)

up
𝑖

= 𝑡𝑤′
𝑖

The time series data is first split into multiple windows and each window is granulated using

fuzzy granulation techniques. There are three granules that are derived from each window.

The Low, Mid and Up granules are trained using three separate CDBNs. CDBNs employ

continuous valued restricted Boltzmann machines (CRBMs) which use continuous valued

stochastic units. Let 𝑠𝑗 be the output of the neuron j, with units from neurons with state {𝑠𝑖}.

𝑠𝑗 = 𝜑𝑗 (∑𝑤𝑖𝑗𝑠𝑖
𝑖

+ 𝛾. 𝑁𝑗(0,1))

With 𝜑𝑗(𝑥𝑗) = 𝜃𝐿 + (𝜃𝐻 − 𝜃𝐿).
1

1+𝑒
−𝑎𝑗𝑥𝑗

. The random gaussian number 𝑁𝑗(0,1) has a mean

value 0 and a variance of 1. The value 𝛾 is a constant. The sigmoid function 𝜑𝑗(𝑥𝑗) has 𝜃𝐿

and 𝜃𝐻 as asymptotes and te value 𝑎𝑗 is a parameter that is introduced to control the noise.

The update rules for 𝑤𝑖𝑗 and 𝑎𝑗 are given as

△𝑤𝑖𝑗 = 𝜂𝑤(< 𝑠𝑖𝑠𝑗 > −< 𝑠𝑖
′𝑠𝑗
′ >)

△ 𝑎𝑗 =
𝜂𝑎

𝑎𝑗
2 (< 𝑠𝑗

2 > −< 𝑠𝑗
′2 >)

The learning rates are 𝜂𝑤 and 𝜂𝑎 . 𝑠𝑗
′ denotes a single step of sampling of the state on unit j

and <.> denotes the mean. The CDBN is trained in a layer-by-layer fashion where the hidden

 43

layers or each CRBM is trained sequentially. For training a network with k input nodes, the

initial training sample for 𝐶𝐷𝐵𝑁𝐿𝑜𝑤 is composed of {𝐿𝑜𝑤1, 𝐿𝑜𝑤2, … , 𝐿𝑜𝑤𝑘}. Given this input,

the CDBN is trained to predict𝐿𝑜𝑤𝑘+1. In the next phase, the input vector

{𝐿𝑜𝑤2, 𝐿𝑜𝑤3, … , 𝐿𝑜𝑤𝑘+1} is used to predict the value of 𝐿𝑜𝑤𝑘+2 and so on. The same is done

with 𝐶𝐷𝐵𝑁𝑀𝑖𝑑 and 𝐶𝐷𝐵𝑁𝑈𝑝.

When tested on stock market data, the CDBN, while using fuzzy granulation outperforms the

standard CDBN. The granulation window size, as well as the membership function

parameters, can be tweaked for improved performance on various datasets.

Models with fuzzy outputs

Restricted Boltzmann Machine with Fuzzy Outputs:

Chopade et al. implemented a combination of fuzzy logic and deep learning to perform

document summarization [26]. Here, the summarization is done in multiple phases. First,

features are extracted from the sentences and a sentence matrix is formed based on the

features. Each sentence is also manually assigned an importance value. This dataset is used

to train a restricted Boltzmann machine to get a more refined set of sentences. Next, the

sentences are processed and a table is created to rank the sentences using a priority value.

From there, a fuzzy membership function is used to determine the sentences that will be used

for summarization.

In the feature extraction phase, the features that are extracted includes title similarity, term

weight, count of named entities and the amount of numeric data. Using these features, a

sentence matrix is formed.

The implementation of a restricted Boltzmann machine, in this case, is quite simple. The

sentence matrix is the input of the restricted Boltzmann machine with three layers. The

output of the machine is a much more refined set of sentences.

In the next stages, the sentences are processed more. Stemming, stop word removal and part

of speech tagging is performed. Other than the sentence table, two more tables are created, a

seed table containing word priority values and a word table containing the word frequency

values. From these three tables, the rank of each sentence is calculated. This is essentially a

fuzzy membership function that determines the priority of the sentence in the document

summary.

 44

𝑅𝑎𝑛𝑘(𝑆𝑖) =∑𝑓

𝑛

𝑖=1

𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑤𝑖𝑗) +∑𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝_𝑤𝑖𝑡ℎ_𝑠𝑒𝑒𝑑(𝑤𝑖𝑗)

𝑛

𝑖=1

Where the total count of sentences in the sentence table is denoted by n, the ith sentence is

𝑆𝑖 and the jth word is 𝑊𝑖𝑗. The fuzzy membership is determined by the function

Membership_with_seed ().

Deep Belief Network with fuzzified outputs:

A "fuzzy deep belief network for semi-supervised sentiment classification" [22] is a simple

example of a sequential model that uses a deep belief network and fuzzy sets for sentiment

classification is proposed in. A Deep belief network (DBN) are trained one layer after the

other, in a layer-wise fashion, using a greedy layer-wise training algorithm and then are fine-

tuned by standard backpropagation algorithms. In the context of sentiment classification

performed in a semi-supervised fashion, fuzzy sets were used to describe the membership

value with which a pattern belongs to a positive or a negative class. The model can be used

for other binary class problems too.

First, the DBN is trained with both unlabeled and labelled data. Training with unlabeled data

is performed in a greedy layer-wise manner, by considering two adjacent layers as a restricted

Boltzmann machine (RBM). Next, labelled data is used to further fine-tune the network using

backpropagation and gradient descent. In this sentiment classification problem, is a positive

class and a negative class. Hence, a single hyperplane is needed for separating the two classes.

Two membership functions are formulated that describes the membership of the input in a

class and the distance of the input from the hyperplane.

The DBN is trained using gradient descent. Now, since there are just two classes, only one

hyperplane is needed. If ℎ𝑁 is the last layer and 𝑧𝑖 is the ith input vector, then 𝑑(𝑧𝑖) =

(ℎ1
𝑁(𝑧𝑖) − ℎ2

𝑁(𝑧𝑖)) /√(2) is the distance between the separating line and the point ℎ1
𝑁(𝑧𝑖).

𝑧𝑖 is positive when If 𝑑(𝑧𝑖) > 0, and otherwise it is negative.

Now, the membership functions 𝜇𝐴(𝑧) and 𝜇𝐵(𝑧) are gives as

𝜇𝐴(𝑧; 𝛽, 𝛾) = {
𝑆(𝑑(𝑧); 𝛾 − 𝛽, 𝛾 − 𝛽/2, 𝛾), 𝑑(𝑧) ≤ 𝛾

1, 𝑑(𝑧) ≥ 𝛾

 45

𝜇𝐵(𝑧; 𝛽, −𝛾) = {
1, 𝑑(𝑧) ≤ 𝛾

1 − 𝑆(𝑑(𝑧); 𝛾, 𝛾 − 𝛽, 𝛾 − 𝛽/2), 𝑑(𝑧) ≥ 𝛾

Where 𝑆(𝑑; 𝛼, 𝛽, 𝛾) is

𝑆(𝑑; 𝛼, 𝛽, 𝛾) =

{

0, 𝑑 ≤ 𝛼

2(
𝑑 − 𝛼

𝛾 − 𝛼
)
2

, 𝛼 ≤ 𝑑 ≤ 𝛽

1 − 2 (
𝑑 − 𝛼

𝛾 − 𝛼
)
2

, 𝛽 ≤ 𝑑 ≤ 𝛾1, 𝑑 ≤ 𝛾

Now, there are two parameters to be determined, 𝛽 and 𝛾. The distance metric can be used

in the following manner to get the values:

𝛾 = 𝑚𝑎𝑥|𝑑(𝑧𝑖)|, 𝑖 = 1,… , 𝑅 + 𝑇

𝛽 = 𝜉 × 𝛾, 𝜉 ≥ 2

Parallel Models

A Hierarchical Fused Fuzzy Deep Neural Network

Figure 7. Structure of the hierarchical Fused Fuzzy Deep Neural Network

Classification
OutputTask-driven layer

Fusion DR layers

Fusion layer

Fuzzy rule layer

Membership
function layer

Input layer

Input DR layers

 46

Deng et al. proposed a deep learning architecture has deep learning layers and fuzzy

membership functions running in parallel [28]. The deep representation and the fuzzy

representation are then fused using multimodal learning techniques [48].

The model architecture can be divided into four sections.

Fuzzy Logic Representation:

Each node of the input layer is connected to fuzzy logic nodes that computes fuzzy

membership of each of the inputs. The input is an uni-dimensional vector. This layer

determines how much a given input vector belongs to a certain set. It uses a standard

Gaussian membership function to do so. This layer maps the input to a real value between

0 and 1, which is basically the fuzzy membership value of the input variable. The fuzzy

membership function is 𝑢𝑖(.) and the output of the function is defined as follows:

𝑜𝑖
(𝑙)
= 𝑢𝑖(𝑎𝑘

(𝑙)
) = 𝑒

−
𝑎𝑘
(𝑙)
−𝜇𝑖

2

𝜎𝑖
2

where l denotes the position of the layer from the input layer, the input of node i is given as

𝑎𝑖
(𝑙) and the corresponding output is given as 𝑜𝑖

(𝑙). The succeeding layer performs another

fuzzy operation. In this case, it is an AND operation.

𝑜𝑖
(𝑙)
=∏𝑜𝑗

(𝑙−1)

𝑗

∀𝑗 ∈ Ω𝑖

where Ω𝑖 is the set of nodes in the preceding layer that connect to the node i. The output is

a real-value in the range (0,1).

Neural Representation or Deep Representation:

This is a simple fully connected layer that is implemented in multi-layer perceptrons. The

feed-forward layers pass the input from the preceding layer through a sigmoid function. The

input of the preceding layer is the output of the layer before that times the weight and the

bias. This is given as 𝑜𝑖
(𝑙)
=

1

1+ 𝑒
− 𝑎

𝑖
(𝑙) where 𝑎𝑖

(𝑙)
= 𝑤𝑖

(𝑙)
𝑜(𝑙−1) + 𝑏𝑖

(𝑙) . Here 𝑤𝑖
(𝑙) is the weight

of the node i on layer l and 𝑏𝑖
(𝑙) is the corresponding bias.

 47

Fusion layers:

The fusion layers bring together the output of the fuzzy layers and the neural representation

layers. The idea of fusion layers is inspired by multimodal learning. In this set of layers, the

model can learn parameters based on the classification task. Multi-modal learning is a good

way to represent heterogeneous data or data that has been acquired from different areas. This

allows one data source to fill in the gaps that are present in the other. So, in cases where

extracting feature from a single source is not possible, such learning techniques are used. In

the case of this model, output of the neural and the fuzzy layers are combined in the fusion

layers. However, this is quite a trivial task. As the output of the sigmoidal nodes as well as

the fuzzy nodes both lie in the range (0,1), combining the results is quite simple.

𝑎𝑖
(𝑙)
= (𝑤𝑑)𝑖

(𝑙)(𝑜𝑑)
(𝑙−1) + (𝑤𝑓)𝑖

(𝑙)
(𝑜𝑓)

(𝑙−1)
+ 𝑏𝑖

(𝑙)

Here, the output 𝑎𝑖 takes in the output and connection weight of the deep representation

part, given by 𝑜𝑑 and 𝑤𝑑 respectively. Similarly, for the fuzzy part, the output and the weights

are 𝑜𝑓 and 𝑤𝑓.

Task Driven Layer:

The final layer takes input from the fusion layers and provides corresponding class

probabilities. Class probabilities are computed using the soft-max function. Given that 𝑓𝑖 is

the ith input, 𝑦𝑖 is the label of the input and 𝜋𝜃(𝑓𝑖) is the transformation of the input after

passing throught the network, then, the output of the task driven layer is given as:

�̂�𝑖𝑐 = 𝑝(𝑦𝑖|𝑓𝑖) =
𝑒𝑤𝑐𝜋𝜃(𝑓𝑖)+𝑏𝑐

∑ 𝑒𝑤𝑐𝜋𝜃(𝑓𝑖)+𝑏𝑐
𝑐

For a given class 𝑐, 𝑤𝑐 is the regression coefficient and 𝑏𝑐 is the bias. �̂�𝑖 = [�̂�𝑖1, . . . , �̂�𝑖𝑘] is the

list of labels for a k-class problem.

The training is done in two distinct phases - learning and fine-tuning. Initially, all the biases

are set to 0 which the weights between the nodes are randomly sampled from an uniform

distribution 𝑈 [−
1

√𝑛𝑘
,
1

√𝑛𝑘
] [49] where 𝑛𝑘 is the number of nodes in the preceding layer. All

the weights between the fuzzy nodes are set as 1.

 48

To set the parameters, that is, the mean and the standard deviation, of the fuzzy membership

nodes, a fast clustering algorithm is run on the input data set. A k-means clustering is done

where k is the number of classes. This clustering gives the required parameters after which

the model is trained. The network is trained using back-propagation. For fine-tuning,

stochastic gradient descent is used.

The model is also compared with a standard DNN as well as a sequential fuzzy DNN (SFDNN).

The DNN only uses the neural representation part while the SFDNN fuzzifies data first and

then uses it for prediction. Two benchmarks were used to compare the models.

The first is a natural scene image classification problem. The dataset has 4,500 images and 15

classes. Two-thirds of the data was used for training while the rest was used for testing. The

FDNN had approximately 0.8% improvement over the other models.

The second benchmark is Stock Trend Prediction. This was a three-class problem, where the

model would predict if the stock prices would drop, stay the same or rise. In this case too, the

FDNN showed marginal improvement over the other competing models.

Applications

Deep learning models with fuzzy counterparts have been implemented in various studies and

real-life applications.

Fuzzy Restricted Boltzmann Machines have been the inspiration behind Pythagorean fuzzy

deep Boltzmann machine that is used for Airline passenger profiling and also developing an

industrial accident early warning system [22]. Fuzzy restricted Boltzmann machines have

also been used for designing models for network traffic prediction [50]. It has also been used

for traffic flow prediction [51] and radar target recognition [52]. Fuzzy Deep Learning

architecture proposed by Park et al. has been further used for gestational diabetes data

analytics [53], real-time tumor tracking, mortality prediction in ICUs [54], as well as license

plate image segmentation [55]. Stacked auto-encoders trained used for urban traffic incident

detection and traffic congestion detection [56].

Deep learning with fuzzy granulated inputs has been used in multiple time series predictions

such as drought prediction [57], prediction of algal blooms [58], and even road safety analysis

[59]. Models with fuzzified outputs also have extensive applications. It has been used in

 49

gearbox fault analysis [60], sarcasm detection in tweets [61], recognizing human activity in

smart homes [62], and for assessing the performance of online health question-answering

services [63]. The model in has been used for driver drowsiness detection [64] using wearable

devices, brain tissue image analysis [65] and in surveillance scene representation [66].

 50

Chapter 3:

Methodology

 51

Methodology

This section describes the implementation details of fuzzy dilated convolutions and fuzzy

pooling in details. This chapter is divided into two sections. The first section talks about fuzzy

dilated convolutions and the second part talks about pooling.

Fuzzy Dilated Convolutions

Fuzzy dilated convolution is a variant of the convolution operation aims to improve the

performance of convolutional neural networks.

Overview of Convolution
In deep learning architectures, Convolutional Neural Networks [67], or CNNs or ConvNets

are a family of deep neural networks that are most commonly applied in the field of computer

vision, or in the case of data that has a grid like topology. CNNs are based on the convolution

operation. Examples include time-series data, which can be thought of as a 1D grid taking

samples at regular time intervals, and image data, which can be thought of as a 2D grid of

pixels. Convolutional networks have been tremendously successful in practical applications.

The name “convolutional neural network” indicates that the network employs a

mathematical operation called convolution. Convolution is a specialized kind of linear

operation. Convolutional networks are simply neural networks that use convolution in place

of general matrix multiplication in at least one of their layers.

In image processing, convolution is a common technique that changes the intensities of pixels

to reflect the intensities of surrounding pixels. A common use of convolution is to create

image filters. Using convolution, one can get popular image effects like blur, sharpen, and

edge detection. This process is used by deep neural networks to extract features such as edges,

color patches and more. The filter, or the kernel matrix is determined by the training

algorithm so that the network extracts the most expressive features from the data [68].

In its most general form, convolution is an operation on two functions of a real-valued

argument [10]. This can be exemplified in the following manner.

 52

Suppose, a distance to a moving object is being tracked using some kind of a sensor. The

sensor provides x(t), a single output, that is the distance of the object at time t. Both x and t

are real values. Suppose, the measurement is affected by noise and to reduce the effect of the

noise, the measurement has to be averaged over time. More recent measurements are more

accurate than previous ones. So, this can be done by giving more weight to the recent

measurements, and less weight to the older ones. Suppose, w(a) is a weighting function, and

a denotes the age of the measurement. If the averaging occurs at every moment, then a

smoothed measurement will take the form

𝑠(𝑡) =  ∫𝑥(𝑎)𝑤(𝑡 − 𝑎)𝑑𝑎

This operation is known as convolution and is conventionally denoted using the asterisk (∗).

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡)

In this example, w should be a valid probability function and 0 for all negative arguments. In

the case of convolution, x is referred to as the input, the weight is known as the kernel and

the output is often called a feature map. If x and w are defined only on integer t, then the

discrete convolution operation takes the form:

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) =   ∑ 𝑥(𝑎)𝑤(𝑡 − 𝑎) 

∞

𝑎 = −∞

In machine learning applications, the input is usually a multidimensional array of data and

the kernel is usually a multidimensional array of parameters that are adapted by the learning

algorithm. These multidimensional arrays are referred to as tensors.

Finally, convolutions are often performed over more than one axis at a time. For example, if

we use a two-dimensional image I as our input, we probably also want to use a two-

dimensional kernel K:

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) =  ∑∑𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑛𝑚

 

Since, convolution is commutative, we can also write:

𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗) =  ∑∑𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛)

𝑛𝑚

 

 53

Figure 8. Overview of the Convolution operation.

Convolutions are implemented as a sliding window operation in convolutional neural

networks. The kernel slides over the input and computes every element of the output or

activation map or feature map. Obviously, size of the feature map is smaller than the size of

the input. To prevent the reduction is the size of the input as convolutions happen one after

the other, the input is often padded with zero on all sides. This is called zero padding, or just

padding. The number of cells the kernel moves on the input matrix is called the stride of the

convolution operation.

Now, assuming that the input is a 𝑖 × 𝑖 2-D matrix, with a square kernel of size 𝑘 × 𝑘 and

with stride s and padding p along both axes, the size of the output or the feature map can be

given as:

 Relationship 1:

𝑜 = 𝑓𝑙𝑜𝑜𝑟 (
𝑖 + 2𝑝 − 𝑘

𝑠
) + 1

a b c d

e f g h

i j k l

m n o p

w x

y z

aw + bx
+ ey + fz

bw + cx
+ fy + gz

cw + dx
+ gy + hz

ew + fx
+ iy + jz

fw + gx
+ jy + kz

gw + hx
+ ky + lz

iw + jx
+ my + nz

jw + kx
+ ny + oz

kw + lx
+ oy + pz

Kernel

Input

Output

 54

Conventionally, at a single stage of convolution, multiple kernels are used and give rise to

multiple feature maps. These feature maps are stacked together and are passed on to the next

stage where they may be subsampled or further convolved. As more convolutions happen,

the feature map increases in depth.

Figure 9. Stacking activation maps after convolving with different kernels.

Therefore, the previous equation can be summarized as follows:

 55

Suppose, a convolutional layer in a CNN accepts a volume of size W1 x H1 x D1. It will require

four manually supplied parameters or hyperparameters:

1. Number of filters: N

2. their spatial extent or their size: K

3. the stride: S

4. The amount of zero padding: P

Produces a volume of size W2 x H2 x D2 where

• W2 = (W1 – K +2P)/S+1

• H2 = (H1 – K +2P)/S+1

• D2 = N

Dilation in Convolution
Dilated convolutions [69] “inflate” the kernel by inserting spaces between the kernel

elements. The dilation “rate” is controlled by an additional hyperparameter d.

Implementations may vary, but there are usually d−1 spaces inserted between kernel

elements such that d = 1 corresponds to a regular convolution. Dilated convolutions are used

to cheaply increase the receptive field of output units without increasing the kernel size,

which is especially effective when multiple dilated convolutions are stacked one after

another.

Figure 10. Dilated convolution: Convolving a 3×3 kernel over a 7×7 input with a dilation

factor of 2, stride 1 and padding 0.

To understand the relationship between the dilation rate d and the output size o, it is useful

to think of the impact of d on the effective kernel size. A kernel of size k dilated by a factor d

has an effective size:

 56

�̂� = 𝑘 + (𝑘 − 1)(𝑑 − 1)

This can be used to generalize relationship 1 as follows:

Relationship 2:

𝑜 = 𝑓𝑙𝑜𝑜𝑟 (
𝑖 + 2𝑝 − 𝑘 − (𝑘 − 1)(𝑑 − 1)

𝑠
) + 1

Figure 11. Receptive fields of kernels having dilation 1, 2 and 3

Fuzzy Dilation
Like standard dilation, fuzzy dilation also uses a kernel where the elements are separated by

zeros. However, it also takes into account part of the pixel values of the input that are

overlapped by the dilating zeros of the kernel. Convolution implemented using fuzzy dilation

takes in another hyperparameter, that is, the membership value, µ.

Dilation = 1

Dilation = 2

Dilation = 3

 57

In dilated convolutions, because of the spaces that are inserted in the kernels, some parts of

the input matrix that are overlapped by these spaces are ignored. This is truer in the case

where the stride has a value more than one. For instance, a 3 × 3 kernel, with dilation 2 and

stride 2 will completely ignore alternating rows and columns of the matrix. This makes

dilation disadvantageous to use in these cases. Again, using a larger kernel is computationally

intensive, since every single element of the kernel will require training. So, to prevent such

instances, fuzzy dilation is proposed.

In fuzzy dilation, every element of the kernel not only affects the underlying element of the

input, but also its neighbors. The proportion is determined by the membership value, µ.

Convolution is performed in two parts, as described before: a product followed by

summation. µ parts of the underlying pixel is taken, and (1 - µ)/(d2-1) parts of the neighboring

pixels are taken during calculation of the product, where d is the dilation value.

This is exemplified below:

Suppose the input matrix is:

𝐴 =

[

𝑎1,1 𝑎1,2 𝑎1,3 𝑎1,4 𝑎1,5
𝑎2,1 𝑎2,2 𝑎2,3 𝑎2,4 𝑎2,5
𝑎3,1 𝑎3,2 𝑎3,3 𝑎3,4 𝑎3,5
𝑎4,1 𝑎4,2 𝑎4,3 𝑎4,4 𝑎4,5
𝑎5,1 𝑎5,2 𝑎5,3 𝑎5,4 𝑎5,5]

And the kernel matrix is a 3 × 3 matrix with dilation 2, given as:

𝐾 =

[

𝑘1,1 0 𝑘1,3 0 𝑘1,5
0 0 0 0 0
𝑘3,1 0 𝑘3,3 0 𝑘3,5
0 0 0 0 0
𝑘5,1 0 𝑘5,3 0 𝑘5,5]

Then, the value of the output is given as:

𝐴 ∗𝑓 𝑘  =  µ(𝑘1,1. 𝑎1,1) + (1 − µ)/3. 𝑎1,2 + µ(𝑘1,3. 𝑎1,3) + (1 − µ)/3. 𝑎1,4 + µ(𝑘1,5. 𝑎1,5) +

 (1 − µ)/3. (𝑎2,1 + 𝑎2,2 + 𝑎2,3 + 𝑎2,4 + 𝑎2,5) +  µ(𝑘3,1. 𝑎3,1) + (1 − µ)/3. 𝑎3,2 +

µ(𝑘3,3. 𝑎3,3) + (1 − µ)/3. 𝑎3,4 + µ(𝑘3,5. 𝑎3,5) + (1 − µ)/3. (𝑎4,1 + 𝑎4,2 + 𝑎4,3 + 𝑎4,4 +

 𝑎4,5) +  µ(𝑘5,1. 𝑎5,1) + (1 − µ)/3. 𝑎5,2 + µ(𝑘5,3. 𝑎5,3) + (1 − µ)/3. 𝑎5,4 + µ(𝑘5,5. 𝑎5,5)

Where ∗𝑓 is the fuzzy dilated convolution operation, d = 2 and hence, (d2-1) = 3.

 58

Hence, the convolution operation can be rewritten as:

𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗)

=  µ ∑ ∑ 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛)

𝑛;𝑛(𝑚𝑜𝑑𝑑)≡0𝑚;𝑚(𝑚𝑜𝑑𝑑)≡0

+ (1 − µ)/(𝑑2 − 1) ∑ ∑ 𝐼(𝑖 −𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛)

𝑛;𝑛(𝑚𝑜𝑑𝑑)≢0𝑚;𝑚(𝑚𝑜𝑑𝑑)≢0

Figure 12. Receptive fields of fuzzy dilated kernels.

3x3 kernel with fuzzy dilation 1 5x5 kernel with fuzzy dilation 1

3x3 kernel with fuzzy dilation 2 5x5 kernel with fuzzy dilation 2

 59

Comparison between Dilation and Fuzzy Dilation
The following section shows the effect of a kernel without dilation and along with kernel

with normal dilation and fuzzy dilation. Figure 13a (left) is the original image which is

processed using a 3x3 edge detect kernel in Figure 13a (right). The effect of using a dilated

kernel and a fuzzy dilated kernel is demonstrated in figure 13b.

Figure 13 a. Original image (left) and image convolved with edge detect kernel (right) with
dilation set to 1, i.e., without any dilation.

Figure 13 b. image convolved with edge detect kernel with dilation 2 (left) and image
convolved with edge detect kernel (right) with dilation set to 2 and µ = 0.2.

 60

Fuzzy Pooling

The proposed Fuzzy Pooling scheme uses the ordered weighted average operator to combine

different types of pooling techniques.

Overview of Pooling
It is common to periodically insert a Pooling layer in-between successive Convolution layers

in a ConvNet architecture [70][10]. Its function is to progressively reduce the spatial size of

the representation to reduce the number of parameters and computation in the network, and

hence to also control overfitting. The Pooling Layer operates independently on every depth

slice of the input and resizes it spatially, using the MAX or AVG operation. The purpose of

pooling is to transform the joint feature representation into a more usable one that preserves

important information while discarding irrelevant details. The employment of pooling layer

in CNNs aims to achieve invariance to changes in position or lighting conditions, robustness

to clutter, and compactness of representation. In general, the pooling layer summarizes the

outputs of neighboring groups of neurons in the same kernel map. In the pooling layer, the

resolution of the feature maps is reduced by pooling over local neighborhood on the feature

maps of the previous layer, thereby enhancing the invariance to distortions on the inputs. In

CNNs, there are two conventional pooling methods, including max pooling and average

pooling. The max pooling method selects the largest element in each pooling region as:

𝑦𝑘,𝑖,𝑗 = max
(𝑝,𝑞)∈𝑅𝑖,𝑗

𝑥𝑘,𝑝,𝑞

Where 𝑦𝑘,𝑖,𝑗 is the output of the pooling operation related to the kth feature map. 𝑥𝑘,𝑝,𝑞 is

the element at (p, q) within the pooling region 𝑅𝑖,𝑗 which represents a local neighborhood

around the position (i,j). For the average pooling method, it takes the arithmetic mean of the

elements in each pooling region as:

𝑦
𝑘,𝑖,𝑗 =

1

|𝑅𝑖,𝑗|
 ∑ 𝑥𝑘,𝑝,𝑞(𝑝,𝑞)∈𝑅𝑖,𝑗

Where |Ri,j| is the size of the pooling region.

 61

These are the two most commonly used pooling operators since they are quite easy to

compute and hence, they are so widely used. Furthermore, they have provided decent results

in a lot of use cases.

Figure 14 a. How pooling is used for layer by layer subsampling of activation maps [71].

Figure 14 b. Illustration of max pooling with 2x2 filter or window and with stride 2 [71].

 62

Using Ordered Weighted averaging aggregation

operator to combine pooling schemes

Overview of Ordered Weighted averaging aggregation operator
In mathematics and fuzzy logic, the ordered weighted averaging (OWA) operators provide a

parameterized class of mean type aggregation operators [72]. Formally, an OWA operator of

order n is a mapping 𝐹: 𝑅𝑛 → 𝑅 that has an associated collection of weights 𝑊 =

 [𝑤1, 𝑤2, … , 𝑤𝑛] lying in the unit interval and summing to one with:

𝐹(𝑎1, … , 𝑎𝑛) = ∑wjbj

n

j=1

Where bj is the jth largest in the collection ai.

Motivation
As mentioned before, the max pooling and average pooling methods are two popular choices

employed by CNNs due to their computational efficiency. Although these two kinds of

pooling operators can work very well on some datasets, it is still unknown which will work

better for addressing a new problem. In another word, it is a kind of empiricism to choose

the pooling operator. On the other hand, both the max pooling and average pooling operators

have their own drawbacks. About max pooling, it only considers the maximum element and

ignores the others in the pooling region. Sometimes, this will lead to an unacceptable result.

For example, if most of the elements in the pooling region are of high magnitudes, the

distinguishing feature vanishes after max pooling as shown in Fig. 15. In the case of average

pooling, it calculates the mean of all the elements within the pooling region. This operator

will take all the low magnitudes into consideration and the contrast of the new feature map

after pooling will be reduced. Even worse, if there are many near-zero elements, the

characteristic of the feature map will be reduced largely, as illustrated in Fig. 15.

 63

Figure 15. Toy example illustrating the drawbacks of max pooling (top) and average pooling

(bottom).

Pooling Scheme
The proposed pooling scheme is inspired by the concept of weighted averaging operator.

During the pooling operation, the maximum element in the pooling region as well as the

minimum element in the pooling region may be equally important. Therefore, using the

OWA operator, the maximum, the minimum and the average values are combined based on

their proportion in the pooling region. The pooling scheme checks how important each of

the max, min and average values are and then subsamples the region accordingly. This is

done as a part of the forward pass itself and hence, the pooling layer, separately does not

contain any trainable parameters. This ensures that the performance hit is kept to a

minimum.

For using the OWA operator, the calculation of the weights is important. The weights are

calculated using the softmax scores of the sum of the maximum, average and the minimum

of the input. For every depth slice, for every window in each depth slice, the max, average

and the min values are calculated. The maximum, average and the minimum values are

aggregated by performing a sum. The list of the sums is scaled using the softmax function,

and the softmax scores are used to perform the weighted average. The softmax function

encourages the maximum values, but if the average and minimum values are high, then it

45255

45 255
255255

150

45255

45 255

25545

150

Min

Max

Avg

Avg

 64

adjusts the proportion of the values so that the minimum and the average values are

considered too. The effect of this pooling scheme is shown in Figure 16 using toy examples.

(a)

(b)

(c)

(d)

Figure 16. a. Original image; b. image processed using max pooling; c. image processed

using average pooling, d. image processed using fuzzy pooling.

 65

Chapter 4:

Data Description and Results

 66

Data description

For the purpose of benchmarking the models, three different datasets were used: The MNIST

digits dataset, the CIFAR-10 images dataset and a digital pathology images dataset.

The first dataset is the commonly used MNIST dataset. The MNIST database of handwritten

digits, available from this page, has a training set of 60,000 examples, and a test set of 10,000

examples. It is a subset of a larger set available from NIST. The digits have been size-

normalized and centered in a fixed-size image. It is a good database for people who want to

try learning techniques and pattern recognition methods on real-world data while spending

minimal efforts on preprocessing and formatting.

Figure 17. MNIST handwritten digits dataset

The second dataset is the CIFAR-10 dataset. This dataset consists of 60000 32x32 color images

in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test

images. The dataset is divided into five training batches and one test batch, each with 10000

 67

images. The test batch contains exactly 1000 randomly-selected images from each class. The

training batches contain the remaining images in random order, but some training batches

may contain more images from one class than another. Between them, the training batches

contain exactly 5000 images from each class. The ten classes in the CIFAR-10 dataset is

airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck.

Figure 18. CIFAR-10 images dataset

The third dataset contains digital pathology images of breast cancer specimens [73]. Invasive

Ductile Carcinoma or IDC is the most common type of breast cancer. While studying whole

mount samples, pathologists generally focus on regions which contain the carcinoma. In this

dataset, there are 162 whole mount slide images of breast cancer samples which are scanned

at 40x. From these samples, patches of dimensions 50 pixels x 50 pixels were extracted,

totaling to 277,524 patch images. Out of these, 198,738 patches are negative while the

remaining 78,786 are positive.

 68

Figure 19. Breast cancer histopathology image patches showing

 non-IDC (left) and IDC (right) images

Results

The following section discusses the performance of the different models on the dataset. A

different deep learning model was designed for each dataset to ensure that the model is

appropriate to the dataset being used. This baseline model is further modified with the

proposed convolution and pooling layer and was trained separately. The following three

sections are divided based on the datasets. Each section contains a figure illustrating the

baseline model.

For each model, precision, recall, macro-F1 score and accuracy was calculated. This was done

using the following formula:

Precision (P) is defined as the number of true positives (tp) over the number of true positives

plus the number of false positives (fp).

𝑃 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝

Recall (R) is defined as the number of true positives (tp) over the number of true positives

plus the number of false negatives (fn).

R =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛

 69

These quantities are also related to the (F1) score, which is defined as the harmonic mean of

precision and recall, given as:

𝐹1 = 2
𝑃 × 𝑅

𝑃 + 𝑅

Along with these metrics, the accuracy of the model is also given. This is given as:

𝐴𝑐𝑐 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛

MNIST Handwritten digits

Figure 20: Baseline model for MNIST dataset

The baseline model for the MNIST dataset uses Max Pooling. This pooling layer was replaced

by the fuzzy pooling for the experiment. While testing the performance of the fuzzy dilated

convolution, the first convolution layer was replaced with a fuzzy dilated convolution layer

with μ = 0.1 and dilation = 2. All the models were trained for 5 epochs. The performance

metrics are given below:

Table 2: Performance of the different variants of the CNN on the MNIST dataset

 Precision Recall macro-F1 Accuracy (%)

Baseline 0.9857 0.9585 0.9711 97.14

Fuzzy Convolution 0.9887 0.9847 0.9867 98.33

Fuzzy Pooling 0.9828 0.9769 0.9818 98.20

Conv2D
in_channels = 1
out_channels = 16
kernel_size = 5x5
stride = 1
padding =2

Pooling
in_channels = 16
out_channels = 16
kernel_size = 2x2
stride = 2
padding =0

Fully Connected
input_nodes
= 14 x 14 x 16
output_nodes = 10INPUT OUTPUTReLU BatchNorm

 70

Figure 21. Comparison of performance of different variants of the CNN on the MNIST

dataset

CIFAR-10

Figure 22. Baseline model for CIFAR-10 dataset

For the CIFAR-10 dataset, all the pooling layers are max pooling. For the model with fuzzy

pooling, every odd numbered pooling layer from the beginning were converted to fuzzy while

0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995

Baseline

Fuzzy Conv

Fuzzy Pool

Accuracy macro-F1 Recall Precision

Conv2D
in_channels = 3
out_channels = 32
kernel_size = 3x3
stride = 1
padding =1

Pooling
in_channels = 64
out_channels = 64
kernel_size = 2x2
stride = 2
padding =0

INPUT ReLU BatchNorm

Conv2D
in_channels = 32
out_channels = 64
kernel_size = 3x3
stride = 1
padding =1

ReLU

Conv2D
in_channels = 64
out_channels = 128
kernel_size = 3x3
stride = 1
padding =1

Pooling
in_channels = 128
out_channels = 128
kernel_size = 2x2
stride = 2
padding =0

ReLU BatchNorm

Conv2D
in_channels = 128
out_channels = 128
kernel_size = 3x3
stride = 1
padding =1

ReLU

Conv2D
in_channels = 128
out_channels = 256
kernel_size = 3x3
stride = 1
padding =1

Pooling
in_channels = 256
out_channels = 256
kernel_size = 2x2
stride = 2
padding =0

ReLU BatchNorm

Conv2D
in_channels = 256
out_channels = 256
kernel_size = 3x3
stride = 1
padding =1

ReLU

Fully Connected
input_nodes = 512
output_nodes = 10

OUTPUT

Fully Connected
input_nodes = 1024
output_nodes = 512

Fully Connected
input_nodes = 4096
output_nodes = 1024

 71

the remaining were left unchanged. Similarly, for the fuzzy dilated convolution, the first,

third and the fifth convolution layers were replaced with fuzzy dilated convolution layers

with μ = 0.3 and dilation = 2. All the models were trained for 10 epochs.

Table 3. Performance of the different variants of the CNN on the CIFAR-10 dataset

 Precision Recall macro-F1 Accuracy (%)

Baseline 0.9125 0.6854 0.7839 73.8

Fuzzy Convolution 0.816438 0.766067 0.790451 79.8

Fuzzy Pooling 0.894292 0.781885 0.83432 77.79

Figure 23. Comparison of performance of different variants of the CNN on the CIFAR-10

dataset

Breast Cancer Histopathology Images

The CNN for Breast Cancer Histopathology images is divided into five blocks, each

containing convolution, batch normalization, Leaky Rectified Linear activation, and Max

pooling in order. At the end of the five blocks, there is an average pooling layer with 8x8

window size. For testing the fuzzy dilated convolution and the fuzzy pooling layer, the first,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Baseline

Fuzzy Conv

Fuzzy Pool

Accuracy macro-F1 Recall Precision

 72

third and the fifth blocks were modified while the rest were left untouched. The fuzzy dilated

convolution layers had with μ = 0.2 and dilation = 2.

Figure 24. Baseline model for Breast Cancer Histopathology images dataset

INPUT

Conv2D
in_channels = 3
out_channels = 32
kernel_size = 3x3
stride = 1
padding =1

Pooling
in_channels = 32
out_channels = 32
kernel_size = 2x2
stride = 2
padding =0

Leaky ReLUBatchNorm

Conv2D
in_channels = 32
out_channels = 64
kernel_size = 3x3
stride = 1
padding =1

Pooling
in_channels = 64
out_channels = 64
kernel_size = 2x2
stride = 2
padding =0

Leaky ReLUBatchNorm

Conv2D
in_channels = 64
out_channels = 128
kernel_size = 3x3
stride = 1
padding =1

Pooling
in_channels = 128
out_channels = 128
kernel_size = 2x2
stride = 2
padding =0

Leaky ReLUBatchNorm

Conv2D
in_channels = 128
out_channels = 256
kernel_size = 3x3
stride = 1
padding =1

Pooling
in_channels = 256
out_channels = 256
kernel_size = 2x2
stride = 2
padding =0

Leaky ReLUBatchNorm

Conv2D
in_channels = 256
out_channels = 512
kernel_size = 3x3
stride = 1
padding =1

Pooling
in_channels = 512
out_channels = 512
kernel_size = 2x2
stride = 2
padding =0

Leaky ReLUBatchNorm

Pooling
in_channels = 512
out_channels = 512
kernel_size = 8x8
stride = 8
padding =0

Fully Connected
input_nodes = 512
output_nodes = 2

OUTPUT

 73

Table 3. Performance of the different variants of the CNN on the Breast Cancer

Histopathology images dataset

 Precision Recall macro-F1 Accuracy (%)

Baseline 0.932243 0.458621 0.614792 87

Fuzzy Conv 0.894292 0.781885 0.83432 87.5

Fuzzy Pool 0.894292 0.781885 0.83432 90.65

Figure 25. Comparison of performance of different variants of the CNN on the Breast

Cancer Histopathology images dataset

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Baseline

Fuzzy Conv

Fuzzy Pool

Accuracy macro-F1 Recall Precision

 74

Chapter 5:

Conclusion and Future Scope

 75

Conclusion

From the results section, it is evident that incorporation of fuzzy pooling and fuzzy dilated

convolution marginally improves performance. In the experiments, fuzzy convolution layers

and the fuzzy pooling layers were used alongside standard convolution and max-pooling

layers as it was seen that using the proposed fuzzy layers along with the standard layers

improve the performance of the existing convolutional neural networks. In most of the cases,

incorporation of the fuzzy layers improved the accuracy and the macro-F1 scores during

testing.

Deep neural networks, especially convolutional neural networks are being extensively

researched and the two proposed methods provide improved performance metrics on

standard benchmarking datasets as well as a real-life digital pathology dataset.

Future Scope

For practical large-scale implementations, most deep learning models make use of software

libraries that run on GPUs. Multiple software platforms are available, such as Nvidia CUDA,

Intel Math Kernel Libraries and AMD ROCm that allow access to distributed parallel

computing using GPUs. The implementation proposed in this thesis does not leverage GPU

acceleration to the fullest. This made the experimentations time consuming. In future,

implementation of the fuzzy dilated convolution as well as fuzzy pooling on GPUs will enable

further experimentation using larger datasets.

Fuzzy dilated pooling has another scope of improvement where the membership value

hyperparameter can be learned during the training. This may slightly improve the

computational complexity of the backward pass, but the number of trainable parameters is

still small since the kernel size is smaller. This can reduce the number of epochs needed to

train the convolutional neural network,

 76

References

1. LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." nature 521.7553
(2015): 436.

2. Hubel, David H., and Torsten N. Wiesel. "Receptive fields, binocular interaction and
functional architecture in the cat's visual cortex." The Journal of physiology 160.1
(1962): 106-154.

3. Greenspan, Hayit, Bram Van Ginneken, and Ronald M. Summers. "Guest editorial
deep learning in medical imaging: Overview and future promise of an exciting new
technique." IEEE Transactions on Medical Imaging 35.5 (2016): 1153-1159.

4. Mitchell, Tom M. "Machine learning and data mining." Communications of the
ACM 42.11 (1999).

5. Andrychowicz, Marcin, et al. "Learning to learn by gradient descent by gradient
descent." Advances in Neural Information Processing Systems. 2016.

6. Mitra, Sushmita, and Yoichi Hayashi. "Neuro-fuzzy rule generation: survey in soft
computing framework." IEEE transactions on neural networks 11.3 (2000): 748-768.

7. Maulik, Ujjwal, and Sanghamitra Bandyopadhyay. "Performance evaluation of some
clustering algorithms and validity indices." IEEE Transactions on pattern analysis and
machine intelligence 24.12 (2002): 1650-1654.

8. Yager, Ronald R., and Lotfi A. Zadeh, eds. An introduction to fuzzy logic applications
in intelligent systems. Vol. 165. Springer Science & Business Media, 2012.

9. Litjens, Geert, et al. "A survey on deep learning in medical image analysis." Medical
image analysis 42 (2017): 60-88.

10. Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
11. Ruder, Sebastian. "An overview of gradient descent optimization algorithms." arXiv

preprint arXiv:1609.04747(2016).
12. Robbins, Herbert, and Sutton Monro. "A stochastic approximation method." The

annals of mathematical statistics(1951): 400-407.
13. Dauphin, Yann N., et al. "Identifying and attacking the saddle point problem in high-

dimensional non-convex optimization." Advances in neural information processing
systems. 2014.

14. Sutskever, Ilya, et al. "On the importance of initialization and momentum in deep
learning." International conference on machine learning. 2013.

15. Dozat, Timothy. "Incorporating nesterov momentum into adam." (2016).
16. Mukkamala, Mahesh Chandra, and Matthias Hein. "Variants of rmsprop and

adagrad with logarithmic regret bounds." Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017.

17. Zeiler, Matthew D. "ADADELTA: an adaptive learning rate method." arXiv preprint
arXiv:1212.5701 (2012).

 77

18. Tieleman, Tijmen, and Geoffrey Hinton. "Lecture 6.5-rmsprop: Divide the gradient by
a running average of its recent magnitude." COURSERA: Neural networks for machine
learning 4.2 (2012): 26-31.

19. Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic
optimization." arXiv preprint arXiv:1412.6980(2014).

20. Botev, Aleksandar, Guy Lever, and David Barber. "Nesterov's accelerated gradient
and momentum as approximations to regularised update descent." 2017 International
Joint Conference on Neural Networks (IJCNN). IEEE, 2017.

21. Zhang, Ren, Furao Shen, and Jinxi Zhao. "A model with fuzzy granulation and deep
belief networks for exchange rate forecasting." 2014 International Joint Conference on
Neural Networks (IJCNN). IEEE, 2014.

22. Zheng, Yu-Jun, et al. "A Pythagorean-type fuzzy deep denoising autoencoder for
industrial accident early warning." IEEE Transactions on Fuzzy Systems 25.6 (2017):
1561-1575.

23. Chen, CL Philip, et al. "Fuzzy restricted Boltzmann machine for the enhancement of
deep learning." IEEE Transactions on Fuzzy Systems 23.6 (2015): 2163-2173.

24. Park, Seonyeong, et al. "Intra-and inter-fractional variation prediction of lung tumors
using fuzzy deep learning." IEEE journal of translational engineering in health and
medicine 4 (2016): 1-12.

25. Wang, Yani, Zhendong Wu, and Jianwu Zhang. "Damaged fingerprint classification
by Deep Learning with fuzzy feature points." 2016 9th International Congress on Image
and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE,
2016.

26. Chopade, Heena A., and Meera Narvekar. "Hybrid auto text summarization using
deep neural network and fuzzy logic system." 2017 International Conference on
Inventive Computing and Informatics (ICICI). IEEE, 2017.

27. Zheng, Yu-Jun, et al. "Airline passenger profiling based on fuzzy deep machine
learning." IEEE transactions on neural networks and learning systems 28.12 (2016): 2911-
2923.

28. Deng, Yue, et al. "A hierarchical fused fuzzy deep neural network for data
classification." IEEE Transactions on Fuzzy Systems 25.4 (2016): 1006-1012.

29. El Hatri, Chaimae, and Jaouad Boumhidi. "Fuzzy deep learning based urban traffic
incident detection." Cognitive Systems Research 50 (2018): 206-213.

30. Tabrizi, Pooneh R., et al. "Automatic kidney segmentation in 3D pediatric ultrasound
images using deep neural networks and weighted fuzzy active shape model." 2018
IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, 2018.

31. Simon, Dan. "Biogeography-based optimization." IEEE transactions on evolutionary
computation 12.6 (2008): 702-713.

32. Lodwick, Weldon A., and Janusz Kacprzyk, eds. Fuzzy optimization: Recent advances
and applications. Vol. 254. Springer, 2010.

33. Karnik, Nilesh N., and Jerry M. Mendel. "Centroid of a type-2 fuzzy set." Information
Sciences 132.1-4 (2001): 195-220.

 78

34. Buckley, James J. Fuzzy probabilities: new approach and applications. Vol. 115.
Springer Science & Business Media, 2005.

35. Salakhutdinov, Ruslan, and Geoffrey Hinton. "Deep boltzmann machines." Artificial
intelligence and statistics. 2009.

36. Salakhutdinov, Ruslan, and Hugo Larochelle. "Efficient learning of deep Boltzmann
machines." Proceedings of the thirteenth international conference on artificial
intelligence and statistics. 2010.

37. Atanassov, Krassimir T. "Intuitionistic fuzzy sets." Intuitionistic fuzzy sets. Physica,
Heidelberg, 1999. 1-137.

38. Yager, Ronald R. "Pythagorean membership grades in multicriteria decision
making." IEEE Transactions on Fuzzy Systems 22.4 (2013): 958-965.

39. Ishibuchi, Hisao, Kouichi Morioka, and I. B. Turksen. "Learning by fuzzified neural
networks." International Journal of Approximate Reasoning 13.4 (1995): 327-358.

40. Ishibuchi, Hisao, Hideo Tanaka, and Hideiko Okada. "Fuzzy neural networks with
fuzzy weights and fuzzy biases." IEEE international conference on neural networks.
IEEE, 1993.

41. Yao, Xin. "Evolutionary artificial neural networks." International journal of neural
systems 4.03 (1993): 203-222.

42. Tettamanzi, Andrea, and Marco Tomassini. Soft computing: integrating evolutionary,
neural, and fuzzy systems. Springer Science & Business Media, 2013.

43. Shinozaki, Takahiro, and Shinji Watanabe. "Structure discovery of deep neural
network based on evolutionary algorithms." 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015.

44. Shinozaki, Takahiro, and Shinji Watanabe. "Structure discovery of deep neural
network based on evolutionary algorithms." 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015.

45. Lee, Suk Jin, et al. "Customized prediction of respiratory motion with clustering from
multiple patient interaction." ACM Transactions on Intelligent Systems and Technology
(TIST)4.4 (2013): 69.

46. Lu, Wei, et al. "A semi‐automatic method for peak and valley detection in free‐
breathing respiratory waveforms." Medical physics 33.10 (2006): 3634-3636.

47. Murphy, Martin J., and Damodar Pokhrel. "Optimization of an adaptive neural
network to predict breathing." Medical physics36.1 (2009): 40-47.

48. Ngiam, Jiquan, et al. "Multimodal deep learning." Proceedings of the 28th international
conference on machine learning (ICML-11). 2011.

49. Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep
feedforward neural networks." Proceedings of the thirteenth international conference
on artificial intelligence and statistics. 2010.

50. Nie, Laisen, et al. "Network traffic prediction based on deep belief network in wireless
mesh backbone networks." 2017 IEEE Wireless Communications and Networking
Conference (WCNC). IEEE, 2017.

 79

51. Chen, Weihong, et al. "A novel fuzzy deep-learning approach to traffic flow prediction
with uncertain spatial–temporal data features." Future Generation Computer
Systems 89 (2018): 78-88.

52. Xia, J. Y., X. Li, and Y. X. Liu. "Application of a New Restricted Boltzmann Machine to
Radar Target Recognition." 2016 Progress in Electromagnetic Research Symposium
(PIERS). IEEE, 2016.

53. Moreira, Mário WL, et al. "Evolutionary radial basis function network for gestational
diabetes data analytics." Journal of computational science 27 (2018): 410-417.

54. Davoodi, Raheleh, and Mohammad Hassan Moradi. "Mortality prediction in
intensive care units (ICUs) using a deep rule-based fuzzy classifier." Journal of
biomedical informatics 79 (2018): 48-59.

55. Rahmat, Basuki, et al. "Vehicle License Plate Image Segmentation System Using
Cellular Neural Network Optimized by Adaptive Fuzzy and Neuro-Fuzzy
Algorithms." International Journal of Multimedia and Ubiquitous Engineering 11.12
(2016): 383-400.

56. Hernandez-Potiomkin, Yaroslav, et al. "Unsupervised Incident Detection Model in
Urban and Freeway Networks." 2018 21st International Conference on Intelligent
Transportation Systems (ITSC). IEEE, 2018.

57. Agana, Norbert A., and Abdollah Homaifar. "A deep learning based approach for long-
term drought prediction." SoutheastCon 2017. IEEE, 2017.

58. Zhang, Feng, et al. "Deep-learning-based approach for prediction of algal
blooms." Sustainability 8.10 (2016): 1060.

59. Pan, Guangyuan, Liping Fu, and Lalita Thakali. "Development of a global road safety
performance function using deep neural networks." International journal of
transportation science and technology 6.3 (2017): 159-173.

60. Li, Chuan, et al. "Multimodal deep support vector classification with homologous
features and its application to gearbox fault diagnosis." Neurocomputing 168 (2015):
119-127.

61. Zhang, Meishan, Yue Zhang, and Guohong Fu. "Tweet sarcasm detection using deep
neural network." Proceedings of COLING 2016, The 26th International Conference on
Computational Linguistics: Technical Papers. 2016.

62. Fang, Hongqing, and Chen Hu. "Recognizing human activity in smart home using
deep learning algorithm." Proceedings of the 33rd Chinese Control Conference. IEEE,
2014.

63. Hu, Ze, et al. "A deep learning approach for predicting the quality of online health
expert question-answering services." Journal of biomedical informatics 71 (2017): 241-
253.

64. He, Jibo, et al. "Detection of driver drowsiness using wearable devices: A feasibility
study of the proximity sensor." Applied ergonomics 65 (2017): 473-480.

65. Al-Dmour, Hayat, and Ahmed Al-Ani. "A clustering fusion technique for MR brain
tissue segmentation." Neurocomputing275 (2018): 546-559.

 80

66. Ahmed, Sk Arif, et al. "Surveillance scene representation and trajectory abnormality
detection using aggregation of multiple concepts." Expert Systems with
Applications 101 (2018): 43-55.

67. Sutskever, Ilya, Geoffrey E. Hinton, and A. Krizhevsky. "Imagenet classification with
deep convolutional neural networks." Advances in neural information processing
systems (2012): 1097-1105.

68. Russakovsky, Olga, et al. "Imagenet large scale visual recognition
challenge." International journal of computer vision115.3 (2015): 211-252.

69. Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated
convolutions." arXiv preprint arXiv:1511.07122 (2015).

70. Yu, Dingjun, et al. "Mixed pooling for convolutional neural networks." International
Conference on Rough Sets and Knowledge Technology. Springer, Cham, 2014.

71. “CS231n: Convolutional Neural Networks for Visual Recognition.” Stanford University
CS231n: Convolutional Neural Networks for Visual Recognition, cs231n.stanford.edu/.

72. Yager, Ronald R. "On ordered weighted averaging aggregation operators in
multicriteria decisionmaking." IEEE Transactions on systems, Man, and
Cybernetics 18.1 (1988): 183-190.

73. Janowczyk, Andrew, and Anant Madabhushi. "Deep learning for digital pathology
image analysis: A comprehensive tutorial with selected use cases." Journal of
pathology informatics 7 (2016).

