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Abstract  

  

  

In this work a study has been made on leaf classification. To do this work, we have proposed 

a new convolution neural network (CNN) having different architecture. Five different models 

are presented having five different architectures. The entire details of different parameters i.e., 

the number of layers, various activation functions, different optimization functions for all the 

models has been described and the comparative analysis i.e., the effectiveness of these 

parameters has been made. Addition of two new layers is done in one model. It is seen that, 

addition of a batch normalization layer before a leaky-relu activation layer and addition of a 

dropout layer after this activation layer in the CNN model architecture prevents the over fitting 

problem of the model, where the four models cannot.  
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Chapter 1 

Introduction 

1.1 Classification 

Classification is a process in which an object is categorized, recognized, or 

differentiated.  In context of machine learning, the task, classification is to find a hypothesis 

H, where the hypothesis H is used for discrimination of different objects. This hypothesis 

is called as classifier. There are different types of methodologies for building automated 

classifier, where the classifiers learn from the objects itself. Support Vector Machine [2], 

K-Nearest Neighbors (KNN) [3], Artificial Neural networks [4] are some popular 

classifiers in the machine learning domain. 

 

1.2 Image Classification 

Image classification refers to a process in computer vision, where classification of 

images are done depending on its visual content (i.e., some attributes like pixel values, 

edges, spectral information, and spatial information of an image). For example, an image 

classification algorithm can be designed in a way so that it can differentiate between the 

image of a tree and an image of human face. Though several techniques are there for 

classification, robust image classification is still a challenge in computer vision 

applications. 

 

1.3 Leaf Classification 

Leaf is a very important feature or characteristics of a tree for classification. Trees 

can be identified by its leaf. Leafs differs from each other by its shape, size, color, texture 

etc. Besides, leafs are characterized by some features. In computer vision problem, leaf 

classification is a challenging task. To computer an Image is a matrix of pixel values. Pixel 

values are very low level features of an Image. As computers cannot comprehend images, 
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they are required to be converted into features by individually analyzing image shapes, 

colors, textures and moments. Images that looks similar may deviate in terms of geometric 

and photometric variations. So it is required to extract meaningful high level features from 

a given leaf image. Classification accuracy is heavily dependent on the features that 

represents the leaf. It can be said that, the good or important features have been extracted, 

if it has low variance in leafs of same class and high variance in leafs of different class and 

if it is able to extract the features with less error from a given leaf image. 

 

1.4 Application of Leaf Classification 

Plants are fundamentally important to life. Key research areas in plant science 

include plant species identification, monitoring plant health and tracing leaf growth, and 

the semantic interpretation of leaf information. Botanists easily identify plant species by 

discriminating between the shape of the leaf, tip, base, leaf margin and leaf vein, as well as 

the texture of the leaf and the arrangement of leaflets of compound leaves. Because of the 

increasing demand for experts and calls for biodiversity, there is a need for intelligent 

systems that recognize and characterize leaves so as to scrutinize a particular species, the 

diseases that affect them, the pattern of leaf growth, and so on. 

 

1.5 Need of Automated Feature Extraction  

The common approach of image classification is utilizing one of the conventional 

classification methods such as support vector machines and decision trees on extracted 

features, which are transformed from raw images. The dimensionality of raw image data is 

simply too high for most classification methods. Furthermore the spatial relationships 

between neighboring pixels cannot be observed by these methods since they often consider 

data points independent from each other. 

Therefore the feature extraction phase in conventional approaches is critical. The 

subsequent classification is directly affected by the extracted features. Poor features would 

not lead to accurate classification. 



P a g e  | 3 

 

3 | P a g e  
 

The challenges in feature extraction reside in several aspects. The goodness of a certain 

feature is often problem dependent. For a specific application, designing a totally new 

feature may be required. There are no universal features which can excel in all applications. 

Also there are numerous existing image features such as histogram features, edginess 

features, texture features and features in the frequency domains. Deciding a suitable set of 

features is usually the focus of image classification applications. Such task heavily depend 

on domain knowledge as the understanding of the task itself and the extensive experience 

on existing features in the literature are crucial[5]. 

 

1.6 Scope of the Thesis  

In this work a study has been made on leaf classification. To do this work, we have 

proposed convolution neural network (CNN) having different models or architectures. So in this 

thesis the entire details of different parameters i.e., the number of layers, various activation 

functions, different optimization functions for all the models has been described and the 

comparative analysis i.e., effectiveness of these parameters has been made. Addition of two new 

layers is done in one model. It is seen that, addition of a batch normalization layer before a Leaky-

ReLU activation layer and addition of a dropout layer after this activation layer in the CNN model 

architecture prevents the over fitting problem of the model. Also significant accuracy improvement 

in validation dataset is seen.       

    
1.7 Organization of the Thesis 

In Chapter 2 we describe brief introduction of Convolution neural network and its different 

component. In Chapter 3 we discuss different features of leaf data and also technique to extract 

those feature and classification technique exist in literature. Dataset descriptions, results and their 

analysis of the work are detailed in chapter 4 and conclusion is described in Chapter 5. 

 



P a g e  | 4 

 

4 | P a g e  
 

 

Chapter 2 

    Convolution Neural Network 

2.1 Introduction 

In Convolution Neural Network convolution operation is used to produce a feature 

vector to feed the fully connected layers (classification layer). The network consists of a 

stack of consecutive convolution layers followed by dense layers. Convolutional Neural 

Network (CNN) was first introduced in computer vision for image recognition by LeCun 

et al. in 1989[6]. Since then, it has been widely used in image recognition and classification 

tasks. The recent impressive success of Krizhevsky et al. in ILSVRC 2012 competition [7] 

demonstrates the significant advancement of modern deep CNN on image classification 

problem [8]. Inspired by his work, many recent research works have been concentrating on 

understanding CNN and extending its applications to conventional computer vision tasks. 

 
Fig 2.1: Visual diagram of a CNN 
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2.2 Convolution Operation: 

Convolution is the process of adding each element of the image to its local 

neighbors, weighted by the kernel. It should be noted that the matrix operation being 

performed, convolution, is not traditional matrix multiplication, despite being similarly 

denoted by *. It is a matrix dot product. 

For example, if we have two three-by-three matrices, where the first one is a kernel, and 

the second is an image piece, convolution is the process of flipping both the rows and 

columns of the kernel and then multiplying locally similar entries and summing up. The 

element at coordinates [2, 2] (i.e., the central element) of the resultant image would be a 

weighted combination of all the entries of the image matrix. 

The other entries would be similarly weighted, where we position the center of the 

kernel on each of the boundary points of the image, and compute a weighted sum. The 

value of a pixel in the output image is calculated by multiplying each kernel value by the 

corresponding input image pixel value. 

The general expression of a convolution is: 

 

Where g(x, y) is the filtered image, f(x, y) is the original image, w is the filter kernel. Every 

element of the filter kernel is considered by (-a<=s<=a) and (-b<=t<=b.)  

Depending on the element values, a kernel can cause a wide range of effects, it is shown in 

the figure below. 
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2.3. Convolution Layer 

At convolution layer, a linear operation is done that involves the multiplication of 

a set of weights with the input, as we do in traditional neural network. A technique was 

designed for two-dimensional input, multiplication is performed between an array of input 

data and a two-dimensional array of weights, called a filter or a kernel. 

The filter is made smaller than the input data and the type of multiplication applied 

between a filter-sized patch of the input and the filter is a dot product. A dot product is the 

element-wise multiplication between the filter-sized patch of the input and filter, which is 

then summed, always resulting in a single value. Since it results in a single value, the 

operation is often referred to as the “scalar product“. 

Using a filter smaller than the input is intentional as it allows the same filter (set of 

weights) to be multiplied by the input array multiple times at different points on the input. 

Specifically, the filter is applied systematically to each overlapping part or filter-sized 

patch of the input data, left to right, top to bottom. 

If the filter is designed to detect a specific type of feature in the input, the 

application of that filter across the entire input image allows the filter an opportunity to 

Fig 2.2: Effect of Feature 

Detection Kernel 
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discover that feature anywhere in the image. This capability is commonly referred to as 

translation invariance that is the general interest is in whether the feature is present or not 

rather than where it was present. 

As the filter is applied multiple times to the input array, the result is a two-

dimensional array of output values that represent a filtering of the input. As such, the two-

dimensional output array from this operation is called a “feature map”[6]. Once a feature 

map is created, we can pass each value in the feature map through a nonlinear activation 

function, such as a ReLU, much like we do for the outputs of a fully connected layer. 

 
Fig 2.3:  Convolution Operation 



P a g e  | 8 

 

8 | P a g e  
 

 

Fig. 2.3 & Fig. 2.4 are examples of convolution operation on a 7x7 image by two 

3x3 kernels, padding size = 1 and stride = 2 with bias. Padding is an additional layer 

that we can add to the border of an image, for example, suppose we add one more 

layer to a 4*4 image and convert it in to a 5*5 image for the sake of accuracy, then 

this layer of numerical zeroes is called zero padding. 

2.3.1 Kernel Size 

 The size of kernel is a hyper-parameter of CNN architecture [ ]. The area of kernel 

is receptive field of activation map. We usually define kernel only by its spatial size (k x 

k), where k is length and width of the kernel, for example (2 x 2), (3 x 3), (7 x 7). Kernel 

size always smaller than input size. Conventionally we consider kernel size as an odd 

number. Actual size of kernel is kernel spatial dimension with number channels of input to 

Fig 2.4: Convolution Operation 
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the convolution layer. If we consider number of channel of input is input_channel the 

kernel shape is (k x k x input_channel). For an example, if input is RGB image to first layer 

CNN then kernel size will be  

k x k x 3, where k is length or width of the kernel.  

2.3.2 Number of Kernels 

Number of kernel is also a hyper-parameter of convolution a layer. Different 

kernel is used to extract different image feature. Depth or number of channel in an 

output feature map is equal to number of kernel. 

 2.3.3 Bias  

Use of bias with a kernel is also a choice for a network. A bias is single 

variable which is added to convolve value of kernel and pixel values of the current 

receptive field. Reason behind using bias is to shift activation position. If a non-

linear activation function used to in convolution layer then it is good to use bias. 

 2.3.4 Activation Functions 

To make non-linear feature map, convolved value is pass through a nonlinear 

activation function. 

 Sigmoid 

The sigmoid function (Fig. 2.5) is defined as: 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
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Local gradient of sigmoid 

     

𝑓′(𝑥) = 𝑓(𝑥)(1 − 𝑓(𝑥)) 

   This a non-linear function that suffers from saturation [ ]. 

Saturation of activation 

An activation that has an almost zero gradient at certain regions. This 

is an undesirable property since it results in slow learning or ensure 

vanishing gradient when use in deep network. 

 tanh 

The tanh function (Fig 2.6) is defined as: 

𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒−𝑥 + 𝑒−𝑥
 

Fig 2.5: Sigmoid Function 
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It has a similar problem like sigmoid activation function. 

The only difference is that it has zero center output, and range is from (-1, 1). 

Local gradient of tanh is: 

  𝑓′(𝑥) = 1 − 𝑓(𝑥)2 

 

 ReLU 

Rectified Linear Unit or ReLU (Fig. 2.7) is defined as: 

𝑓(𝑥) = max(0, 𝑥)   

 

 

Fig 2.6: tanh Function 

Fig 2.7: ReLU Function 
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 Leaky-ReLU 

Leaky-ReLU activation function (Fig. 2.8) is defined as follow 

𝑓(𝑥) = max(𝛾 ∗ 𝑥, 𝑥)  𝑤ℎ𝑒𝑟𝑒 0.0 ≤ 𝛾 ≤ 1.0 

     

     

 

The Local gradient is:  

    𝑓′(𝑥) = max (𝛾 , 1) 

In ReLU, gradient flow for negative input is zero. So ReLU may have gradient 

vanishing problem (which is zero) but Leaky-ReLU is free from this problem. Moreover if 

a kernel gives negative output and we use ReLU then the output of feature map is always 

same and zero for any input and the local gradient is also zero; so kernel will never be able 

to update through back propagation. Kernel will be a useless or dead kernel. 

2.3.4 Stride 

Stride of kernel is also a hyper parameter. Stride is a number that a kernel skip or 

slide through a direction to produce next value of a feature map. 

Size of a feature map or output depends on stride value. Usually we take stride value of a 

kernel is 1. It is always less or equal to kernel size. 

 

Fig 2.8: Leaky-ReLU Function 
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2.3.5 Number of Learnable Parameters & Output Size of a Convolution Layer 

 Let, 

 Kernel size = k x k 

 Number of kernels = d 

 Stride = s 

 Input shape = (n, m, c) where n = height, m = length, c = channel 

 Then, output shape =(
𝑛−𝑘+1

𝑠
 ,

𝑚−𝑘+1

𝑠
, 𝑑 ) 

 Number of learnable parameters  = (𝑘 ∗ 𝑘 ∗ 𝑐 + 1) ∗ 𝑑 

   

2.4 Sub-sampling or Pooling Layer 

 The pooling layer is used to reduce the spatial dimensions. On a convolution neural 

network, uses of pooling layer provides the following advantages: 

 By having less spatial information, computation performance increased 

 Less spatial information also means less parameters, so less chance to over-fit 

 Network gets some translation invariance 

In the Figure below (Fig. 2.9) it is shown, that the most common type of pooling, the max-

pooling layer, which slides a window, like a normal convolution, and get the biggest value 

on the window as the output. 

 

  Fig 2.9: Max-pooling Operation 
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In this pooling layer window or patch size is also a hyper parameter. Usually we 

always take patch size 2 x 2 with stride value 2. Every patch on the given input 

feature map will reduce to one pixel value. 

The most important parameters in pooling layer are: 

 Input shape = (n x m x c); where n = height, m = length,  

input_channel = c 

 Stride: s; Scalar that controls the amount of pixels that the window 

slides. 

 Kernel size = k 

 Output shape : w1 x h1 x c 

Where,  𝑤1 =  
(𝑛−𝑘)

𝑠
+ 1 and ℎ1 =  

(𝑚−𝑘)

𝑠
+ 1 

In the pooling layer there is no learnable parameters. So back propagation becomes 

simpler. 

2.4.1 Max-pooling 

It passes the maximum value among the pixels of the given patch area or current 

window.  

2.4.2 Avg-pooling 

 It passes the average value of pixels of for a given patch area or window. 

2.4.3 Min-pooling 

It passes the min value among the pixels of the given patch area. 

 

2.5 Dropout Layer 

Dropout is a technique where randomly selected neurons are ignored during 

training (Fig. 2.10). They are “dropped-out” randomly. This means that their contribution 
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to the activation of downstream neurons is temporally removed on the forward pass and 

any weight updates are not applied to the neuron on the backward pass. As a neural network 

learns, neuron weights settle into their context within the network. Weights of neurons are 

tuned for specific features providing some specialization. It can be imagined that if neurons 

are randomly dropped out of the network during training, that other neurons will have to 

step in and handle the representation required to make predictions for the missing neurons. 

The effect is that the network becomes less sensitive to the specific weights of neurons. 

This in turn results in a network that is capable of better generalization and is less likely to 

overfit the training data. During the prediction phase the dropout is deactivated. 

 

 

Normally some deep learning models use Dropout on the fully connected layers, but 

is also possible to use dropout after the max-pooling layers, creating some kind of 

image noise augmentation. The probability of a neuron to be dropped is considered 

as the only hyper parameter in drop out layer. 

2.6 Batch Normalization Layer 

Normalization is done on the activation of every fully connected layer or 

Convolution layer during training. Batch-normalization is viewed as an adaptive (or 

learnable) pre-processing block with trainable parameters which are tuned through 

Fig 2.10 (a) Standard and Dropout Neural Net 
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back propagation. The activation function of each fully connected layer is 

normalized, generally batch normalization is done using mean and standard 

deviation values. 

Some advantages of using Batch-Norm: 

 Improves gradient flow, used on very deep models. 

 Allows higher learning rates 

 Reduces dependency on initialization 

 Gives some kind of regularization (so Dropout loses some importance but 

we keep using it). 

This forces activations (Convolution layer, Fully-connected layer outputs) to 

become unit valued standard deviation and zero mean. 

To each learning batch of data we apply the following normalization. 

 

The output of the batch normalization layer, has three parameters. Those parameters will 

be learned to best represent our activations. Those parameters allow two learnable (scale 

and shift) factor. 

Now summarizing the operations: 
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2.7 Gradient Descent 

Gradient descent is one of the most popular algorithms to perform 

optimization and by far the most common way to optimize neural networks. At the 

same time, every state-of-the-art Deep Learning library contains implementations 

of various algorithms to optimize gradient descent .These algorithms, however, are 

often used as black-box optimizers [ ]. 

 Gradient descent variants 

There are three variants of gradient descent, which differ in how much data we 

use to compute the gradient of the objective function. Depending on the amount of 

data, we make a trade-off between the accuracy of the parameter update and the 

time it takes to perform an update. 

2.7.1 Batch Gradient Descent 

Vanilla gradient descent or batch gradient descent [ ] computes the gradient of the 

cost function 𝐽(𝜃)w.r.t. to the parameters θ for the entire training dataset: 

θ = θ − 𝛾 ∗ ∇𝜃 𝐽(𝜃) 

 Where, θ is learnable parameters (Weights of neurons) of network and γ is learning rate. 
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As we need to calculate the gradients for the whole dataset to perform just one 

update, batch gradient descent can be very slow and is intractable for datasets that 

do not fit in memory. Batch gradient descent also does not allow us to update our 

model online, i.e. with new examples readily. 

In code, batch gradient descent looks like: 

for i in range ( num_epochs ): 

params_grad = evaluate_gradient ( loss_function , data , params ) 

params = params - learning_rate * params_grad 

For a pre-defined number of epochs, at first the gradient vector params_grad of the 

loss function for the whole dataset w.r.t. our parameter vector params is computed. 

An important point which is to be noted here is that state-of-the-art deep learning 

libraries provide automatic differentiation that efficiently computes the gradient 

w.r.t. some parameters. If the gradients are derived separately by a user, then in that 

case gradient checking is a good idea. The parameters are then updated in the 

direction of the gradients with the learning rate determining how big of an update is 

to be performed. Batch gradient descent is guaranteed to converge to the global 

minimum for convex error surfaces and to a local minimum for non-convex 

surfaces. Different types of optimization approach like Graph Computation, 

TensorFlow ML framework eases our work of doing gradient computation. 

2.7.2 Stochastic Gradient Descent: 

Stochastic gradient descent (SGD), in contrast, performs a parameter update 

for each training example 𝑥(𝑖) and label 𝑦(𝑖): 

𝜃 = 𝜃 − 𝛾 ∗ ∇θ J(θ; x(i); y(i))          … (2) 

As discussed in  [ ]. 
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Batch gradient descent performs redundant computations for large datasets, as it re-

computes gradients for similar examples before each parameter update [ ]. SGD 

does away with this redundancy by performing one update at a time. It is therefore 

usually much faster and can also be used to learn online. SGD performs frequent 

updates with a high variance that cause the objective function to fluctuate heavily. 

While batch gradient descent converges to the minimum of the basin the parameters 

are placed in, SGD’s fluctuation, on the one hand, enables it to jump to new and 

potentially better local minima. On the other hand, this ultimately complicates 

convergence to the exact minimum, as SGD will keep overshooting. However, it 

has been shown that when we slowly decrease the learning rate, SGD shows the 

same convergence behavior as batch gradient descent [ ], almost certainly 

converging to a local or the global minimum for non-convex and convex 

optimization respectively. Its code fragment simply adds a loop over the training 

examples and evaluates the gradient w.r.t. each example. Note that we shuffle the 

training data at every epoch [ ]. 

 

2.7.3 Mini-batch Gradient Descent  

Mini-batch gradient descent takes the best of both worlds and performs an 

update for every mini-batch of n training examples: 

𝜃 = 𝜃 − 𝛾 ∗ ∇ 𝐽( 𝜃; 𝑥(𝑖 ∶ 𝑖 + 𝑛 ); 𝑦( 𝑖 ∶ 𝑖 + 𝑛 ))      … (3) 

This way, it a) reduces the variance of the parameter updates, which can lead 

to more stable convergence; and 

 b) Can make use of highly optimized matrix optimizations common to state-

of-the-art deep learning libraries that make computing the gradient w.r.t. a mini-

batch very efficient. Common mini-batch sizes range between 50 and 256, but can 

vary for different applications. Mini-batch gradient descent is typically the 
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algorithm of choice when training a neural network and the term SGD usually is 

employed also when mini-batches are used. 

2.7.4 Gradient Descent Optimization Algorithms 

In the following, we will outline some algorithms that are widely used by the 

Deep Learning community to deal with the aforementioned challenges. We will not 

discuss algorithms that are infeasible to compute in practice for high-dimensional 

data sets, e.g. second-order methods such as Newton’s method. 

Momentum SGD 

Momentum SGD has trouble navigating ravines, i.e. areas where the surface 

curves much more steeply in one dimension than in another, which are common 

around local optima. In these scenarios, SGD oscillates across the slopes of the 

ravine while only making hesitant progress along the bottom towards the local 

optimum. 

Momentum is a method that helps accelerate SGD in the relevant direction and 

dampens oscillations. It does this by adding a fraction 𝛼 of the update vector of the 

past time step to the current update vector. 

  𝑣 ∗ 𝑡 = 𝛼 ∗ 𝑣 ∗ 𝑡 − 1 + 𝛾 ∗ ∇𝜃 ∗ 𝐽(𝜃)    … (4) 

𝜃 = 𝜃 − 𝑣 ∗ 𝑡  … (5) 

The momentum term 𝛼 is usually set to 0.9 or a similar value. Essentially, when 

using momentum, we push a ball down a hill. The ball accumulates momentum as 

it rolls downhill, becoming faster and faster on the way (until it reaches its terminal 

velocity, if there is air resistance, i.e. 𝛼 < 1). The same thing happens to our 

parameter updates: The momentum term increases for dimensions whose gradients 

point in the same directions and reduces updates for dimensions whose gradients 

change directions. As a result, we gain faster convergence and reduced oscillation.     



P a g e  | 21 

 

21 | P a g e  
 

     Chapter 3 

 

 

        Literature Survey: Leaf Classification 

 

3.1 An Overview of Leaf Classification Systems 

The researchers Du et al. [6] have analyzed morphological features and invariant 

moment features of various shapes of different plant databases and applied the move 

median centers (MMC) hyper sphere classifier to classify leaf species. They used a leaf 

database containing only a single leaf image against a blurred background, and collected a 

total of 20 species of different images with a total of 400 scanned leaf images. Macleod et 

al. [7] investigated several computer-assisted systems for the species identification of 

living and nonliving things based on the DNA bar-coding scheme. They studied systems 

in oceanographic-based research and paleontology, and tested his work in the Digital 

Automated Identification System (DAISY), classifying only 30 species. They worked on 

din flagellate categorization using the Artificial Neural Network (DiCANN) system to 

identify phytoplankton species with 72% accuracy. Pattern Analysis, Statistical Modeling 

and Computational Learning (PASCAL) were used to classify common objects. A plant 

species identification system for the broad leaves found in Norway was proposed by 

Babatunde et al. [7] which were based on the morphological features of the leaves and they 

also discussed different features of leaves and feature extraction techniques. In [8], various 

leaf structures and flower feature extraction techniques and problems in an agricultural 

environment were reviewed. Detailed information of the important survey paper. We have 
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identified papers that have discussed feature extraction techniques, as well as those that 

included classification techniques, those based on particular leaf species, those that 

included a combination of shape and venation, those that included a combination of texture 

and texton, and those that worked to resolve the problem of big data. We list here the 

paradigms used for our study, and Table 2 shows the number of papers included for this 

detailed analysis so as to handle different problems in agricultural research. 

 

P1: Analysis based on different leaf shapes 

P2: Analysis based on venation 

P3: Analysis based on leaf tip, base, and margin 

P4: Analysis based on texture/texton  

P5: Analysis based on moment invariant descriptors  

P6: Analysis based on different classification techniques to resolve problems with inter and 

intra-class classification, imbalanced data, and managing big data.  

P7: Analysis based on different leaf databases 

 

3.2 Block Diagram of Leaf Classification System 

The general block diagram of leaf species identification system is shown in Fig. 

3.1. In this system a user gets the leaf image to be identified. Then the system performs 

image preprocessing such as conversion of a color image to grayscale image, image 

smoothing by removing noise, segment the images etc. Next, the system extracts the 

general features of leaf such as shape, color, texture and some of the leaf specific features 

such as leaf tip, base, apex and margin and venation information. These features are 

compared with the features of the leaves stored in a database to identify the species of the 

leaf based on Intra and inter classes’ similarity. 
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Fig. 3.1. Block Diagram of Leaf species 

identification system 
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3.3 State-of-the-Art Techniques in Feature Extraction  

A feature is a piece of information relevant to a specific leaf image, and is 

divided into two types: local and global. Local features are extracted from leaf 

patches and global features from leaf shape, texture and color. All leaves are 

identical in terms of color, which can vary with climatic changes. Color, shape and 

texture are appropriate features for the classification of leaf species. There are two 

types of leaves: simple and compound leaves, according to leaf manual [15] their 

general structures are as shown in Fig. 3.2 Cope et al. [9] discussed the 

morphological structure of simple leaves, which are identified through key features, 

such as color, shape, margin, venation, and arrangement. Compound leaves, 

however, are identified by the number of leaflets in a stalk, with the extraction of 

feature from single leaflet. There is, therefore, a need for appropriate features for 

the identification of leaf species. Sharma and Gupta [11] presented an overview of 

some of the common methods used for leaf feature extraction and classification.  

Fig 3.2 Types of leaf features 
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3.4 Feature Extraction Techniques  

Feature extraction is an important technique used in image classification, pattern 

recognition and object recognition. In order to have effective classification of plant species 

researchers should decide to extract efficient features. Researchers classify plants using 

roots, fruits, seeds and flowers [13–14]. Leaf color [15] cannot be considered a viable 

feature for classification because it may vary with climatic and camera calibrations. Given 

that most leaves are green, they are to be classified through shape, texture and invariant 

feature descriptors that are invariant to translations, rotations and scaling transformations  

 

of images. Since color is not considered, grayscale images of leaves are used for 

identification. Figure 3.3 shows different feature extraction techniques. 

 

 

 

 

Fig 3.3 Feature extraction techniques 
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3.4.1 Curvature Descriptors  

Curvature Scale Space (CSS) is a technique used to measure the contours of shapes, 

extracts the concavity and convexity of curvature. It is invariant to translation and rotation 

in a viewpoint direction but not in scale, because it varies with the Gaussian kernel (a) and 

cannot easily fix the value of the Gaussian kernel. It leads to misclassification of serrated 

and lobe-shaped leaves. Curvature is a vital property of leaves and curvatures are computed 

using differential techniques. However, it produces more noise, is sensitive to rotation, and 

generates different feature vectors with different scales. It is impossible to sustain all the 

curvature features combined together in one feature vector. Aligning them all in one 

particular point is a difficult task, because the features differ for each scale.  

According to [16] CSS used to identify the starting and ending points of the 

venation feature points of leaves by estimating the maximum angles of the leaves. The 

densities of feature points are estimated using the Parzen window method for non-

parametric density estimation and it can be applied to any data distribution. We cannot, 

however, get to choose the correct window size. According to [17], since veins are 

represented as strings used for semantic interpretation, there is no need to find the starting 

and ending points. But these methods cannot be used for imperfect and overlapped leaves. 

Grinblat et al. [18] used an unconstrained hit or miss transform technique to extract 

particular patterns in foreground and background pixels. When applied to leaf images, 

central vein patches are extracted from leaves and various geometric features are calculated 

for the veins. The SIFT descriptor [19, 20] were used to extract key features from an image. 

It produces good results on the circular orientation of an image, and is well suited to 

illumination and various viewing conditions. It extracts histogram features from local 

patches. The authors extracted corner points using Mean Projection transform (MPT) 

instead of CSS, it produces indistinguishable variations as well as aliasing. To eliminate 

such problems, the Mean Projection Transform extracts corners that have high curvature. 

The Flavia dataset produces accuracy of 87.5%. The researchers Chen et al. [21] proposed 

a velocity representation technique to represent curvature points. This algorithm computes 

only 9 points on a leaf contour. It reduces the running time of the algorithm, because the 

CSS computes 200 intersection points on the curvature and increases the running time. 

Square root velocity representation [22] was used for shape-based leaf classification to 
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solve the intra-class and inter-class variability of leaf images. It automatically detects 

similarities by computing the geo desic distance of statistical shape features and 2D planar 

curves by computing the elastic deformations of the Riemannian structure. It is applied to 

the Flavia leaf dataset. 

 

3.4.2 Multi-scale Descriptors 

The multi-scale descriptors furnish much more information about leaf contours. 

Derived from the scale space and image pyramid structure, it extracts image features at 

various levels by capturing local and global features from low- to high-resolution scales. It 

provides the maximum discriminating power and is robust to noise depending on the 

boundaries of leaves and not the regions of an image. As a result, it works well on feature 

space rather than image space. Multi-scale Triangular Area Representation (MTAR) is 

used in [23] which is affine invariant, robust to noise and provides the features of images 

concavity and convexity. He also developed triangle side length and triangle-oriented angle 

descriptors for leaf images. The researchers Wang et al. [24] introduced Multi-scale Arc 

Height Descriptor (MARH) which is invariant to translation. It enumerates a local 

normalization technique for each scale to employ rotation and scaling, because the local 

normalization rendered for each scale is based on the maximum value of arch height 

descriptors. It leads to shape dissimilarity at each different scale, so is invariant to 

translation and scaling. It measures the arch height of palmate-shaped and lobe-shaped 

leaves but is unsuitable for overlapped leaves. In this method, the local normalization 

scheme is applied for scaling and rotation. It takes longer execution time, compared to 

other invariant descriptors. A new method called the Multi-scale Bending Energy (MBER) 

was proposed by Souza et al. [25] which require energy to perform at the lowest energy 

rate on a curvature signal based on its sensitivity to the local features of the shape contour. 

It provides low noise immunity and spatial locations of certain prominent points. Given 

these limitations, its use in shape description is rather limited. Researchers of papers [26] 

used curvelet transform, which is a multi-scale object representation technique applicable 

only to objects with small length scales. It is not applicable to natural images—for, while 

increasing image size, the edges end up looking like straight lines. This property is not 

suited to natural images of leaves and flowers, and is only applicable to text and cartoons. 
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Multi-scale R-angle [27] descriptor, compared to all the other descriptors, is intrinsic to 

shape contours under translation, rotation and scaling, because the other methods need 

normalization for scaling. 

 

3.4.3 Centroid Contour and Angle Code Descriptors  

The Centroid Contour Descriptor (CCD) used by Sangle et al. [28] measures the 

distance between the center and the boundary points, and is invariant to translation and 

rotation. If a user knows the location of the starting point, the image produces the same 

shape signature for the rotated images. The Angle Code Descriptor (ACD) computes the 

continuous orientation angles of leaf shapes but provides limited shape information. So 

they combined both CCD and ACD to retrieve all the essential information of a leaf image 

and applied these methods to the mango, tulsi, rose and Asoka tree species. The CCD and 

ACD were used to extract, oblong and orbicular leaf shapes and to identify leaf species in 

[29]. Knight [30] developed android app for identifying 6 different classes of leaves. He 

used CCD and ACH for extracting leaf features. Thangirala [31] proposed CCD with 

Centroid Contour Gradient for broadleaf classification and used CCG to extract leaf 

gradients between two points on the leaf’s contour. These points were used to measure the 

angles between the tip and the base. Bong et al. [32] suggested to normalize the tip and 

base of the leaf and used centroid contour gradient (CCG) to capture the curvature of the 

tip and base of the leaf. They achieved 99.47% classification accuracy by using feed-

forward back propagation network as classifier Fotopoulou et al. [18] advised to convert 

the centroid contour distance and angle code sequence into 1D time delay sequence and he 

measured similarity of leaf shapes through Multidimensional Embedding Sequence 

Similarity (MESS). 

3.4.4 Point and Edge-based Feature Descriptors  

A new descriptor called the shape context was introduced in [34] to dissociate shape 

information from different shapes. It is a technique used to extract point information from 

a shape’s contours, measure similarity differences between feature vectors of various 
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points in an image, and isolate information from the neighboring pixels of an image. The 

transformation of an object does not affect shape context information. It is invariant to 

rotation since it performs log polar operations while computing shape context information. 

It is invariant to small affine transformations, occlusions, the presence of outliers, and is 

applicable to clear images. Shape context is used to calculate the local and spatial 

information of an image. In [35], an advanced shape context method was introduced to 

reduce computational cost. In this method they used two sets: a voting set and a computing 

set. While the voting set was used to build the histogram information of the shape, the 

computing set was used to compute the shape context information of various shapes. This 

method was used for polygonal shaped leaf images. The researchers of paper [36] proposed 

a new technique in shape context termed the Inner Distance Shape Context (IDSC), where 

the Euclidean distance is used to compute the cost matrix between two shapes. But it does 

not consider how many line segments are crossed in shape boundaries and, further, 

increases the computational cost. The technique solves the problem above by calculating 

the length of the shortest path with in shape boundary, and is invariant to articulation points 

that requires complex matching algorithm to compare a set of points. The inner distance 

shape context (IDSC) technique was proposed in [37] for articulated shape recognition and 

it is a very useful technique when the veins in leaves are damaged. The IDSC cannot store 

information on compound and serrated leaves or model the local details of leaf shapes well. 

It models only global information and misses some local information. Zhao et al. [38] 

introduced the Interdependent Inner Distance Shape Context (I-IDSC) to calculate the 

shape context with different aspects, but different plant species can have a common shape 

and the I-IDSC discriminates between leaves with similar shapes but different margins. It 

accurately classifies both simple and compound leaves, retains the most discriminative 

information, is very fast and offers cheap storage. 

A Histogram of Curvature over Scale (HoCS) [39] is method to measure histogram features 

in one single point because it is simple to compute, compact and requires no alignment. It 

is a multi-scale invariant integral curvature measure calculated from circle-centered point. 

It gives natural notions of scale by resizing the image in segmented areas. It is robust to 

noise and invariant with rotation. It also removes holes in leaf images, extracts curvatures 

from boundaries, and measures smooth as well as serrated margins. This technique was 
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used in the paper [40] to extract the arc and area features of lobe-shaped leaf margins, but 

it is not suitable for all leaves. This technique was also used for Costa Rican species. The 

HoCS, however, is not articulation invariant. An active shape model was proposed in [42] 

to find edge points and leaf tip points by overlapping two leaf points and tracing their 

continuous shape. The model was used for slender and thread-type leaves. An active 

polygonal model technique was used by Cerutti et al. in [42] to extract the tip and base 

information of a leaf by computing 10 feature points such as the base, base angle, tip of the 

angle and the isosceles triangle. This model fits polygons on images, helps to preserve 

corners, and extracts information on leaf tips and bases. Toothed leaf margins are 

represented as a string. This method presents information on leaves semantically, and is 

most useful, especially when the leaf is unavailable at a time. The drawback, however, is 

the danger of misclassification of the leaf margin when the margin in question is imperfect. 

Du et al. [43] presented a leaf species identification method using shape matching 

technique. They adopted Douglas–Peucker approximation algorithm to get the attributes 

of the leaves and proposed a modified dynamic programming (MDD) algorithm for shape 

matching. This method is suitable even if the leaves are overlapped, distorted and partial. 

It works with any number of dimensions and extracts a small number of points by splitting 

the entire contour into small curves. It depends on the starting point, and is a pure 

geometrical algorithm to obtain a smaller number of vertices. It also affects from noisy 

images. 

3.4.5 Edges and Corner Points  

Edges are significant features of leaf images in terms of measuring sharp variations 

in images. The Sobel edge detection operators were used to extract edge features from 

images in [44]. From the edges, feature points were found which intersect the edges and 

achieved 100% accuracy with 13 different plants. The model ascertains damages to veins. 

Corner features [45] are useful to find the similarity of leaf images because corners are 

intersections of two different edges or interest points under various different directions and 

lighting conditions. They are stable across different sequences, useful when there is 

damage to the corners, and are the same for all leaves. Harris Corner detectors are used to 

find the different directions of contours directly. The angles are arranged in ascending 

order, stored in an array and compared to find out the least angle of the unmatched image. 
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Tekkesinoglu et al. [46] used morphological transformation and edge detection techniques 

to identify the leaf boundary of overlapped (Hevea leaves) rubber tree leaves. 

 

 

3.4.6 Leaf Tooth, Tip, Margin  

A tooth is a depth incised towards the sinus and it is different from a lobe. In [47], 

the authors estimated the tooth’s area, perimeter and internal angles for the whole tooth of 

Tilla trees by applying the tooth-finding algorithm. They found the points on edges by 

calculating the centroid distance from the center to the edge and thereafter marked the sinus 

of the margin. Each tooth can be represented as a triangle containing a tip and sinus on 

both sides. They used LDA to classify the species of Tila family such as Tilla platypyllus, 

Tilla Americana and Tiila Tomentosa, and achieved a classification accuracy of 68.3%. 

Susan corner detectors were applied to detect leaf image corners and Non-leaf image 

corners are removed using Pauta Criteria in [48]. The leaf number, leaf rate, leaf sharpness 

and leaf obliqueness of leaf tooth features are measured and the leaves are classified using 

the sparse representation of leaves. The tangential angle approach was used in [10] for finer 

angular details of the leaf boundary. Geometrical distances such as mid vein length, apical 

extension length, basal extension length and leaf length may be used to measure base angles 

and apex of different shapes of leaves. 

3.4.7 Geometric Features 

Geometric features are used for leaf classification because they are of low-

dimensional compared to other features, incur low computational cost and take less time 

to extract the features. Morphological features were used for weed classification by Cho et 

al. [49]. Singh et al. [50] used 5 basic geometrical features and 12 digital morphometric 

features with fourier moments to classify 32 different plants. In [53] Dornbusch and 

Andrieu recommended the Lamina 2 Shape algorithm to analyze lamina-shaped gross 

leaves to measure their length, width and area. They estimated the accuracy of the width 

by calculating a predefined lamina shaped model. This algorithm forms equally-spaced 

perimeters on the area of the leaf and is not suitable for all types of leaves. The Waddle 

disk diameter method was used to measure the roundness of leaf area for grass-like species 

such as ryegrass, wheat and brome grass. Hossain and Amin [51] used biometric-based 
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geometrical features of leaves for broad and flat leaves by selecting reference points from 

leaf blades and leaf bases. The researchers Wu et al. [56] proposed 5 geometric features—

diameter, physiological length, physiological width, area, and perimeter—and 12 

morphological features including smoothness, aspect ratio, form, rectangularity, 

narrowness, perimeter ratio of the physiological length and width, and 4 vein features of 

the leaf. These features were used to recognize 32 different kinds of plants.These features 

were tested on the Flavia dataset to classify the leaves. In [54] the authors applied digital 

morphological features to classify 32 different plant species and rate them. Geometrical 

and morphological features were used in [55] to classify compound leaves. Instead of 

extracting the features of the whole leaf image, the authors successfully extracted 

geometrical features from each leaflet of an image of clustered potato and tomato leaves. 

Kaif and Khan [56] used geometrical and shape-defining features such as the shape of the 

object, sets of horizontal and vertical lines, endpoints, boundary points, slopes between two 

lines and Fourier descriptors for the TRS invariant features. The authors of paper [57] used 

the morphological covariance method to extract coarseness, anisotropy, and textural data 

of images. They used structuring elements to represent the contour of curves, extracted 

edges from the leaf contour, and extracted shape information from images and introduced 

the Circular Covariance Histogram to extract venation information from leaf images using 

the circular structuring element. They divided the leaves into equal parts and calculated the 

statistical features separately, as both deformable and whole leaves have the same structure, 

so features extracted from one place are used as a vector for deformable objects. Dutta et 

al. [58] used geometrical and morphological characteristics of leaves to classify mango 

plants. Most researchers use geometric features for leaf classification, alongside weed 

detection because of the fewer dimensions involved, but they do not consider details of leaf 

margins. Leaf margins contain most of the details, and are only applicable to smoothed 

leaves. Manik et al. [20] used morphological features of Anthocephalus cadamba to 

identify diseases in leaves. 
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3.4.8 Texture of Leaf 

An image texture is recognized by a set of metrics designed to quantify the 

perceived texture of an image. It gives us information about the spatial arrangement of 

color or intensities in an image or a selected region of an image. Image textures, which can 

be artificially created or found in natural scenes captured in an image, can be used to 

classify images. A texture-based feature extraction method extracts the characterization of 

regions in a leaf image by means of its texture content such as smoothness, roughness or 

silkiness. The texture of leaves differs for the same species of leaf.  

3.4.8.1 Texture Features Based on Fractals  

The topological structure is used to measure how close two objects are to each 

other. In [80], the authors used a Lie group of region structures to measure the texture of 

weeds and provide information about pixel intensity and spatial features of broadleaf 

weeds. The smooth manifolds of local symmetries were derived at by applying the 

Riemannian Manifold on the leaf surface. The dimension of a region covariance of the leaf 

surface is lower than that of the original image. It extracts multiple features such as 

information on edges and directions. Fractals measure the self similar texture of leaves as 

well as the roughness of the leaf surface. A multi-scale Minkowsi fractal dimension method 

was used to analyze and recognize leaf images in [61, 62]. This method extracts outline 

and vein features as curves. Usually, objects and patterns have distinct geometric natures 

in fractals and, in order to overcome this difficulty, they used the multi-scale Minkowsi 

fractal dimension technique for classifying Passiflora leaf morphometry. The researchers 

used new fractal refinement technique for classifying species based on contour, contour 

nerves, nervure fractals of three different levels. Mutchar and Fatichah [63] used lacunarity 

feature for leaf classification as the fractal dimension cannot discriminate between two 

objects with different patterns/texture. It measures the spatial distribution of gaps with 

certain image textures. It collects various image features and extracts energy signature from 

leaves. He evaluated 20 different classes of Brazilian flora using Linear Discriminant 

Analysis and achieved 86.00% of classification accuracy. Vijayalakshmi et al. [61] 

extracted texture using Gabor filter with 30-degree rotation angle in a 5 9 5 pixel 

neighborhood and obtained 13 different structural characteristics of a leaf compared to 
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other kernel-based methods that use a 45-degree rotation angle to extract only 8 different 

statistical measures. But it does not obtain any invariant features. Singular value 

decomposition method was directly applied on a real matrix to classify texture 

characteristics with high-level factorization and provides good results in varying lighting 

conditions. A gray-tone spatial dependency matrix and LBP patterns were applied for the 

classification of medicinal leaves. The Local Gabor phase quantization (LGPQ) scheme 

proposed in [65] to extract different features of texture changes gradually along with a rich 

set of discriminated information because of the magnitude of information it carries. The 

authors extracted the entropy, mean, skewness, standard deviation and variance. 

 

3.4.8.2 Local Binary Patterns Based on Texture  

The Local binary pattern (LBP) is an image feature, which transforms image into 

an array of values. It describes about the changes in the neighboring pixels. Qi et al. [66] 

introduced a pair-wise rotation invariant co-occurrence local binary pattern (PRICoLBP) 

and applied to color images. It represents the local curvature as well as edge contour 

information. This technique was applied to various databases comprising flower and 

leaves. A LBP histogram Fourier feature (LBP-HF) identifies uniform patterns using 

Fourier descriptors. It stores all uniform patterns in a single bin and the authors used all the 

information on pixels, leaf interiors and exteriors separately. A modified local binary 

pattern where LBP binary values are calculated based on thresholding. It lends same LBP 

code for two different patterns. To overcome this problem the mean and standard deviation 

of the neighboring pixels were taken into account. It captures the structural relationship 

between the gray values of the pixels in the neighborhood. The LBP was combined with 

the gray-level co-occurrence matrix for tea leaf classification. In the basic LBP, every pixel 

needs to be calculated for obtaining LBP values, and computing the LBP is a time-

consuming process. To circumvent the problem, the authors introduced a non-overlap 

window that includes a center pixel and its neighbor pixels in a single gray-level image. 

There is no overlap between the windows in this technique. Since the GLCM is used to 

calculate the relationship between two windows, it produces multiscale texture features. A 

multiscale local binary pattern was applied on the path integral (pi-LBP) in [66]. In all 
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multiscale LBPs, local information is encoded individually in each scale, but the pi-LBP 

can effectively encode the cross-scale correlation and provides better texture description. 

A pixel-based LBP was used instead of computing global information built on a block-

based LBP the authors computed LBP based on center pixel of a half-size window which 

determines how much local and global information is included in the texture descriptor. It 

produces powerful relations for the intra-class variability of textures. Sumathi et al. [66] 

used Gabor filter for textural, statistical and spatial frequency domain relationships in leaf 

classification. The LBP variance [40] was applied to classify Costa Rican plant species. It 

detects micro texture veins as well as areas between veins and reflections. It returns a 

histogram of features and counts the position in which it corresponds to the particular leaf 

texture which has an LBP code. Siricharoen et al. [37] used 13 textural features and 6 

different Tamura’s texture features for plant disease monitoring in a mobile cloud 

environment. The shortest path texture context [36] measures the shortest path along 

different orientations. Combining texture information and global shape information with 

local patches, the authors used gradient changes for lighting invariance.  
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Feature extraction 

technique 
Image 

Extracted feature 

from leaf 

Pros and cons of feature 

extraction technique 

Shape Context 

 

Point information 

from shape contours 

Isolates information from 

nearby pixels and is invariant to 

affine transformation, 

occlusions and the presence of 

outliers, 

Applicable to only unaffected 

images 

Advanced shape 

context 

 

Relations between 

Salient and margin 

points 

Reduces computational costs, 

Applicable to polygonal 

objects 

Shortest-path texture 

context 

Inner-distance shape 

context 

 

Leaf vein 

Measures the relative 

orientation along the shortest 

path 

Used for texture non uniform 

illumination changes of leaf 

veins 

Useful when veins are damaged 

and models only global 

information 

Cannot store information on 

compound and serrated leaves. 

Histogram of 

curvature over 

scale(HOCS) 

 

Histogram 

information in one 

single point 

Robust to noise and rotation 

invariant 

Only suitable for lobe shaped 

leaves 

It is not articulation invariant 

Douglas Peucker 

contour 

Approximation 

 

Leaf shape 

Smooth contour obtained with 

small number of vertices. 

It is varying in translation, 

rotation and scaling. 

Contour 

characteristics points 

 

Contour points 

selected depends on 

the curvature of 

contours 

It is robust to translation, 

rotation and scale invariant. 

Active shape model 

 

Leaf tip 

Finds leaf tip points and 

overlapping leaf tips. 

Used only for slender and 

thread type leaves. 
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Feature extraction 

technique 
Image 

Extracted feature 

from leaf 

Pros and cons of feature 

extraction technique 

Active polygonal 

model 
 Leaf tip and leaf base 

Preserves leaf corners 

Leaf tips vary in images, 

And there is damage to leaf 

corners. 

Contours of string 

 

Leaf margin 

Semantically represents leaf 

margins. 

Leads to misclassification 

when there are imperfect leaf 

margins and overlapped leaves. 

Curvature scale space 

 

Leaf venation 

Finds the starting and ending 

points of leaves. 

Produces noise and is sensitive 

to rotation. 

Multi scale triangular 

area representation 

 

Concavity and 

convexity of images 

Affine invariant and robust to 

noise. 

Not scale invariant. 

Multi scale arch height 

descriptors 

 

Leaf margin 

Measures the arch height of 

lobe shaped and palmate 

shaped leaves. 

Unsuitable for overlapped 

leaves. 

Normalization applied for 

scaling and rotation, taking up 

time. 

Multi scale bending 

energy 

 

Energy 

Sensitive to local features of 

leaf shape contours. 

Provides low immunity. 

Curvlet transform 

 

Curvelet features 
Useful for small objects. 

Unsuitable for natural images. 

Multi scale R-angle 

descriptor 

 

Leaf margin 

Intrinsic to shape contour 

under, 

Translation. Rotation and 

scaling. 

No need for normalization. 
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Feature extraction 

technique 
Image 

Extracted feature 

from leaf 

Pros and cons of feature 

extraction technique 

Centroid contour 

distance, Angle code 

histogram. 

 

Contour points and 

orientation angles. 

Invariant to translation and 

rotation. 

Used for compound, oblong 

and orbicular leaf shapes. 

Applicable only to leaf tip and 

base. 

Contour Key points 

 

Contour Key points 

are extracted and 

represented as 

histogram bins by 

using fuzzy score 

Solves intra class problem of 

same species. 

Complex network 

Descriptor 

 

Measures degree and 

joint degree of leaf 

boundary. 

Invariant to scaling and 

rotation. 

Noise tolerant. 

Geometric features 
 

 

Eccentricity 

Aspect ratio 

Leaf area 

Leaf perimeter 

Major and minor axis 

Solidity 

Semantically represents leaf 

margins. 

Leads to misclassification 

when there are imperfect leaf 

margins and overlapped leaves. 
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3.4.9 Textons  

Textons are used to construct texton dictionaries created based on filter responses 

in spatial and frequency domains. For rotation invariant databases, the authors of [58] 

constructed a continuous maximum response descriptor to distinguish between and intra-

class variations and a principal curvature descriptor for strong intra-class grouping ability. 

These techniques are useful for leaf databases with both interclass and intra-class 

variations. Minu and Thyagarajan [73] used texton with MPEG 7 visual features to 

recognize flower images. They also presented an ontology based image retrieval system 

for asteroideae flower domain in their paper [68]. Guo et al. [65] classified rotation 

invariant texture by first finding out dominant orientation and then extracting anisotropic 

features by this orientation. They also proposed two statistical texton based methods to 

validate their approach. Anisotropic images change in appearance and rotate to produce 

good quality textures. The average and standard deviations of responses were computed in 

8 different directions and a joint sort was used to find the local patch. These methods can 

be used to classify leaves in rotation invariant leaf databases. Table 5 shows some of feature 

descriptors used in leaf recognition. 
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3.5 State-of-the-Art Classification Techniques  

Plant species classification can be carried out by botanists easily, but computer-

assisted systems cannot do so as easily. Consequently, plants are classified through leaf 

shape, vein, color and the texture of the leaves. Plant species are classified through different 

classifiers. A classifier requires two sets of data, a training set and a test set, but does not 

Table 5: A summarization of texture, texton and LBP descriptors 
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consider class relationships and the illumination invariance and positional invariance of 

images. Certain authors use manifold learning for classification since it preserves local 

neighborhood structure, and highdimensional data is mapped into a low-dimensional 

structure. It also considers all illumination and positional challenges and processes noisy 

images. Compared to linear and supervised classifiers, manifold learning offers a good 

accuracy on plant species identification (Fig. 4) 

 

3.5.1 Artificial Neural Networks  

A neural network is a machine learning technique used for classification. The 

authors of the paper [124] identified disease in cotton, lemon and orange with the color 

feature and achieved 76.41% abnormality and 9.09% abnormality in leaf disease detection. 

Back propagation neural network (BPN) was used to classify half leaves based on the 

boundary tokens of shapes such as the angles and sinus of leaves in [125]. The authors 

examined 111 leaves of 14 different classes. It is a feed forward, self-adaptive network. 

Weights are adjusted based on the minimum mean square error. It takes longer time to train 

the network. Bagalkote et al. [126] used the BPN to classify grape varieties using texture 

and wavelet features and achieved 93.3% accuracy. Anami et al. [127] used neural network 

to identify affected species of leaves based on color and texture features and identified 85% 

of affected vegetables and 80% of normal ones. Neural network was applied in [128] for 

Fig 3.4 General classification technique 
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plant disease classification and identification, based on the color co-occurrence texture 

features of the leaf. The BPN was used in [129] with the edge features for classification of 

leaves such as the neem, pine and oak and achieved 90.45% classification accuracy. The 

authors of the paper [130] used the BPN to classify the night jasmine, arka (blue madar), 

mango, neem, and shigru (moringa/drumstick) and achieved 85% accuracy. The radial 

basis function is a three-layer feed forward network used for image classification, and 

produces faster training speeds compared to the Multilayer Perceptron (MLP). Sumathi et 

al. [98] used this approach to classify 90 samples and achieved 85.93% accuracy with a 

minimum mean square error. This method works well on spherical and regularized linear 

spaces. Akif and Khan [65] used the ANN to classify 817 samples of 14 different trees with 

morphological features, utilizing the Fourier descriptor and shape-defining features and 

achieved 96% accuracy. The author used the ANN to classify 80 leaf images with 10 

different classes with 7 different morphological features and achieved 98.8% classification 

accuracy. The authors of paper [131] accounted the single hidden layer feed forward 

network for classification. There is no need to use a kernel function to approximate the 

weights, given that it updates the weights randomly for fixed bias inputs. It has no control 

parameters such as learning rates, learning epochs and stopping criteria. They achieved 

98.17% classification accuracy. Chaki et al. [26] designed a neuro-fuzzy system with a 

back propagation multilayered feed forward network to classify 930 images of 31 classes 

and achieved 97.6% accuracy. Because neuro-fuzzy system uses the probability of classes, 

to avoid problems in the ANN, fuzzy C-means clustering works by assigning each 

membership to each data point corresponding to other data points which belong to more 

than one cluster and it gives good results for overlapped datasets. In k-means clustering, 

data points belong to more than one cluster center, but here they are assigned. The authors 

of paper [42] used this algorithm to classify species of plant databases with the specified 

margin structure. Balasubramanian et al. [64] formulated the fuzzy relevance vector 

machine to classify 60 categories of leaf images with shape and texture features. This 

method helps to select the optimum features of an image, achieving 99.87% accuracy. 

Sharma and Gupta [89] developed a system to classify agriculture and Ayurvedic plants 

using a multilayer feed-forward network with back propagation algorithm. They tested 
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their system with 440 leaves of 16 classes and obtained classification accuracy greater than 

90%. 

3.5.2 K-Nearest Neighbours  

The K-Nearest Neighbor (K-NN) is a simple technique used to classify objects with 

the closest training samples in feature spaces. Images are classified, based on the majority 

voting of its neighbors. Du et al. [26] used the KNN for classifying plants of 30 species 

with 2422 image samples based on edge, vein and ring projection fractal wavelet features 

as a new shape feature, and achieved 87.14% of classification accuracy with the size of the 

feature vector as 20. The researcher in [79] used the KNN classifier to classify 100 leaf 

species with 1600 samples using the leaf margin as a feature and an interior texture 

histogram of 64 different feature vector images, and achieved 75.5% of classification 

accuracy. Jose et al. [40] used the KNN for Costa Rican plant identification in the Flavia 

dataset using the features of the 0.5 HoCS (Histogram curvature Scale Space), LBPV 

(Local Binary pattern Variance), R1P8 (1 rotation with 8 pair of neighborhood pixels), and 

R3P16 (3 rotations with 16 pairs of neighborhood pixels) with k = 10 and achieved an 

accuracy of 99.1%. The authors in [54] used KNN with fractal dimension of the RPWFF 

to classify a total of 2422 images of 30 different species and achieved 87.14% of 

classification accuracy. Zhao et al. [37] used KNN to classify the Swedish, ICL, 

Smithsonian and Plummers Island datasets with a pattern counting approach and achieved 

97.07, 73.08, and 72.28% classification accuracy respectively. Arunpriya et al. [89] 

experimented with fuzzy inference system, radial basis function network and K-nearest 

neighbour classifiers and classified tea species using leaf images and came to a conclusion 

that fuzzy inference system obtained better accuracy and took less time for execution 

compared to other two classifications.  
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3.5.3 Moving Center Hyper spheres  

A Moving Center Hyper sphere classifier (MCH) [85] was proposed for high-

dimensional features. In the KNN and neural network, the classification of plants is a 

laborious and space-consuming process. In the MCH, however, the features are arranged 

as n-hyper spheres. Using this classifier, 1200 leaf samples of 20 classes were tested with 

23 moment invariant features and achieved 92.6% accuracy. 

3.5.4 Bayesian Classifiers  

The Bayesian classifier, a simple probabilistic classifier based on Bayes’ theorem, 

compute the posterior probability for the targeted output. The researchers in paper [1] used 

the Bayesian classifier with the Fourier descriptor feature to classify 100 different kinds of 

leaves and achieved 88% accuracy. They used the linear classifier with the features of the 

polar Fourier transform, color, vein and 20 features of lancularity, solidity and convexity 

of shape for classifying the Flavia and Foliage databases and achieved 95.94 and 93.25% 

accuracy respectively. 

3.5.5 Support Vector Machine  

The support vector machine (SVM) is a linear classifier. The process of classifying 

leaf species calls for a multiclass classifier, because multiple leaf species are identified by 

multiclass SVMs. Compared to the neural network classifier, it performs better because of 

its selection of kernels. No prior training is called for, though it involves a huge number of 

images. In [38] the authors used SVM-RBF (Radial Basis Function) kernel to classify 

leaves of the Leaf snap database. The RBF kernels automatically produce a number of 

support vectors, centers, and weights during the training. A multiclass SVM [93] was 

applied on the Australian Federal dataset, Flavia, Foliage, Swedish and Middle European 

datasets with the texture features and Fourier transform descriptors and combined the 

features of interior and boundary descriptors extracted, and achieved classification 

accuracy of 100% in the AFF, 99.7% in Flavia, 99.8% in Foliage, and 99.2% in MEW 

(Middle European Woody) datasets. The authors of papers [111] used one versus all SVMs 

in the Flavia dataset with kernel level descriptors [110][111] and achieved an average 

accuracy of 97.5% (1585 training images of 32 species and 320 testing images), and 58% 
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with Image CLEF 2013 (7525 training images of 70 species with 1250 testing images. 

SVM classifier with the fractal dimension of the leaf shape with its lancularity features was 

used in [84] to classify 626 images of the Flavia dataset with an average accuracy of 

95.048%. The SVM used to classify the Flavia and Swedish datasets with the features of 

the HOG and Zernike moments with 40 samples provided an average accuracy of 97.18 

and 98.13% respectively. 

3.5.6 Principal Component Analysis  

The PCA is an algebraic technique used to select important correlated variables 

from images. Glozarian and Frick [54] used the PCA to classify species of different grasses 

such as wheat, rye and brome grass by extracting the shape, color and texture features of 

images and achieved 88 and 85% for Wheat and brome classification accuracy. The PCA 

with textural features extracted by the gray-level cooccurrence method was used to classify 

390 leaves with 13 different kinds of plants and achieved 98% accuracy in [72]. The authors 

also extracted shape, texture, and color features from leaf images in [48] and optimized i.e. 

selected a subset of features using genetic algorithm and Kernel based Principal 

Component Analysis (KPCA) to improve the accuracy of classification. 

3.5.7 Random Forest 

An ensemble classifier, the random forest is used to construct a large set of trees at 

random. It runs efficiently on large databases, handles a large number of input variables 

without variable deletion, effectively estimates missing data, and maintains the accuracy 

of a classifier. It gives proximities between pairs of classes and, further, estimates crucial 

features automatically. During multiclass classification, if some data are missed, it leads to 

an imbalance in the data concerned. To resolve this problem, a direct ensemble classifier 

[99][98] is used for an imbalanced multiclass learning classifier. It is a combination of the 

1-nearest neighbor and Naive Bayes or the K-nearest neighbor and Naive Bayes classifiers.  
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3.5.8 Convolutional Neural Networks  

All classifiers handle a small number of images, except the CNN (convolutional 

neural network), which handles large set of images. For all classifiers, feature extraction is 

a separate space, since they cannot directly extract features from images. The CNN, 

however, extracts features directly from the images in question, disregarding illumination, 

lighting, shadowing or skewness. It is not rotation invariant but translation invariant, 

needing similar-sized images for classification. The CNN was used to classify large sets of 

images by Dyrmann et al. [99] and they trained 10,413 images of 22 species, achieving a 

classification accuracy of 86.2%. The authors of the paper [100] used the CNN to identify 

13 different plant diseases and achieved 96.3% accuracy. The researchers of the paper [18] 

applied the CNN to identify legume species of soya bean, white bean and red bean using 

the vein morphological features of 422 images of soybeans, 272 red beans and 172 white 

beans leaves and achieved an average recognition accuracy of 96.9%. 
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Chapter 4 

 

Results and Analysis 

 

4.1 Dataset 

All the datasets that has been used in this work are described in this chapter. We have worked with 

Swedish Leaf dataset and the results and analysis has been made. The dataset is described in the 

following section.   

 

4.1.1 Dataset Description 

We took Swedish Leaf Dataset [] in our experiment employing Convolution Neural Network 

Model.  

• There are 15 different categories of leaf present in the database.  

• Fig. 4.1 depicts a snap shot of one image from each category.  

• Each category has 75 instances. 

• Total 15*75  color-image with different resolutions 
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Table 4.2, Table 4.3 and Table 4.4 are 3 tables that describes 9 sampled leaves of each class 

1, class 2 and class 3. In these tables, the 1st column denotes the name of the image, the 

second column shows the class label, 3rd column describes trace of train-test-validation 

split and 4th column describes the size of the original image. 

 

 

4.1.2 Preprocessing 

• Each leaf image is rescaled such a way so that higher spatial dimension between the length 

and width of the leaf image becomes 128. 

• Then padding of the lower spatial dimension with border pixel values is done so that lower 

spatial dimension becomes 128. 

• Resultant image is of size 128*128 color image  

• Each class of data is divided into train, valid and test sets. For each such set, we select 

images randomly from each classes. In Table 4.2, Table 4.3 and Table 4.4 the trace of train-

test-validation split is put in the 3rd column.  

• We took 40% data as train data, 30% data as validation data and 30% data as test data. 
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Fig 4. 1 Snapshot of leaf image database; one image from each category 

 

 

 

 Table 4. 2 describes leaf data of class 1 
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Table 4. 3 describes leaf data of class 2 

 

Table 4. 4 describes leaf data of class 3 

 

 

4.2 Different Models We Tested  

  In each model, there is 4 convolution layers for feature extraction and two fully 

connected layer for classification.  We differ the number kernel in some model and activation 

function. We add Batch Normalization Layer in some network.  To observe our model is over 

fitting or not we trace accuracy and loss value validation dataset for each epoch. We train 

network with mini-batch of size 32 and total 450 training data for 100 epoch. 
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4.3 Results and Analysis 

In the following section different architectures of different models has been described and 

all the results, figures and their analysis has been made. 

  In first model we did not use any activation after convolution operation. We added 

nonlinear activation only in full connected layers.  

 In second model we added nonlinear activation relu after convolution operation. 

 In third model we changed the nonlinear function of second layer by elu activation  

 In forth model we added batch normalization layer after each convolution operation and 

other configuration is same as forth model 

 In fifth model we used batch normalization after convolution operation then Leaky-ReLU 

layer. 

 

 

 

4.3.1 Architecture of the First model: 

___________________________________________________________________________ 

Layer types                 Output Shape               Parameter Number    Activation 

================================================================== 

input_1 (Input Layer)              (None, 128, 128 = 3)       0          

___________________________________________________________________________ 

conv2d             (None, 128, 128, 64)      1792        f(x) = x 

___________________________________________________________________________ 

max_pooling2d                   (None, 64, 64, 64)         0          

___________________________________________________________________________ 

conv2d             (None, 64, 64, 32)         18464       f(x) = x 

___________________________________________________________________________ 

max_pooling2d             (None, 32, 32, 32)         0          

___________________________________________________________________________ 

conv2d_2 (Conv2D)                  (None, 32, 32, 16)         4624        f(x) = x 

___________________________________________________________________________ 
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max_pooling2d     (None, 16, 16, 16)         0          

___________________________________________________________________________ 

conv2d_3 (Conv2D)        (None, 16, 16, 8)          1160        f(x) = x 

___________________________________________________________________________ 

max_pooling2d    (None, 8, 8, 8)            0          

___________________________________________________________________________ 

flatten     (None, 512)                0             

___________________________________________________________________________ 

dense     (None, 32)                 16416       tanh 

___________________________________________________________________________ 

dense     (None, 15)                 495          softmax 

=================================================================== 

Total parameters: 42,951 

Trainable parameters: 42,951 

Non-trainable parameters: 0 

 

 

Fig 4. 5:  Graph of training accuracy of 1st model.  Horizontal axis describe number 
of epoch and vertical axis describe training accuracy. Training accuracy 1 means 
100% accuracy 0.4 means 40% accuracy 
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Fig 4. 6:  Graph of training loss of 1st model.  Horizontal axis describe number of 
epoch and vertical axis describe training softmax loss value.  

 

Fig. 4. 7 Graph of training accuracy of 1st model.  Horizontal axis describe number 
of epoch and vertical axis describe training accuracy. Training accuracy 1 means 
100% accuracy 0.4 means 40% accuracy. 
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Fig 4. 8: Graph of validation loss of 1st model.  Horizontal axis describe number of 
epoch and vertical axis describe training softmax loss value. 
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4.3.2 Architecture of the Second Model: 

__________________________________________________________________________________ 

Layer (type)               Output Shape            # of Parameters     Activation 

========================================================================= 

Input (Input Layer)     (None, 128, 128, 3)     0 

__________________________________________________________________________________ 

conv2d            (None, 128, 128, 64)    1792         ReLU 

__________________________________________________________________________________ 

max_pooling2d           (None, 64, 64, 64)      0 

__________________________________________________________________________________ 

conv2d                        (None, 64, 64, 32)      18464        ReLU 

__________________________________________________________________________________ 

max_pooling2d          (None, 32, 32, 32)      0 

__________________________________________________________________________________ 

conv2d           (None, 32, 32, 16)      4624         ReLU 

__________________________________________________________________________________ 

max_pooling2d           (None, 16, 16, 16)      0 

__________________________________________________________________________________ 

conv2d           (None, 16, 16, 8)       1160        ReLU 

__________________________________________________________________________________ 

max_pooling2d           (None, 8, 8, 8)         0 

__________________________________________________________________________________ 

Flatten (Flatten)      (None, 512)             0 

__________________________________________________________________________________ 

dense (Dense)           (None, 32)              16416        tanh 

___________________________________________________________________________________ 
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dense (Dense)           (None, 15)              495           Softmax  

 

Total parameters: 42,951 

Trainable parameters: 42,951 

Non-trainable parameters: 0 

 

 

 

Fig 4.9:  Graph of training accuracy of 2nd model.  Horizontal axis describe number 
of epoch and vertical axis describe training accuracy. Training accuracy 1 means 
100% accuracy 0.4 means 40% accuracy. 
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Fig 4. 8: Graph of training loss of 2nd model.  Horizontal axis describe number of 
epoch and vertical axis describe softmax loss value. 

 

 

Fig 4.10:  Graph of training accuracy of 2st model deprecate a graph.  Horizontal 
axis describe number of epoch and vertical axis describe training accuracy. Training 
accuracy 1 means 100% accuracy 0.4 means 40% accuracy. 
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Fig 4. 9: Graph of validation loss of 2nd model.  Horizontal axis describe number of 
epoch and vertical axis describe softmax loss value. 

 

4.3.3 Architecture of the Third Model: 

___________________________________________________________________________ 

Layer (type)                    Output Shape               Parameter #    Activation 

=================================================================== 

input_1 (InputLayer)           (None, 128, 128, 3)       0            

____________________________________________________________________________ 

conv2d (Conv2D)                (None, 128, 128, 64)      1792       elu 

____________________________________________________________________________ 

max_pooling2d (MaxPooling2D)  (None, 64, 64, 64)         0          

____________________________________________________________________________ 

conv2d_1 (Conv2D)              (None, 64, 64, 32)        18464       elu 

____________________________________________________________________________ 

max_pooling2d_1(MaxPooling2)  (None, 32, 32, 32)         0          

____________________________________________________________________________ 

conv2d_2 (Conv2D)              (None, 32, 32, 16)         4624       elu 

____________________________________________________________________________ 

max_pooling2d_2 (MaxPooling2)  (None, 16, 16, 16)         0          
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____________________________________________________________________________ 

conv2d_3 (Conv2D)              (None, 16, 16, 8)          1160       elu 

____________________________________________________________________________ 

max_pooling2d_3 (MaxPooling2)  (None, 8, 8, 8)            0          

____________________________________________________________________________ 

flatten (Flatten)               (None, 512)                0          

____________________________________________________________________________ 

dense (Dense)                   (None, 32)                 16416      tanh 

____________________________________________________________________________ 

dense_1 (Dense)                (None, 15)                 495         softmax 

==================================================================== 

Total parameters: 42,951 

Trainable parameters: 42,951 

Non-trainable parameters: 0 

 

 

 

Fig. 4. 1 Graph of training accuracy of 3rd model.  Horizontal axis describe number 
of epoch and vertical axis describe training accuracy. Training accuracy 1 means 
100% accuracy 0.4 means 40% accuracy. 
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Fig. 4. 2 Graph of training loss of 2nd model.  Horizontal axis describe number of epoch 
and vertical axis describe softmax loss value. 

 

 

Fig. 4. 3 Graph of validation accuracy of 3rd model.  Horizontal axis describe number 
of epoch and vertical axis describe training accuracy. Training accuracy 1 means 
100% accuracy 0.4 means 40% accuracy. 
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Fig. 4. 4 Graph of validation loss of 3rd model.  Horizontal axis describe number of 
epoch and vertical axis describe softmax loss value. 

 

 

4.3.4 Architecture of the Fourth Model: 

 
Layer (type)                    Output Shape              Parameter #    Activation 

================================================================== 

input_1            (None, 128, 128, 3)         0          

__________________________________________________________________________ 

conv2d                 (None, 128, 128, 64)       1792       elu 

__________________________________________________________________________ 

max_pooling2d    (None, 64, 64, 64)          0          

__________________________________________________________________________ 

batch_normalization_v1  (None, 64, 64, 64)          256        

__________________________________________________________________________ 

conv2d_1              (None, 64, 64, 32)          18464      elu 

__________________________________________________________________________ 

max_pooling2d_1   (None, 32, 32, 32)          0          

__________________________________________________________________________ 

batch_normalization_v1_1  (None, 32, 32, 32)          128        

__________________________________________________________________________ 

conv2d_2              (None, 32, 32, 16)          4624       elu 

__________________________________________________________________________ 

max_pooling2d_2   (None, 16, 16, 16)          0          
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__________________________________________________________________________ 

batch_normalization_v1_2  (None, 16, 16, 16)          64         

__________________________________________________________________________ 

conv2d_3             (None, 16, 16, 8)           1160       elu 

__________________________________________________________________________ 

max_pooling2d_3   (None, 8, 8, 8)             0          

__________________________________________________________________________ 

batch_normalization_v1_3 (None, 8, 8, 8)             32         

__________________________________________________________________________ 

flatten                 (None, 512)                 0          

__________________________________________________________________________ 

dense                    (None, 32)                  16416      tanh 

__________________________________________________________________________ 

dense_1                (None, 15)                  495         softmax 

================================================================== 

Total parameters: 43,431 

Trainable parameters: 43,191 

Non-trainable parameters: 240 

 

 

 

 

 

 

Fig. 4. 5 Graph of training accuracy of 3rd model.  Horizontal axis describe number 
of epoch and vertical axis describe training accuracy. Training accuracy 1 means 
100% accuracy 0.4 means 40% accuracy. 
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Fig. 4. 6 Graph of training loss of 4th model.  Horizontal axis describe number of 
epoch and vertical axis describe softmax loss value. 

 

Fig. 4. 7 Graph of validation accuracy of 4th model.  Horizontal axis describe number 
of epoch and vertical axis describe training accuracy. Training accuracy 1 means 
100% accuracy 0.4 means 40% accuracy. 

 



P a g e  | 64 

 

64 | P a g e  
 

 

Fig. 4. 8 Graph of validation loss of 4th model.  Horizontal axis describe number of 
epoch and vertical axis describe softmax loss value. 

4.3.5 Architecture of the Fifth Model: 
 

Layer (type)                         Output Shape               # of Parameters   

========================================================== 

input_1                                 (None, 128, 128, 3)        0          

_________________________________________________________________ 

conv2d                                 (None, 128, 128, 64)       1792       

_________________________________________________________________ 

batch_normalization_v1      (None, 128, 128, 64)       256        

_________________________________________________________________ 

leaky_relu                            (None, 128, 128, 64)       0          

_________________________________________________________________ 

max_pooling2d                    (None, 64, 64, 64)         0          

_________________________________________________________________ 

dropout                                 (None, 64, 64, 64)         0          

_________________________________________________________________ 

conv2d_1                              (None, 64, 64, 32)         18464      

_________________________________________________________________ 

batch_normalization_v1_1   (None, 64, 64, 32)         128        

_________________________________________________________________ 

leaky_re_lu_1                       (None, 64, 64, 32)         0          

_________________________________________________________________ 
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max_pooling2d_1                 (None, 32, 32, 32)         0          

_________________________________________________________________ 

dropout_1                              (None, 32, 32, 32)         0          

_________________________________________________________________ 

conv2d_2                              (None, 32, 32, 16)         4624       

_________________________________________________________________ 

batch_normalization_v1_2   (None, 32, 32, 16)         64         

_________________________________________________________________ 

leaky_re_lu_2                       (None, 32, 32, 16)         0          

_________________________________________________________________ 

max_pooling2d_2                (None, 16, 16, 16)         0          

_________________________________________________________________ 

dropout_2                             (None, 16, 16, 16)         0          

_________________________________________________________________ 

conv2d_3                             (None, 16, 16, 4)          580        

_________________________________________________________________ 

batch_normalization_v1_3 (None, 16, 16, 4)          16         

_________________________________________________________________ 

leaky_re_lu_3                     (None, 16, 16, 4)          0          

_________________________________________________________________ 

max_pooling2d_3               (None, 8, 8, 4)            0          

_________________________________________________________________ 

dropout_3                             (None, 8, 8, 4)            0          

_________________________________________________________________ 

flatten                                   (None, 256)                0          

_________________________________________________________________ 

dense                                    (None, 32)                 8224       

_________________________________________________________________ 

dense_1                                (None, 15)                 495        

========================================================== 

Total params: 34,643 

Trainable params: 34,411 

Non-trainable params: 232 
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_________________________________________________________________ 
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4.4 Analysis of Results 

          From the above results, for the first model as shown Section 4.2.1, from the corresponding 

results as shown in Figure 4.5, Figure 4.6, Figure 4.7 and Figure 4.8, it has been observed that as 

in the convolution layer of the model, no activation function is used, training accuracy is lesser 

and training loss is higher as compared to other 4 models. In first, second, third and fourth model, 

it is seen that, in spite of the high validation loss, good classification accuracy is obtained using 

the validation data in. But is has been seen that, the ratio of training loss and validation loss is very 

high, which shows that the model is overfitting. Also, if we use a model with less number of 

parameters, then the model does not train well. It is also known to us that, the possible reason for 

a model to get overfitted is having less number of training data. To overcome this problem, in the 

proposed fifth model, the dropout layer is added after each activation layer to get a more 

generalized model. Thus, the problem of overfitting is solved but it causes the oscillation of the 

validation loss in each epoch. To solve this problem model need to train for more number of epochs 

for convergence.  
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 Chapter 5 

 

 Conclusion 
 

 

 

 

 

 

 

5.1 Limitations of the Work 

         We tried to train with augmented image by rotateing orginal image in random in 

random angle. But it shows very training accuracy. Our model unable learn ration invariant 

feature. Time require train 500 epoch on Intel I7 processor is around 8 hour. We need to 

stop early before training loss could converge. To prevent network to overfit we need more 

training data.  

 

5.2 Future Scopes of the Work: 

        As it has been seen that in the proposed fifth model that the validation loss and 

validation accuracy is oscillating, so there is a future scope to solve this problem. To 

increase the size of dataset we can try to generate the dataset by some Generative Neural 

Model. And for more generalization we can try genetic algorithm based adaptive dropout 

layer instead of conventional dropout.  
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