BACHELOR OF ARCHITECTURE 2ND YR 1ST SEM. EXAM. 2019

Subject: THEORY OF STRUCTURES- I TIME: 3 Hours

Full Marks: 100

Assume any necessary data if required

No. of questions	Answer any Five questions.	Marks (20x5=100)
	Å	
1.	Prove the basic equation of shear stress distribution at a point of a	20
	q= shear stress. F= shear force.	
	Q= first moment of the area. I=moment of inertia. b= width of the section.	
	With of the section.	, in the second
2. a)	Construct Morh's circle for the case of biaxial stress where $\sigma_x = 8 \text{ N/mm}^2$ and $\sigma_y = 4 \text{ N/mm}^2$.	10+10=20
b)	The principal tensile stresses at a point across two perpendicular planes are 75 N/mm ² and 25 N/mm ² . Find the normal and tangential stresses on a plane at 30 degree with the major principal plane.	
	principal plane.	·
		10+ 10 =20
İ	A beam of rectangular section 250 mm by 400mm carries a uniformly distributed load of 30kN/m over the whole span of 5m (simply supported). Find the maximum bending stress.	
b)	Show that maximum shear stress of a circular beam section is 4/3 times the average shear stress of that section with neat sketch.	

BACHELOR OF ARCHITECTURE 2ND YR 1ST SEM. EXAM. 2019

Subject: THEORY OF STRUCTURES- I TIME: 3 Hours

Full Marks: 100

Assume any necessary data if required

		·
4.		
a)	Show that maximum shear stress of a rectangular beam section is 1.5 times the average shear stress of that section i.e. $\tau_{max} = 1.5 \tau_{av}$ with neat sketch.	15+5=20
b)	Draw the shear stress distribution diagram of a standard equal I section.	
5. a)	What do you mean by short column and long column?	5+15=20
b)	Derive the Euler's formula for column buckling for a column with both end hinged condition	
6. a)	Write down the assumptions and limitations of Euler's theory of column buckling.	10+10=20
b)	A solid round bar 60 mm dia and 2.5 m long is used as column, one end of which is fixed while other end hinged. Find the safe compressive load for the column using Euler's formula. Assume $E = 200 \times 10^9 \text{ N/m}^2$ and factor of safety 3.	