BACHELOR OF ARCHITECTURE 2ND YR 1ST SEM. EXAM (Old) 2019

Subject: THEORY OF STRUCTURES- I TIME: 3 Hours

Full Marks: 100

Assume any necessary data if required

No. of estion	FARSWEL Ally RIVE allections	Marks (20x5=100)
	Draw the mohr's circle for the following cases of stress conditions i) When normal stresses are equal magnitude but opposite in sign i.e $\sigma_x = -\sigma_y$. ii) When only σ_x exist and $\sigma_y = 0$.	10+10 = 20
	Prove the basic equation of shear stress distribution at a point of a rectangular beam section i.e. $q = F Q/I b$. $q = shear stress$. $F = shear force$. $Q = first moment of the area$. $I = moment of inertia$. $b = width of the section$	20
	The principal tensile stresses at a point across two perpendicular planes are 55 N/mm ² and 25 N/mm ² . Find the normal and tangential stresses on a plane at 15 degree with the major principal plane.	15+ 5 =20
	Write short note on principal stress and principal plane.	
		stresses on a plane at 15 degree with the major principal plane.

BACHELOR OF ARCHITECTURE 2ND YR 1ST SEM. EXAM (Old) 2019

Subject: THEORY OF STRUCTURES- I TIME: 3 Hours

Full Marks: 100

Assume any necessary data if required

4.		15+5=20
a)	Derive the Euler's formula for column buckling for a column with both end hinged condition	
b)	Draw the shear stress distribution diagram of a standard equal I section.	
·		
5. a)	Write down the assumptions and limitations of Euler's theory of column buckling.	10+ 10=20
b)	A solid round bar 70 mm dia and 2 m long is used as column, one end of which is fixed while other end hinged. Find the safe compressive load for the column using Euler's formula. Assume $E = 200 \times 10^9 \text{ N/m}^2$ and factor of safety 2.5.	
6.		
a)	Show that maximum shear stress of a rectangular beam section is 1.5	15+5=20
	times the average shear stress of that section i.e. $\tau_{max} = 1.5 \tau_{av}$ with neat sketch.	
b)	What do you mean by short column and long column?	