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PREFACE 
 

 

 

 

The objective of the thesis is to determine a suitable Particle Swarm Optimization  and 

then attempt to empirically determine the optimal parameters setting. The formal basis 

of our study originates from the well known Lyapunov’s  theorem of classical control 

theory . In this thesis we indirectly used lyapunov’s stability theorem to determine the 

dynamics that necessarily converges to an optima of the lyapunov – like search 

landscape . We have realized different variants of the classical PSO Dynamics . Such as   

a)Replacement of the inertial term by a negative partial derivative of the  

lyapunov – like search landscape. 

b)Inclusion of a negative particle position in the velocity adaptation rule. 

c)Replacement of the inertial term by the negative position term in the 

dynamics. 

Computer simulations undertaken on a set of 8 benchmark function reveals that the 

modification in the PSO dynamics results in a significant improvement in the PSO 

algorithm with respect to both speed-up and accuracy . Comparisons are also done 

with respect to the image segmentation problem ,which too ,ensures the superiority of 

the modified dynamics over the Classical PSO dynamics. 
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Chapter  1 

Introduction 

 

1.1 General Introduction and Motivation 

 

Optimization is the action of finding the best-suited solution of some problem within the 

given constraints and flexibilities. While optimizing a system performance we aim at 

finding out such a set of values of the system parameters for which the overall performance 

of the system will be the best. From the very beginning of the journey of development of 

optimization algorithms , different kind of optimization algorithms have been invented. 

This is because in real life we have to optimize many different objective functions those 

may have very rough landscape with multiple local minima or even discontinuous at a 

number of points .For example ,consider Fig 1.1         

                  

     Fig 1.1 Ackley  function with a huge number of local minima and maxima 
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Now a days ,there is a growing interest to the biological-inspired optimization algorithm 

,which take inspiration from the natural selection and survival of the fittest principle of the 

biological world. These algorithms named as Evolutionary Algorithm [1],can perform very 

complex search and optimization . Evolutionary Algorithm differ from more traditional 

optimization techniques in that they involve a search from a “population”  of solution ,not 

from a single point .The main step of a simple evolutionary  algorithm are presented below 

in Procedure Evolutionary Computation [2].Here  p(t) denotes a population of solution at 

time t .The procedure initializes p(t) at time t=0 .The function : Evaluate p(t) computes the 

fitness of the solution by employing a specially constructed fitness function .Each iteration 

of an evolutionary algorithm involves a competitive selection based on the fitness function 

evaluation that weeds out poor solutions. The solution with high “fitness” then go the next 

iteration and the process is continued ,until the terminating condition is reached. 

 

Procedure Evolutionary-Computation : 

 

Begin 

t ← 0; 

Initialize p(t); 

Evaluate p(t); 

While(Terminating condition not reached)do 

Begin 

t ← t+1; 

select p(t) from p(t-1); 

Alter p(t); 

Evaluate p(t); 

End While; 

End. 

Depending on the choice of  the function : Alter p(t),Evolutionary Algorithm can have 

different variants . Rechenberg and Schwefel [3],[4] first used  evolution for finding the 
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approximate solutions of the shape designing problem of aeroplane wings . The 

optimization method was the Evolutionary Strategy ,where one investigates a new 

candidate solution found by applying a normally distributed mutation .If the new point has 

the better fitness ,then the solution is selected and the search continue from there .The 

technique is simple and has a low computational requirement .A series of other 

evolutionary algorithm were invented later .These includes Genetic Algorithm (GA) [5] , 

Genetic Programming(GP) , Ant Colony Optimization (ACO) , Differential Evolution (DE) , 

Particle Swarm Optimization (PSO) and others .  

Genetic algorithms simulate the process of natural selection which means those 

species who can adapt to changes in their environment are able to survive and reproduce 

and go to next generation. In simple words, they simulate “survival of the fittest” among 

individual of consecutive generation for solving a problem. Each generation consist of a 

population of individuals and each individual represents a point in search space and 

possible solution .Once the initial generation is created, the algorithm evolve the 

generation using following operators –Selection Operator, Crossover Operator, 

Mutation Operator. 

The whole algorithm can be summarized as – 

1) Randomly initialize populations p 

2) Determine fitness of population 

3) Until convergence repeat: 

      a) Select parents from population 

      b) Crossover and generate new population 

      c) Perform mutation on new population 

      d) Calculate fitness for new population 

genetic programming (GP) is a technique of evolving programs, starting from a 

population of unfit (usually random) programs, fit for a particular task by applying 

operations analogous to natural genetic processes to the population of programs. It is 

essentially a heuristic search technique often described as 'hill climbing', i.e. searching for 

an optimal or at least suitable program among the space of all programs. 

GP evolves computer programs, traditionally represented in memory as tree structures.[30] Trees 

can be easily evaluated in a recursive manner. Every tree node has an operator function and every 

terminal node has an operand, making mathematical expressions easy to evolve and evaluate. Thus 

traditionally GP favors the use of programming  languages that naturally embody tree structures 

(for example, Lisp; other functional programming languages are also suitable). 

https://en.wikipedia.org/wiki/Tree_structure
https://en.wikipedia.org/wiki/Genetic_programming#cite_note-sover1985-30
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Functional_programming
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Differential Evolution is a Stochastic Direct Search and Global Optimization algorithm, 

and is an instance of an Evolutionary Algorithm from the field of 

Evolutionary Computation . In same year , Kennedy and Eberhart [9] introduced the 

Particle  Swarm Optimization (PSO) technique , inspired by the social behavior of bird 

flocking or fish schooling. 

PSO is a metaheuristic as it makes few or no assumptions about the problem being 

optimized and can search very large spaces of candidate solutions. However, met heuristics 

such as PSO do not guarantee an optimal solution is ever found. Also, PSO does not use 

the gradient of the problem being optimized, which means PSO does not require that the 

optimization problem be differentiable as is required by classic optimization methods such 

as gradient descent and quasi-newton methods. 

 

1.2.  Objective of the Thesis: 

 

The objective of the thesis is to determine a suitable Particle Swarm Optimization  and then 

attempt to empirically determine the optimal parameters setting. The formal basis of our 

study originates from the well known Lyapunov’s  theorem of classical control theory . In 

this thesis we indirectly used lyapunov’s stability theorem to determine the dynamics that 

necessarily converges to an optima of the lyapunov – like search landscape . We have 

realized different variants of the classical PSO Dynamics . Such as   

a)Replacement of the inertial term by a negative partial derivative of the  lyapunov – 

like search landscape. 

b)Inclusion of a negative particle position in the velocity adaptation rule. 

c)Replacement of the inertial term by the negative position term in the dynamics. 

Computer simulations undertaken on a set of 8 benchmark function reveals that the 

modification in the PSO dynamics results in a significant improvement in the PSO algorithm 

with respect to both speed-up and accuracy . Comparisons are also done with respect to the 

image segmentation problem ,which too ,ensures the superiority of the modified dynamics 

over the Classical PSO dynamics. 

  

 

https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Differentiable_function
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Quasi-newton_methods
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1.3. Organization of the thesis: 

Chapter 2 provides an exhaustive review of a classical PSO , its parameters and its variants . 

This chapter acts as the basic of chapter 3 where the classical PSO dynamics has been 

modified in 3 ways .In chapter 4 image segmentation problem is solved by means of 

classical PSO and two different modified dynamics of PSO ,which were introduced in 

chapter 3.Finally the thesis is summarized and concluded in chapter 5.The description of 

the statistical methods to compare performance of the modified PSO dynamics with the 

classical one are presented in appendix A . Computer programs in the accompanying CD-

ROM are given in appendix B . Bibliography is given at the end of the each chapter. 
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Chapter 2 

 

Overview of Particle swarm optimization 

 
The concept of particle swarm, although initially introduced for simulating human 

social behaviors, has become very popular these days as an efficient search and 

Optimization techniques. The particle Swarm Optimization(PSO),as it is called now 

,does not require any gradient information of the function to be optimized, uses only 

primitive mechanical operation and is conceptually very simple . since its advent in 

1995,PSO  has attracted the attention of a lot of researchers all over the world 

resulting into a huge number of variants of the basic algorithm as well as many 

parameters automation strategies. This chapter starts with the conceptual outline of 

classical particle Swarm Optimization as a function optimization process . Then it 

goes on exploring the variants and parameters of the algorithm in great details .It 

also focuses on the application of PSO. 

 

2.1.Introduction 

 
The concept of particle swarm, although initially introduced for simulating human 

social behavior, has become very popular these days as an efficient means for 

intelligent search and optimization. The Particle Swarm Optimization (PSO) [1], [2], 

as it is called now, does not require any gradient information of the function to be 

optimized. PSO uses only primitive mathematical operators and is conceptually very 

simple. PSO emulates the swarming behavior of insects, animals herding, birds 

flocking and fish schooling, where these swarms forage for food in a collaborative 

manner. PSO also draws inspiration from the boids method of Craig Reynolds and 

Socio-Cognition [2]. 

A swarm is commonly  used to describe a group of living creatures such as flies, bees 
and wasps. We have e experienced that the flies individually or in a group attempt to 
identify fruit juice or similar items . We have also seen that if fruit juice is kept in a 
largest jar usually attracts most of the Flies and only a few are attracted by the 
relatively small jar . The Flies hopefully have an objective to fulfill their maximum 
thrust ,naturally prevailing them to find the cup with maximum content .If we 
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consider that the fulfillment of the maximum thrust of a fly to be an objective 
function, than identifying the largest cup perhaps is the solution of the problem. 
Naturally a question arises: why should we consider a swarm of flies to handle the 

search Problem? In fact the problem could have been defined using a single fly, 

where the problem refers to identifying the location of the largest cup. But if we 

employ a swarm of flies then the global optima which in present case is the location 

of the largest cup ,can be attained by identifying the cup with maximum number of 

flies. 
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There exist quite a large number of similar observations related to many lower class 

creatures. These observations motivated Kennedy and Eberhart [3] to describe a 

search problem by a specialized dynamics called stochastic differential dynamics. A 

stochastic differential dynamics is similar with typical differential/difference 

equations with stochastic parameters as the coefficient of the differential terms. 

Kennedy and Eberhart considered motion of the particles in a multi-of search space. 

Their objective was to ultimately use the global minima of the search space as an 

attractor to a ball rolling on the space by the action of a forcing function [4]. The 

forcing function in the present context represents the dynamics itself. Naturally, 

construction of a suitable forcing function that is always attracted towards the 

global (and also local) minimum in the process of exploring the search space is an 

interesting problem. The following example illustrates the concept outlined above.  

 

Example2.1: 
 

This example illustrates the attraction of a dynamics towards the stable point of the 

Well-known sphere function. The sphere function is given by, 

 

   ƒ(𝑥1, 𝑥2) = 𝑥1
2 + 𝑥2

2      (2.1) 

 

Is shown in the following figure.  

                                       

                                

                                                      Fig. 2.1: The sphere function in two dimension  

Let us consider a simple dynamics of the following form which essentially goes to 

the origin (0, 0) at steady state:  
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𝑑𝑥1

𝑑𝑡
=  −𝑎𝑥1(𝑡) 

 
𝑑𝑥1

𝑑𝑡
=  −𝑎𝑥2(𝑡) 

           (2.2)  

 

Now suppose a particle of zero mass is placed on the surface and a forcing function 

described by equation 2.2 is applied onto it to cause its motion on the surface. Here 

we are ignoring the effect of gravity.  

The position of the particle in each iteration on the surface is represented by the 

iterative solution of the above set of differential equations. It is clear from the 

iterative response of the dynamics that it is gradually moving towards the origin (0, 

0). 

 

2.2 Construction of a dynamics causing motion             

towards Minima 

Let us consider a search space in two dimensions 𝑥1 and𝑥2.Let  f  be the objective 

function we need to minimize. Also assume that [𝑥1 
∗ , 𝑥2

∗] be one minima (local or 

global)in the search space . Suppose we need to direct the motion of the particles 

towards this minimum . Then we can define the velocity of a particle as a vector. 

V(t+1) =  [𝑣1, 𝑣2]𝑇 

where T denotes the transpose of the vector 

V(t+1) = [
𝑣1

(𝑡+1)

𝑣2
(𝑡+1)

] =  𝛼[
𝑥1(𝑡) − 𝑥1

∗

𝑥2(𝑡) − 𝑥2
∗]                                                                        

 

 

Where 𝛼 is the rate constant of the dimension 1/t where t may be measured in 

seconds . The position of a particle in the next instance can be computed by 

constructing a time difference equation of the following form :  

 

X(t+1) = [
𝑥1

(𝑡+1)

𝑥2
(𝑡+1)

] =[ 
𝑥1(𝑡)
𝑥2(𝑡)

] + [
𝑣1(𝑡 + 1)
𝑣2(𝑡 + 1)

] 

              =X(t+1) + V(t+1) 
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Example 2.2: This example demonstrates movement of a particle along minima (the 

global minima) on the search space for the Rosenbrock function. It is to be noted 

that for the two dimensional Rosenbrock function, the global minima occurs at 

 (1, 1). Therefore the position vectors of the particles may be updated using the 

following two equations: 

 

V(t+1) = [
𝑣1

(𝑡+1)

𝑣2
(𝑡+1)

] =  𝛼[
𝑥1(𝑡) − 1.00

𝑥2(𝑡) − 1.00
] 

 

X(t+1) = [
𝑥1

(𝑡+1)

𝑥2
(𝑡+1)

] =[ 
𝑥1(𝑡)

𝑥2(𝑡)
] + [

𝑣1(𝑡 + 1)

𝑣2(𝑡 + 1)
] 

 

Starting with [𝑥1, 𝑥2] = [4.5, 3.2] (say), choosing a = 2 and [x1*, x21 = [1, 1], we iteratively 

update the equations (2.5) and (2.6) in order and finally reach the global minima after 50 

iterations. A schematic diagram describing the trajectory of motion of the particle is shown 

in figure 2.3. 

 

                                Fig. 2.3: Motion of a particle on Rosenbrock's banana valley  
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2.3 Particle swarm Optimization Algorithm : 
 

A Fantastic algorithm can he originated by considering the above examples.There 

are two points to be referred here.  

These are: 

1) moving the particle towards the global minima and 

2) attempting to move it further towards the local minima. 

 

 As stated before, PSO simulates the behaviors of bird flocking. Suppose the following 

scenario: a group of birds are randomly searching food in an area. There is only one piece 

of food in the area being searched. All the birds do not know where the food is. But they 

know how far the food is in each iteration. So what's the best strategy to find the food? 

The effective one is to follow the bird which is nearest to the food.  

 

PSO learned from the scenario and used it to solve the optimization problems. In PSO, 

each single solution is a "bird" in the search space. We call it "particle". All of particles 

have fitness values which are evaluated by the fitness function to be optimized, and have 

velocities which direct the flying of the particles. The particles fly through the problem 

space by following the current optimum particles.  

 

PSO is initialized with a group of random particles (solutions) and then searches for 

optima by updating generations. In every iteration, each particle is updated by following 

two "best" values. The first one is the best solution (fitness) it has achieved so far. (The 

fitness value is also stored.) This value is called pbest. Another "best" value that is 

tracked by the particle swarm optimizer is the best value, obtained so far by any particle 

in the population. This best value is a global best and called gbest. When a particle takes 

part of the population as its topological neighbors, the best value is a local best and is 

called lbest. 

 

After finding the two best values, the particle updates its velocity and positions with 

following equation (a) and (b). 

 

v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a) 

present[] = persent[] + v[] (b) 

 

v[] is the particle velocity, persent[] is the current particle (solution). pbest[] and gbest[] 

are defined as stated before. rand () is a random number between (0,1). c1, c2 are learning 

factors. usually c1 = c2 = 2.  
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The pseudo code of the procedure is as follows 

 

For each particle  

    Initialize particle 

END 

 

Do 

    For each particle  

        Calculate fitness value 

        If the fitness value is better than the best fitness value (pBest) in history 

            set current value as the new pBest 

    End 

 

    Choose the particle with the best fitness value of all the particles as the gBest 

    For each particle  

        Calculate particle velocity according equation (a) 

        Update particle position according equation (b) 

    End  

While maximum iterations or minimum error criteria is not attained 

 

Particles' velocities on each dimension are clamped to a maximum velocity Vmax. If the 

sum of accelerations would cause the velocity on that dimension to exceed Vmax, which 

is a parameter specified by the user. Then the velocity on that dimension is limited to 

Vmax. 

 

              2.4 Mathematical Analysis of a Simplified PSO  

 
This section is based on the seminal work done by Clerc and Kennedy [51. To gain a 

mathematical insight into the working principle of the algorithm, firstly one should 

strip the algorithm down to a simplest form. The particle swarm formula adjusts the 

velocity V j(t) by adding two terms to it as shown in (2.1). The two terms are of the 

same form, that is, 𝜑(p —𝑋𝑗( t )A, where P is the best position found so far, by the 

individual particle in the first term, or by any neighbor in the second term.  

 

When the particle swarm operates on an optimization problem, the value of p is 

constantly updated, as the system evolves toward an optimum. In order to further 

simplify the system and make it understandable, p is set to a constant value in the 

following analysis. The system will also be more understandable if 𝜑 is assumed to 
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be a constant as well; where normally it is defined as a random number between 

zero and a constant upper limit, the stochastic components are not involved in this 

discussion to keep things simple to the readers. The effect of (p on the system is 

very important, and much of the present paper is involved in analyzing its effect on 

the trajectory of a particle. 

 

The system can be simplified even further by considering a 1-dimensional problem 

space, and again further by reducing the population to one particle. Thus we will 

begin by looking at a stripped-down particle by itself, e.g., a population of one, one-

dimensional, deterministic particle, with a constant p.  

Thus considering the reduced system:  

 

v(t +1) = v(0+ 𝜑 (p— x(t)) 

 x(t + 1) = x(t)+ v(t +1)  

 

where, p and 𝜑 are constants. No vector notation is necessary, and there is no 

randomness.  

 

Assuming 𝑦1 = 𝑝 − 𝑥𝑡  the simplified dynamic system can be expressed as 

 

𝑣𝑡+1 =  𝑣𝑡 +  𝜑𝑦𝑡 

    𝑦𝑡+1 =  −𝑣𝑡 + (1 − 𝜑)𝑦𝑡  

 

2.5 Extensions of the Classical PSO  
 

Several extensions of the classical PSO algorithm have been introduced for different 

purposes. Some of them are described in this section.  

 

2.5.1 Controlling the Convergence 

  
Three approaches were proposed later to control the convergence of the classical 

PSO. They are described below. 
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2.5.1a The 𝑽𝒎𝒂𝒙 Approach  

 

The classical PSO is able to find at least the local optima of continuous, real-valued 

functions, if not the global one. The convergence of the entire swarm to an optimum 

is made possible by the introduced parameter 𝑉𝑚𝑎𝑥. If this parameter is not present 

in the algorithm, the dynamics would behave like the sinusoidal waves of increasing 

amplitudes, without being able to converge at the optima [6]. So it is obvious that 

𝑉𝑚𝑎𝑥 is necessary for the PSO to optimize the function.  

But when 𝑉𝑚𝑎𝑥. is applied and the swarm may seem to settle on an optimum, the 

particles in the classical PSO do not actually converge towards a point. The use of 

𝑉𝑚𝑎𝑥.  imposes a maximum velocity step size on the particles, and this avoids 

divergence of the dynamics. A particle is most likely to hit a position nearest to (or 

equal to) the optimum, with the evaluations allocated more or less uniformly over 

the interval [f(t)— v f(t)± v 1. Hence, if we want to investigate the near 

neighborhood of f(t) for fine-tuning, then the 𝑉𝑚𝑎𝑥.  approach is obviously not 

efficient.  

This problem consideration has resulted in two new changes in the classical PSO, 

each of which can solve the problem. Today these changes have become an 

integrated part of the PSO model, because of the resulting performance 

improvements. These two models are described in the following sub-sections.  

 

2.5.1b The Inertia-weight Approach  

 

When a particle is in motion we usually consider its inertial effect to determine its 

next position. This is very rational in the sense that when a creature is in motion, it 

normally does not change its direction of motion abruptly, except in a few 

occurrences. This principle should was embedded in the design of the PSO dynamics 

by Eberhart and Shi [7]. In this inertia-weight approach, the velocity of the current 

time-step t is multiplied with a factor called the inertia-weight, o , in the velocity 

adaptation rule of the classical PSO.  

2.5.1c The Constriction-factor. Approach  

Maurice Clerc [5] introduced the concept of constriction factor in the classical PSO. 

In this approach, the right-hand side of the velocity-update formula is multiplied by 

a constriction factor x to constrict the velocity.  
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with 7c€ NA. This strategy reduces Vi (t) at every time-step, as compared to the 

original velocity-update formula. By setting x sufficiently small, we can assure 

convergence of the dynamics.  

 

We see that the above two equations in effect are equivalent. The constriction-factor 

can mimic the inertia-weight, and vice versa. 

 

The swarm will narrow down its search space with time by any of these two 

approaches, thus making the fine-tuning more efficient. However, the particles can 

move out of its orbit of convergence for a short time-span (which promotes more 

exploration of the search space to get better solutions) because of the randomness 

of the PSO-algorithm. But the inertia-weight (1) quickly pulls it back to continue its 

search around optimum, given that the local or global best position was not updated 

meanwhile.  

 

2.5.2 Avoiding Premature Convergence  

 

In this section we are concerned with the problem of premature convergence of the 

PSO dynamics to local optima. There are some extensions of the classical PSO which 

handle this problem by not only manipulating the velocity update formula, but also 

building up a genuinely new model.  

 

In case of uni-modal problems, the convergence of the PSO dynamics should be as 

fast as possible, because there is no risk of being trapped on local minima. But when 

we deal with a multi-modal problem, which contains many more local minima, then 

the phenomenon of fast convergence becomes inadequate and unwanted. When 

there are many different local optima, we must spend more time on searching 

different solution areas before converging, simply to avoid getting stuck at a local 

optimum, i.e. to avoid premature convergence. This topic has been addressed in 

several papers, among which two are described below.  

 

2.5.2a The Hybrid-PSO Model  

 

 Introduced a hybrid-PSO model which employs breeding between particles and 

sub-populations through arithmetic crossover. A parameter Pb is introduced to 

control the probability of breeding. Further, offspring replace parents and the 

population is divided into sub-populations to avoid premature convergence. The 

parameter Psb is also included to control the probability of breeding within sub-

populations. From the experimental results, it is seen that the hybrid-PSO leads to a 
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marginally faster convergence, and the best-found values are better on multi-modal 

problems, but worse on uni-modal ones.  

 

2.5.2b Self-organized Criticality  

 

The paper by LOvbjerg and Klink [91 introduces the concept of self-organized 

criticality (SOC). The SOC is used to control  , the so-called "critical value", which is 

an individual new variable assigned to each particle. The inertia weight 𝜔 is then 

controlled dynamically by the expression 

   

 

                                                  𝜔 = 0.2 +  
criticalvalue

10
10 

 

 Criticality is added to the system when particles come too close to each other. When 

the critical value exceeds a limit, the particles are relocated using two different 

schemes: re-initialization of the particle and added velocity to the particle. 

Experimental results show that this approach leads to slightly faster convergence 

and better solutions than that achieved by using the classical PSO. 

 

2.5.3 Speeding up the Dynamics 

  

As discussed by Angeline [10] the convergence speed of the swarm towards 

optimum is an inherent force of the classical PSO. Hence, for uni-modal problems, 

the PSO converges to the optimum quickly, but it is more vulnerable to premature 

convergence on multi-modal problems. With the inclusion of to and x in the 

algorithm, the rapid convergence even lasts throughout the whole optimization 

process. So fine-tuning of solutions is necessary. So, the problem of having fast yet 

true convergence has been reduced to tuning w and x , rather than creating 

mechanisms which change the fundamental behavior of particles. Kennedy et al. [6] 

present a model that tries to improve the particle trajectories by approximating a 

number of cluster-centers. These centers might be nearer to the optimum, than the 

positions of the particles, thus substituting these centers for the local-best and 

global-best positions. This approach tries to improve the convergence within sub-

clusters, which leads to faster convergence towards the optimum.  
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2.6 Parameter Selection of PSO  

 

In this section we would like to address the important parameters for the PSO 

dynamics. The inertia-factor and the constriction factor have become fundamental 

part of the classical PSO. But there are other parameters considered in the classical 

PSO algorithm. The parameter-settings of the PSO determine how it optimizes the 

search space. One can apply a general setting that gives reasonable results, but 

seldom an optimal one. A useful setting for a general search is to set al (t). ag 0=2.0 

and the inertia-weight w =0.8. But these settings cannot be used on many problems 

with optimal success; hence we must have the knowledge of the effect s of different 

parameter-settings. This section takes a look on how the parameters should be 

controlled in the PSO model.  

 

2.6.1 Setting of Inertia Weight 𝝎  

 

In late 1990s when PSO was in its infancy co was presumed to be an identity matrix. 

Unfortunately, researchers noted that this has two-fold drawbacks. First of all, when 

a particle reaches the global minimum, i.e. the second and the third term of the RHS 

of expression (2.10) are zero; we note that the velocity of the particle Vj( t + 1) is 

forced to be equal to Vj( t) , which is still nonzero. To make the velocity profile of the 

particle zero when the particle reaches the global minimum, we should use a co 

matrix whose magnitude should gradually diminish to zero at steady state. When co 

<<1, only little momentum is preserved from the previous time-step, thus with this 

setting, the direction can quickly change. If co .0, the concept of previous velocity is 

completely lost, and the particle then moves each step without knowing the past 

velocity. When co >1, the particles can hardly change their direction and turn 

around, which implies a large exploration area as well as reluctance against 

convergence towards the optima.  

 

The decreasing co -strategy allows the swarm to explore the search space at the 

beginning of the simulation, and manages to shift towards a local search when fine-

tuning is needed. This is named as the PSO-TVIW method (PSO with Time Varying 

Inertia Weight).  

In another paper by Eberhart and Shi uses a fuzzy controller to control co over time 

[12]. At each time step, the controller takes the "normalized current best 

performance evaluation" (NCBPE) and the current setting of (D as inputs and 

depending on which intervals each of the two inputs lie within, it outputs the 

probabilistic change in 𝝎 
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2.6.2 Setting of Constriction Factor x  

 

As mentioned earlier, the constriction factor model has the same effect as co . 

Basically x acts as w . Low values of X provides rapid convergence and little 

exploration whereas high values of provides slow convergence and more 

exploration. In the work by Maurice Clerc [5], it was mentioned that the constriction 

factor x can be set as a function of 𝛼𝑙(𝑡) 𝑎𝑛𝑑 𝛼𝑔(𝑡) , so that convergence is assured 

even without vmax• He has also introduced an additional parameter k, which 

controls the convergence speed of the particles to the point of attraction. 

 

 

2.6.4 Setting of The Maximum Velocity 𝑽𝒎𝒂𝒙 

 

Originally, 𝑣𝑚𝑎𝑥was introduced in the PSO algorithm to avoid divergence. But with 

the inclusion of w or x in the velocity update equation, v,„,„ has become unnecessary 

to some degree, because now convergence can be assured without it [5]. In spite of 

this fact, the use of vii,a„ in the PSO algorithm can still improve the search. 

  

2.6.5 Setting of The Neighborhood Topology  

 

The fully connected (or g-best) topology is used in the classical PSO algorithm. Here, 

each particle is neighbor of other particles. Kennedy [14] described other topologies 

in a paper. The k-best topology connects each particle to its nearest k number of 

particles in the topological space. With k=2, this looks like the ring topology.  

 

1)With k=swarmsize-1, it becomes the g-best topology. 

2)In wheel topology, there is one central particle, and the connections 

are only form the central particle to other particles.  

When exploring large problem spaces, optimization algorithms must effectively 

balance exploration and exploitation. Generally, it is wise to fist make a broad 

survey of the space, and then focus effort on the regions of the space that look most 

promising. So, Mark Richards and Dan Ventura [151 prompted a dynamic 

sociometry based on the topologies explored by Kennedy and Mendes. The swarm is 

initialized with a ring-type sociometry. Each particle is connected to just one other 
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member of the swarm. Over time, additional links are added. Eventually, the 

network is fully connected in a star sociometly. The experimental results showed 

that this method achieved better convergence.  

2.7 Some Recent Modifications of PSO  

 

2.7.1 The PSO-RANDIW Method  

 
It was seen that the PSO-TVIW method is not very efficient in tackling most of the 

dynamical problems of the real world. To track the dynamic systems, Eberhart and 

Shi proposed a new method called PSO-RANDIW method, where a random inertia 

weight factor is used and the acceleration coefficients are kept constant at 1.494.  

 

2.7.2 The CPSO Method  

 
A variation on the traditional PSO algorithm, called the cooperative particle swarm 

optimizer, or CPSO, employing cooperative behavior to significantly improve the 

performance of the original algorithm was introduced in [16]. This is achieved by 

using multiple swarms to optimize different components of the solution vector 

cooperatively. Application of the new PSO algorithm on several benchmark 

optimization problems shows a marked improvement in performance over the 

traditional PSO.  

 

2.7.3 The HPSO-TVAC Method  

 
Ratnaweera et al. [17] introduced a novel parameter automation strategy for the 

particle swarm algorithm and two further extensions to improve its performance 

after a predefined number of generations. Initially, to efficiently control the local 

search and convergence to the global optimum solution, time-varying acceleration 

coefficients (TVAC) are introduced in addition to the time-varying inertia weight 

factor in particle swarm optimization (PS0). From the basis of TVAC, two new 

strategies are discussed to improve the performance of the PSO. First, the concept of 

"mutation" is introduced to the particle swarm optimization along with TV AC 

(MPSO-TVAC), by adding a small perturbation to a randomly selected modulus of 

the velocity vector of a random particle by predefined probability. Second, we 

introduce a novel particle swarm concept "self-organizing hierarchical particle 

swarm optimizer with TVAC (HPSO-TVAC)." Under this method, only the "social" 
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part and the "cognitive" part of the particle swarm strategy are considered to 

estimate the new velocity of each particle and particles are reinitialized whenever 

they are stagnated in the search space.  

In addition, to overcome the difficulties of selecting an appropriate mutation step 

size for different problems, a time-varying mutation step size was introduced. 

Further, for most of the benchmarks, mutation probability is found to be insensitive 

to the performance of MPSO TVAC method. On the other hand, the effect of 

reinitialization velocity on the performance of HPSO-TVAC method is also observed. 

Time-varying reinitialization step size is found to be an efficient parameter 

optimization strategy for HPSO-TVAC method. The HPSO-TVAC strategy 

outperformed all the methods considered in this investigation for most of the 

functions. Furthermore, it has also been observed that both the MPSO and HPSO 

strategies perform poorly when the acceleration coefficients are fixed at two.  

 

2.7.4 Discrete PSO  

 
Kennedy and Eberbart [18] proposed the first discrete version and Clerc [19] 

showed promising results on variants of the PSO specialized for some constrained 

optimization problem such as TSP. The similar method is used in Buthainah AI-

Kazemi and Chiluduri K.Mohan 1201, which is called multi-phase discrete PSO. 

 

 

2.7.5 Synergism of PSO with Other Evolutionary Computing 

Methods  

In [8], a new crossover operator is defined to swap information between two 

individuals in order to determine their next position on the search landscape. 

Miranda et. al. in 1211 proposed a mutation operator On the parameters of the PSO 

dynamics and the position of the neighborhood best particle, so as to enhance the 

diversity of the particles, thereby increasing the chances of escaping local minima. in 

in the inertia weight is mutated and the particles are relocated when they are too 

close to each other. A further increase in the diversity of the population has been 

attained in [22]-[24] through introduction of a new collision-avoiding mechanism 

among the particles. Hendtlass et al. [25]combined Ant Colony Optimization with 

PSO to determine the neighborhood best of a particle from a list of best positions 

found so far by all the particles.  

in [261, a differential operator (borrowed from differential evolution) was 

introduced in the velocity-update scheme of PSO and the resulting scheme was 

named as PSO-DV. The operator is invoked on the position vectors of two randomly 
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chosen particles (population-members), not on their individual best positions. 

Further, unlike the PSO scheme, a particle is actually shifted to a new location only if 

the new location yields a better fitness value, i.e., a selection strategy has been 

incorporated into the swarm dynamics. Morten LOvberg et al. [8] combined the 

traditional velocity and position update rules with the ideas of breeding and 

subpopulations, making PSO have the potential to achieve faster convergence and 

the potential to find a better solution. Andrew Lim et al. [27 j combined PSO with hill 

climbing to solve the Bandwidth minimization problem. Because the adaptive 

search heuristics are problem dependent, Thiemo Krink and Morten LOvberg 1281 

introduced a hybrid approach called the Lifecycle model that simultaneously 

applied GA, PSO and stochastic hill climbing to create a generally well-performing 

search heuristics.  

 

2.8 Applications of PSO  

 
PSO being an evolutionary algorithm, finds extensive applications in intelligent 

search, machine learning [29] – [31] and in particular in optimization problems 

[321- [38]. Quite a large number of engineering problems including prediction, 

control, planning, pattern recognition [39] and scheduling can ultimately be 

transformed into one of the fundamental problems mentioned above. The 

fundamental approach of PSO in search, learning and optimization thus may be 

called generic applications.  

 

2.8 Conclusion  

 
Although PSO has been accepted widely as a potential global optimizing algorithm 

because of its convenience of realization and low constraints on the environment 

and objective function, there is still a great space for the research of the algorithm 

itself and its application. Despite of the promising results for many optimizing 

problems, the convergence property of PSO has been studied from the experiments 

by now. Many researchers are engaged in the work of fundamental theory, and 

research on the parameters is still going on, which aims balancing the convergence 

speed and convergence quality efficiently. In the application fields, it is most 

important to develop an effective parallel PSO to satisfy the requirement of large-

scaled engineering optimization problems. There has been some works in this field, 

but it is far less.  
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Chapter 3  

A Lyapunov-based Extension to Particle Swarm 

Dynamics for Continuous Function Optimization 

 This chapter proposes three alternative extensions to the classical global-best particle swarm 

optimization dynamics. and compares their relative performance with the classical particle swarm 

algorithm. The first extension. which readily follows from the well-known Lyapunov ‘s stability theorem, 

provides a mathematical basis of the particle dynamics with a guaranteed convergence at an optimum. 

The inclusion of local and global attractors to this dynamics leads to faster convergence speed and 

better accuracy than the classical one. The second extension augments the velocity adaptation equation 

by a negative randomly weighted positional term of individual particle, while the third extension 

considers the negative positional term in place of the inertial term. Computer simulations further reveal 

that the last two extensions outperform both the classical and the first extension in convergence speed 

and accuracy.  

3.1. Introduction  

Often, when performing optimization on complex non-linear functions. optima can be located more 

quickly using population-based algorithms than algorithms that consider only a single coordinate of the 

search space at a time. Population-based search methods can be defined as follows:  

                                                                                    P’= m(ƒ(P))      (3.1) 

p is a multiset of positions in the search space, called the population ,f(.) a fitness function that a vector 

or values signifying the optimality of each population member and m is a population manipulation 

function that returns a new population from the old. Information either deduced explicitly  from the 

parents  or incorporated implicitly via the search dynamics acting on the population can often provide. 

Information unobtainable otherwise to an  optimization technique .Particle Swarm Optimization is a 

population-based search method with the form of equation 3.1  where the manipulation function is 

based on models of insect  swarm behavior. Each individual  contains  a current location in the search 

space. a current velocity. and the best position found by this individual up to this point in the search.  

There exists tm extensive literature on improving the performance of the PSO algorithm. This has been 

undertaken by two alternative approaches. First. The researchers are keen to improve swarm behavior 

by selecting the appropriate form of the swarm dynamics. Alternatively. considering a given form of 

particle dynamics. researchers experimentally, or theoretically. attempted to find  the optimal settings 

of the range of parameters to improve PSO behavior. In this chapter. we adopt the first policy to 

determine a suitable dynamics, and then attempted to empirically determine the optimal parameter 

settings.  
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The classical PSO dynamics adapts the velocity of individual particles  by considering the inertia of the 

particle and the position of local and global attractors. The positions of the attractor, are also adapted 

over the iterations of the algorithm. The motion of the particles thus continues until most of do particles 

converge in the close vicinity of the global optima. In this paper, we consider different versions of the 

swarm dynamics to study the relative performance of the PSO algorithm both from the point of view of 

accuracy and convergence time.  

The formal basis of our study originates from the well-known Lyapunov's theorem of classical control 

theory. The Lyapunov's theorem is widely used in nonlinear system analysis to determine the necessary 

conditions for stability of a dynamical system. In this paper. we indirectly used Lyapunov's stability 

theorem to determine a dynamics that necessarily converges to an optima of the Lyapunov-like search 

landscape. The principles of guiding particle dynamics towards the global and local optima, here too, is 

ensured by adding local and global attractor terms in  the modified PSO dynamics the rationale of 

selecting a dynamics that converges at one of the optima on a multimodal surface and the principle of 

forcing the dynamic, to move toward its local and global optima together makes it attractive for use in 

continuous nonlinear optimization .  

There are however, search landscapes that do not possess the necessary characteristics of a Lyapunov 

surface. This salts for an alternative dynamics, which maintains the motivation of this research , but can 

avoid the restriction on the objective function to necessarily be Lyanunov-like.  A look at the dynamics 

constructed for Lyapunov-like benchmark functions essentially reveals an dark of a negative position 

term in the velocity adaptation rule. This prompted us to realize different variants of the classical PSO 

dynamics, such as  

a)replacement of the inertial term by a negative partial derivative of the Lyapunov-like search 

landscape. 

b) inclusion of a negative particle position in the velocity adaptation rule. 

c) replacement of the inertial term by the negative positional term in the dynamics.  

Computer simulations undertaken on a set of 8 benchmark functions reveals that the modifications in 

the PSO dynamics results in a significant improvement in the PSO algorithm with respect to both 

convergence speed and accuracy.  
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The global-best (g-best) PSO dynamics for the 𝑗𝑡ℎparticle in the 𝑖𝑡ℎdimension is given in equations 1 and 

2. 

𝑣𝑗,𝑖(𝑡 + 1) = 𝜔𝑣𝑗,𝑖(𝑡) + 𝛼𝑙(𝑡)(𝑝𝑗.𝑖
𝑙 (𝑡) − 𝑥𝑗,𝑖(𝑡)) + 𝛼𝑔(𝑡)(𝑝𝑖

𝑔(𝑡) − 𝑥𝑗,𝑖(𝑡))  (3.2) 

  𝑥𝑗,𝑖(𝑡 + 1) = 𝑥𝑗,𝑖(𝑡) + 𝑣𝑗,𝑖(𝑡 + 1)        (3.3) 

where, 

𝑣𝑗,𝑖(𝑡) is the 𝑖𝑡ℎ component of the velocity vector of particle j at 𝑡𝑡ℎ  iteration, 

 𝑥𝑗,𝑖(𝑡)is the 𝑖𝑡ℎ component of the position vector of particle j at 𝑡𝑡ℎ iteration, 

𝑝𝑗.𝑖
𝑙 (𝑡) is the 𝑖𝑡ℎ component of the personal(local) best position of the particle j,so far achived until 

iteration t . 

 𝑝𝑖
𝑔(𝑡) is the 𝑖𝑡ℎ  component of the global best position found so far by the entire swarm at iteration t . 

𝜔 is the inertia factor, 

𝛼𝑙(𝑡) denotes  local acceleration coefficient at time t, 

𝛼𝑔(𝑡) denotes  global acceleration coefficient at time t.  

Empirically ,𝜔 is a random no. in[0,1], 𝛼𝑙(𝑡) and 𝛼𝑔(𝑡)are random coefficients in [0,2] and [0,4] 

respectively . Inertia factor 𝜔 is selected randomly only once in the PSO algorithm, whereas 𝛼𝑙(𝑡) and 

𝛼𝑔(𝑡)selected randomly in each iteration of the PSO algorithm.  

The PSO algorithm attempts to determine the optima on a search landscape by allowing several panicles 

(agents) to explore en the surface with an ultimate aim to terminate at the global optima. The 

terminating condition usually includes an upper  limit on the iterations or a lower limit to the unsigned 

successive difference in the best particle position. or whichever occurs earlier. 

 In the next section, we would look for a dynamics that has a tendency to move towards optima, which 

need not essentially be the global optima .This can be attained by identifying a suitable dynamics that 

ensures asymptotic stability in the vicinity of an optimum over the search landscape. This, of course, 

needs additional restriction on the surface to satisfy the necessary conditions to be Lyapunov-like [21].If 

a suitable dynamics ensuring the convergence to an optimum is identified, we can control the motion of 

the particles towards the global/local optima by adding global and local attractors in die dynamics as 

used in the PSO dynamics. 

 

 

3.2 Classical g-best PSO Dynamics  
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This section begins with a few definition , available in the standard literature in Non-linear Control 

Theory,to explain the methodology of determining a  stable dynamics for a Lyapunov-like  surface. 

 Definition 3.1 

A point X= 𝑋𝑒, is called an equilibrium state, if the dynamics of the system is  given by  

𝑑 𝑋

𝑑𝑡
= ƒ(𝑋(𝑡)) 

Become zero at X= 𝑋𝑒, for any t. The equilibrium state is also called equilibrium (stable),  point  in D-

dimensional hyperspace- when the state 𝑋𝑒has D- components, 

 Definition 3.2  

A scalar function V(X) is said to be positive definite with respect  to the point 𝑋𝑒,  in the region  

‖𝑋 − 𝑋𝑒 , ‖ ≤ 𝐾, 𝑖𝑓 𝑉(𝑋) > 0 𝑎𝑡 at all points of the region except at 𝑋𝑒, Where it Is zero.  

Definition 3.3 . 

A scalar function V( X ) is said to be negative definite if - V((X) is  positive definite.  

Definition 3.4 

 A scalar function V( X ) is said to be positive semi-definite with respect to the point 𝑋𝑒, in the region 

‖𝑋 − 𝑋𝑒 , ‖ ≤ 𝐾 ,if its value is positive at all points of the region except at finite number of points 

including origin where it is zero.  

Definition 3.5 

 A scalar function V( X ) is said to be negative semi definite if -V( X ) is positive semi definite. 

Definition 3.6 

A scalar function V(X) is said to be indefinite in the region ‖𝑋 − 𝑋𝑒 , ‖ ≤ 𝐾 , if it assumes both 

positive and negative values within this region. 

Definition 3.7 

A scalar function V( X ) is called a Lyapunov surface with respect to the origin 0 , if it satisfies the 

three conditions listed below:  

i. V(0)=0  

ii. ii. V( X ) > 0 for X 0  

iii. 
𝜕𝑣

𝜕𝑥𝑖
 is a continuous function of 𝑥𝑖, where 𝑥𝑖, is the ith component of X . 

Definition 3.8 

3.3. Identifying a stable Dynamics for a Lyapunov-like 

Surface 
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 A dynamics 
𝑑𝑥

𝑑𝑡
= f( X( t )) is asymptotically stable at the equilibrium point 𝑋𝑒 , if  

a) it is stable in the sense of Lyapunov, i.e., for any neighborhood S(𝜀) surrounding Xe (S(𝜀) 

contains points X for which‖𝑋 − 𝑋𝑒 , ‖ ≤ 𝜀) where there is a region S(𝛿) (S(𝛿)contains points 

�⃗� for which ‖𝑋 − 𝑋𝑒 , ‖ ≤ 𝛿 , 𝛿 < 𝜀 such that trajectories of the dynamics starting within S(𝛿) 

do not leave s(𝜀) as time t —> ∞ and  

b) the trajectory starting within S(𝛿) converges to the origin as time t approaches infinity.  

 

The sufficient condition for stability of a dynamics can be obtained from the Lyapunov's theorem, 

presented below. 

 Lyapunov's stability theorem [18] 

Given a scalar function V( X ) and some real number 𝜀> 0, such that for all X in the region  

‖𝑋 − 𝑋𝑒 , ‖ ≤ 𝜀 ,the following conditions hold: 

1 ) V( 𝑋𝑒)=0 

 2) V( X ) > 0 for X #𝑋𝑒 , i.e. V( X ) is positive definite.  

3) V( X ) has continuous first partial derivatives with respect to all components of X.  

Then the equilibrium state 𝑋𝑒 of the system
𝑑𝑋

𝑑𝑡
= ƒ(𝑋(𝑡)) is 

a) asymptotically stable 
𝑑𝑉

𝑑𝑡
< 0, i.e. 

𝑑𝑉

𝑑𝑡
 is negative definite, and  

b) asymptotically stable in the large if 
𝑑𝑉

𝑑𝑡
< 0 for X ≠ 𝑋𝑒 , and in addition, 

V( X )→ ∞ as ‖𝑋 − 𝑋𝑒 , ‖ → ∞ 

Example 3.1  

Let 

 
 

 be a Lyapunov energy function for the given dynamics 

 
with the equilibrium point X = [0,0].  

Then: 
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i.e., negative definite. 

 

Here, V(X) satisfies the first two criterions indicated in the theorem, and the partial derivatives ∂V/∂x and 

∂V/∂x are also continuous functions of x and x . Consequently, the asymptotic stability of the dynamics is 

ensured as dV/dt is found to be negative definite for all points except at x = 0. Further, as 

 

ǁXǁ → ∞, V(X) also approaches infinity. Therefore, the asymptotic stability of the dynamics in the large is 

also ascertained. 

The condition for asymptotic stability, as indicated in Theorem1, can be applied to the particle swarm 

optimization to ensure stability of the dynamics, thereby reducing the convergence time of the algorithm. 

When all the three underlying conditions of a Lyapunov function, indicated in Definition 2.4 are 

supported by the objective function, we would be interested to determine the dynamics that satisfies the 

necessary conditions for asymptotic stability of the dynamics. It follows from Lyapunov's Theorem that 

the asymptotic stability of an equilibrium state guided by the dynamics dx /dt is ascertained if: 

 

 
 

The inequality (3) essentially holds when: 

 

 
 

It is indeed important to note that the condition (4) holds for the i-th dimension of a particle roaming 

over the Lyapunov-like surface for 1 ≤ i≤ D. 

 

 

 

Example 3.2 

 In this example, we would like to determine a stable dynamics for a Lyapunov-like objective 

function. Consider for instance the Griewank function in D-dimension: 
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In order to have asymptotic stability of the dynamics, we set  

 

It is also apparent to note that the given function f (x) satisfies the three necessary conditions of a 

Lyapunov function, Now, if we replace the term involving inertia factor by the obtained value of in 

the PSO dynamics, then the PSO is expected to converge very quickly as the necessary at condition 

for asymptotic stability has been satisfied while deriving the dynamics  

 

 

 

 

3.4. Proposed Extensions of the Classical PSO 

Dynamics  

We now define Lyapunov-based PSO dynamics (LyPSO) by adding the local and global attractor 

terms of classical PSO to the derived expression for asymptotically stable Lyapunov dynamics, 

given in (3.4 )- (3.5 ).  

The 1st term in the right hand side of equation (3.4) ensures motion  

while the second and third term controls the motion towards local and global optima respectively. 

It  is apparent from Table 3.1 that 
𝑑𝑥𝑖

𝑑𝑡
 obtained for different lyapunov like surface include a factor of 

( — xi). The condition. For 
𝑑𝑥𝑖

𝑑𝑡
 = -𝜔𝑥𝑖 is tabulated for all the eight benchmark   functions in Table 3.2. 

Consequently, instead of computing 
𝑑𝑥𝑖

𝑑𝑡
 by the approach stated earlier, we can simply add a term -

𝜔𝑥𝑖  to the ith component of the updated velocity in the classical PSO. The resulting dynamics then 

looks like 
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The dynamics given by is referred to as Position-based PSO (PPSO).  

For the sake of completeness of our study, we consider a third category of the dynamics, where the 

inertial term is dropped from the PSO dynamics, indicated in The modified dynamics, called 

Steepest-PSO (SPSO) for its fast convergence, is formally given below.  
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3.5 The Rationale of Speed-up of the PPSO and SPSO 

Dynamics over Classical PSO  

To  compare the relative performance in Speedup and convergence of the proposed algorithm ,We 

study the the stability behavior of the proposed PPSO and SPSO dynamics, in absence ot the local 

and global attractors. This is performed by solving the first or difference equations. The condition 

for asymptotic stability and the location of the stable point can be ascertained from the solution of 

the dynamics. Theorems 1 to 2 provide interesting results, indicating asymptotic stability of the 

SPSO and PPSO dynamics to the origin irrespective of the search landscape, whereas Theorem 3 

indicates asymptotic stability of the classical PSO to a stable point, which need not essentially be the 

origin. The rate at which the particle position approaches the origin further indicates that the speed 

of convergence of the SPSO algorithm far exceeds that of PPSO, while the speed of PPSO algorithms 

beats classical PSO.  

Theorem 1: The dynamics of the 𝑗𝑡ℎ particle in the 𝑖𝑡ℎ dimension given by  

                                                              

 has a stable point at the origin, when 𝜔<i .  

Proof. Let E be an extended difference operator,  

such that 

  

 The equation (3,10) now can be approximately written as 

 

  

Replacing𝑥𝑗,𝑖 (t+1 )by         we obtain: 
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consequently, the solution of the dynamics is given by  

  

where A is a constant.  

 

Theorem 2:  

The dynamics of the 𝑗𝑡ℎ    particle in the 𝑖𝑡ℎdimension given by  

 

is asymptotically stable with a stable point at the origin, when 𝜔<1.  

Proof We can rewrite equation as  

 

 By Replacing ,we can get 

 

So, the solution of the dynamics is given by  

 

where. A and B are constants.  
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                 Fig 3.1                                                                           Fig 3.2 

(Variation of  
𝑑𝑥𝑖

𝑑𝑡
 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑡𝑖𝑚𝑒 )                    (Variation of  

𝑑𝑥𝑖

𝑑𝑡
 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑡𝑖𝑚𝑒)                                 

                      For 𝝎 = 𝟎. 𝟔                                                       For 𝝎 = 𝟎. 𝟖 

 

3.6 Experimental Settings and Simulation Strategies 

for Benchmark Testing  

3.6.1 Benchmarks  

Eight well-known benchmarks were used to evaluate the performance of the proposed new 

developments, both in terms of the error after a predefined number Of iterations, and the time to 

converge to the optima. The performances of all new methods are then compared with the classical 

PS() method. The first three functions are simple unimodal functions, whereas the next five 

functions are multimodal functions designed with a considerable amount of local minima. All 

functions have the global minimum at the origin except the Rosenbrock function [17]. Simulations 

were carried out to find the global minima of each function. An benchmarks used are given in Table 

3.1. The surface plots of eight benchmark functions are given in fig. 3.4 — fig. 1.11.  
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             Fig 3.4: Surface plot of sphere function  

 

 

Fig 3.4: Surface plot of Rosenbrock's function  
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                     Fig 3.4: Surface plot of step function  

                       

                          

 

                                                            Fig 3.9:Surface plot of Ackley's  Equation  
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   Fig 3.9:Surface plot of Griewank's  Equation  

 

                                  

   Fig 3.9:Surface plot of Rastrigin's  Equation 
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   Fig 3.9:Surface plot of Schwefel's  Equation 

 

 

 

                                   

   Fig 3.9:Surface plot of Salomon's Equation 
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3.6.2 Population Initialization  

During the early stages of the development of the PSO algorithm, symmetric initialization was 

widely used, where the initial population is uniformly distributed in the entire search space. Later, 

Angeline[8] introduced .asymmetric initialization, in which the population is initialized only in a 

portion of the search space. Gehlhaar and Fogel [SI have shown that the typical initialization used io 

compare evolutionary computations can give false impressions of relative performance. In many 

comparative experiments, the initial population is uniformly distributed about the entire search 

space which is usually defined to he symmetric about the origin. in addition, many of the test 

functions are crafted in such a way as to have optima at or near the origin, including the test 

functions for this study. This method of initialization has two potential biases when considered. 

alone. First, if an operator is an averaging operator involving multiple parents, such as intermediate 

crossover often used in evolution strategies, recombining parents from opposite sides of the origin 

will naturally place the offspring close to the center of the initialization region. Second, given that 

the location of the optima is generally not known, there is no guarantee that any prescribed 

initialization method will include the optima.[5] suggests initializing in regions that expressly do 

not include the optima during testing to verify results obtained for symmetric initialization 

schemes. 

Since most of the benchmarks used here have the global minimum at the origin or very close to the 

origin of the search space, we use the asymmetric initialization method to observe the performance 

of the new dynamics. The most common dynamic ranges used in the literature for the benchmarks 

are used and the same dynamic range is used for all dimensions [11], [21]. Table 3.3 q-lows the 

range of population initialization and the dynamic range of the search for each function.  

3.6.3 Simulation Strategies  

Simulations were carried out to observe the rate of convergence and the quality of the optimum 

solution of the new dynamics introduced here in comparison with the classical PSO dynamics. Alf 

benchmarks were tested with dimensions 10, 15, 20, 25 and 30. For each function, 50 trials are 

carried out and the average error and the standard deviation are presented. Use of different 

stopping criteria for different benchmarks is reported in the literature [5], [20] Therefore different 

stopping criteria are used here.  

Erhart and ,phi [12]indicated that the effect of population size on the performance of the PSO 

method is of minimum significance. However, it is quite common in PSO research to limit the 

number of particles to the range 20 to 60 [12] – [14]. Van den Bergh and Engelbrecht suggested 

that even though there •is a slight improvement of the optimal value with increasing swarm size, it 

increases the number of fitness function evaluations to converge to an error limit. Therefore, here 

all experiments were carried out with a population size of 40. 
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3.5 Results from Benchmark Simulations  

Parameter selection of the PSO dynamics also is a crucial issue for speed-up and accuracy of the 

PSO algorithm. For a given benchmark function, we initially took wider range of the PSO dynamics 

parameters: a a and co. The initial ranges selected in our simulation were a,, in [0, 4], al in [0, 2J and 

𝜔 <1. Several hundred runs of the PSO programs with random parameter settings in the above 

ranges confirm that for a specific function, the best choice of parameters are restrictive as indicated 

in Table 3,4.  

The following observations readily follow from Table 3.4.  
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Observation 1: 

 For each benchmark function, the parameter set of the dynamics including a al and co for LyPSO 

has a relatively restricted range than those of PPSO and SPSO.  

Observation 2:  

The parameter sets for most of the benchmark functions for the PPSO  and SPSO dynamics, have a 

common range as listed below : 𝛼 in [0.1999, 0.59991 and 𝜔 in [0.0001. 0,0011, The parameter sets 

for most of the benchmark functions for the PPSO and SPSO dynamics have a common range as 

listed below: 𝛼𝑔 in [0.199, 0.999], 𝛼𝑙    in [0.0001, 0.01 ] and 𝜔 in [0.3, 0.6].  

The relative comparison of the convergence time of the three algorithms with respect to classical 

PSO are given in Fig. (3.12) — (3.19). It is observed from these figures that SPSO always 

outperforms PPSO in convergence time and accuracy. It is further revealed from these graphs that 

PPSO yields better performance in accuracy and convergence time with respect to both classical 

PSO and LyPSO. The performance of the four algorithms is summarized with a ‘ ≤' operator, where, 

x ≤  y indicates that performance of y is better than or equal to that of x. Relative performance:  

Classical PSO ≤ LyPSO ≤PPSO ≤ SPSO 
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a)Progress toward the optima : sphere function 

b) Progress toward the optima : Rosenbrock’s Function 

c) Progress toward the optima : Step Function 

d) Progress toward the optima : Schwefel’s Function 
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         e) Progress toward the optima : Rastrigin function 

 f) Progress toward the optima : Ackley’s  function 

 g) Progress toward the optima : Griewank’s  function 

 h) Progress toward the optima : salomon’s function 
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Table 3.5 provides the mean error and standard deviation for the globally best particle obtained by 

execution of the PPSO, SPSO, LyPSO and classical PS O over eight benchmark functions. The error 

was obtained by taking the Euclidean distance between the theoretical optima  and the position of 

the best-fit particle for a given program run. The mean error designates the average of errors over 

50 independent runs. In order to make the comparison fair enough, runs of all the algorithms were 

let start from the same initial population. The variance denotes the second moil-lent of the errors 

with respect to the mean error. It is clear from Table V that for mean error for the SPSO algorithm is 

comparable but less than that obtained by PPSO algorithm, and the mean error obtained by the 

PPSO algorithm is insignificantly less than that of LyPSO algorithm, further the mean error obtained 

by the LyPSO algorithm is less bin comparison to that of the classical PSO algorithm. This confirms 

that the SPSO algorithm outperforms the PPSO and LyPSO and definitely the classical PSO algorithm 

from the point of view of accuracy in solution.  
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Table 3.6 shows results of unpaired t-tests between the best and second best algorithms in each 

case (standard error Of difference of the two means, 95% confidence interval of this difference, the 

t value, and the two-tailed P value) .  For all cases in Table 4, sample size = 50 and degrees of 

freedom=98 . It is interesting to see from Tables V and VI that one or more of the proposed PSO 

methods can always beat the classical PSO in a statistically significant way. 

 

Table 3.6: Results of unpaired t-tests On the data of Table 3.5  

In order to compare the scalability Of the proposed PSO-variants against the growth of 

dimensionality of the search spaces we need to plot the no. of fitness function evaluations with 

dimension of the search landscape. The results shown in Figures are average over 50 independent 

runs of the PSO program, lt is clear from Fig 3.20 - 3.27 that the number of Fitness Function 

evaluations for PPSO and SPSO do not increase significantly in comparison to that of LyPS0 and 

classical PS O algorithms. 
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Variation in number of fitness function evaluations with function dimension: 

 

 (a) Sphere function. 

 

 (b)Rosenbrock's function.  

 

(c) Step function. 

 

 (d) Schwefel's Problem 1.2.  

 

(e) Rastrigin's function.  

 

(f) Ackley's function.  

 

(g) Griewank's function. 

 

 (h) Salomon's function. 
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Table 3.6: Mean Convergence Time of the Benchmarks over 30-dimensions  

The PPSO, SPSO, LyPSO and PSO algorithms have been executed on eight benchmark functions, and 

for each algorithm the average of the convergence time for 50 independent runs to meet the error 

limit for individual function as specified in Table 3.3 is recorded. It is clear from this Table that the 

mean convergence time of the SPSO is less than that of PPSO. The mean convergence time of PPSO 

is less than that of LyPSO, and the latter is less than the mean convergence time of classical PSO. 

The above phenomena is true for all benchmark functions except the sphere, where the LyPSO and 

SPSO gives identical results because of same functional form in the SPSO and LyPS() dynamics.  

3.6. Conclusion 

 Classical -hest PSO has a proven impact in optimization of multi-modal nonlinear objective 

functions However , for many nonlinear continuous multi-modal functions, where partial 

derivatives with respect to objective function variables exist, classical g-best PSO is not very 

efficient  as it does not utilize gradient information of the search landscape . The paper bridges the 

gap between the gradient-free and gradient based optimization algorithm .lt does not truly utilize 

gradient information of the search space, but it requires the background information that the  

gradient of the surface exists. When the prerequisite knowledge about the search space is, known. 

we extend the classical g-best PSO algorithm by the principles outlined in the paper.  
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Three alternative approaches to improve the speed of convergence of the PSO dynamics over 

continuous fitness landscapes is discussed in the paper. The fast approach attempted to re lace he 

inertial term in the dynamics by a factor that ensures asymptotic stability of the PSO dynamics. 

Construction of such dynamics presumes the characteristics of the surface being Lyapunov-like. 

This, however, is not a very restrictive assumption as many multi-modal surfaces support the 

conditions for Lyapunov function. On the contrary, the Lyapunov-based extension, even without 

local and global attractors, has a natural tendency to move towards optima on the surface. The 

convergence of the algorithm to local and global optima, however, is controlled by the presence of 

attractors in the PSO dynamics.  

The second alternative approach to make the PSO smarter was derived from the Lyapunov-based 

formulation, just by noting that the Lyapunov-based dynamics includes a factor of negatively 

weighted position of the particle. Incorporation of this new term to the existing velocity adaptation 

rule classical PSO gives birth to the second alternative form of the extended PSO dynamics. The 

resulting dynamics has been found to have asymptotic stability for a selective range of 𝜔 <1 , i.e. 

same as in classical PSO. The third extension lies in replacement of the inertial term by the negative 

position of the particle itself. A random factor is attached to this term to maintain explorative 

power of the PSO dynamics to avoid its premature convergence. Computer simulations undertaken 

ensure that the third alternative form of extended PSO dynamics results in significant improvement 

in convergence time and accuracy compared to the results obtained by the first and second attempt. 

However, all three approaches outperform the classical PSO dynamics from the point of view of the 

convergence time and accuracy. 
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Chapter 4  

Application of PSO, PPSO and SPSO age 

Segmentation  

 

This chapter applies the classical PSO, PPSO and SPSO in image segmentation problem. The algorithm 

finds the centroids of a user-specified number of clusters, where each cluster groups patterns. The 

experiments are carried over our images and the performances similar with respect to a cluster validity 

index shows better results in case of PPSO and SPSO than the classical PSO. Experimental results taken 

in the form of graphs and tables also show that the mean convergence time of segmentation by PPSO 

and SPSO are less than that of classical PSO.  

 

4.1 Introduction  

 

Image segmentation or classification is the process of partitioning a digital image into meaningful object 

regions, so that information can be extracted from it. It is perhaps the most challenging and critical 

problem in the field of image processing and analysis. Research in this area will probably continue 

indefinitely long, since any single solution framework is unlikely to produce an optimal result for all 

possible application domains.  

Image classification algorithms can be grouped into two main categories:  

1)supervised 

2)unsupervised 

 Supervised classification makes use of a supervised training step to compare the class of a pixel with a 

target class as provided by an external teacher. 
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 Unsupervised classification, on the other hand ,has no external teacher to provide a target class, 

Unsupervised image classifiers examine the pixels of an  image and group them into a number of 

clusters. The pixels within a cluster should have similar characteristics, whereas the pixels belonging to 

different clusters should have different characteristics and should be well-separated. The resultant 

clusters are referred to as spectral classes, since they are formed based on the natural groupings on the 

image values. These clusters have no identity, or class label, until compared with some reference data.  

In this chapter, we are mainly concentrating on unsupervised image classification by PSO, PPSO and 

SPSO as introduced earlier in chapter 3.  

4.2. Image Classification by Classical and Modified 

PSO Dynamics  

The PSO algorithm consists of a swarm of particles flying through the search space [51. As described in 

chapter 2, each particle's position is a potential solution to the problem. Each particle's velocity is 

modified based on its distance from its personal best position and the global best position. In other 

words the particles move according to their experience and that of their neighbors which yields to the 

best fitness value. Each particle j maintains the following information [6]:  

• X j (t) , the current position of the particle, 

 • V j (t), the current velocity of the particle, 

 •P (t) , the personal best position of the particle (pbest); the best position visited so far by the particle, 

and  

• P(t), the global best position of the swarm (gbest); the best position visited so far by the entire swarm. 

 The objective function evaluates the positions of the particles. Personal best position (pbest) is then 

obtained as follows [6]:  

 

 

where f is the objective function. The global best position (gbest) is is obtained as follows [6]:  

In chapter 3, we proposed three modified dynamics of the classical PSO, among which we are using the 

position-based PSO (PPSO) and the Steepest PSO (SPSO) for classification of images. In PPSO, we simply 
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add a term  -wx; to the ith component of the updated velocity in the classical PSO. The resulting 

dynamics then looks like (4.10) — (4.11).  

 

 

 

4.3 The Similarity Measure  

Clustering is the process of identifying natural groupings or clusters with multidimensional data based 

on some similarity measure. The most popular way to evaluate a similarity measure is the Euclidean 

distance. The Euclidean distance between two data points za , zb each having a dimension Nd is given 

by,  

 

Since the image pixels are one dimensional representing their intensity or gray level values, for image 

segmentation application the similarity measure can be represented by simply the difference between 

two pixels.  

4.4 The Fitness Function  

In the context of image clustering, a single particle represents K cluster centroids. That is, each particle xi 

is constructed as xi = , mi,2 , , m ) where m a refers to the k-th cluster centroid vector of the i-th particle. 

Therefore a swarm represents a number of candidate data clustering. The quality of each particle is 

measured using the fitness function,  



70 
 

 

i.e, the minimum Euclidean distance between any pair of clusters. A small value of the fitness function 

suggests compact and well-separated clusters.  

 

4.5 Classification Algorithm by PSO  

Omran et. al. [8] first used PSO in an image classification problem. The PSO clustering algorithm is 

summarized below:  
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In step 3 of the algorithm, the cluster centroids can be computed by equations (4.10) and (4.11) when 

using PPSO. Equations (4.12) and (4.13) are used to compute the cluster centriods when using SPSO.  

4.6 Cluster Validity Measure  

The main subject of cluster validation is "the evaluation of clustering results to find the partitioning that 

best fits the underlying data" [9]. Hence, cluster validity approaches are used to quantitatively evaluate 

the result of a clustering algorithm 01. These approaches have representative indices, called validity 

indices. The traditional approach to determine the "optimum" number of clusters is to run the algorithm 

repetitively using different input values and select the partitioning of data resulting in the best validity 

measure [9]. Two criteria that have been widely considered sufficient in measuring the quality of 

partitioning a data set into a number of clusters, are [9]  

• Compactness: samples in one cluster should be similar to each other and different from 

samples in other clusters. An example of this would be the variance of a cluster.  

• Separation: clusters should be well-separated from each other. An example of this criterion is 

the Euclidean distance between the centroids of clusters.  

Some of the well-known indices available in the literature for fuzzy clustering are the partition 

coefficient [11], partition entropy [12], Xie-Beni index [13], Kwon's index [14], and the PBMF index 

[15].In the present work we have applied the famous Xie-Beni Index to measure the validity of the 

classification. The Xie-Beni index is given by:  

 

 

where, Ni denotes the membership of the j-th element to the i-th cluster.  

4.7 Experimental Results and Computer Simulations  

The PSO-based clustering algorithm has been applied to four images: Horse image, Car image, Cycle 

image and House image. These images are then used to compare the performance of PPSO and SPSO 

with that of classical PSO. 
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4.7.1 The Simulation Strategy  

All the algorithms have been developed in Visual C++ on a Pentium IV, 1.2 GHz PC, with 512 KB cache 

and 2 GB of main memory with Windows Server 2003 environment. For each image data set, each run 

continues till 200 number of iterations for classical PSO, PPSO and SPSO. Twenty independent runs have 

been taken for all the algorithms. The results have been stated in terms of the mean best-of-run values 

and standard deviations over these 20 runs in each case. All the algorithms start from the same initial 

population each time. Comparisons are made in terms of three performance metrics:  

• quality of the solution as determined by the Xie-Beni index and t-test done over it,  

• value of fitness function over 10 to 100 iterations for three algorithms, and 

 • convergence time.  

Parameter selection of the PSO dynamics also is a crucial issue for speed-up and accuracy of the PSO 

algorithm. The values of parameters selected for classical PSO in our simulation were 𝛼𝑔(𝑡) =  𝛼𝑙(𝑡) =

 1.4494and 𝜔 =0.732. For PPSO and SPSO, several hundred runs of the with random  

parameter settings, we see that the best choice of parameters are restrictive as indicated in Table 4.2.  

 

 

                                       Parameter setting of  PPSO/SPSO for classification of four Image 

 

      Image 

 

                            Parameters for PPSO/SPSO 

 
 

𝜶𝒈(𝒕) 𝜶𝒍(𝒕) 𝝎 

Cycle Image                       0.7                 2.499                 0.8 

Horse Image                      0.1                 1.699                0.8 

House Image                      0.1                1.499                0.8 

Car Image                     0.1                1.499               0.8 
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                                                                   Car Image 
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                                                 Unpaired t-test results on the data of the table 
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Table 4.6: Mean and standard deviation of fitness function of the cycle image over 10 to 100 iterations  
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Tables 4.5 to 4.8 shows the mean and standard deviation of fitness function of the images for classical 

PSO, PPSO and SPSO over 10 to 100 iterations. The values in the tables indicate that segmentation done 

by PPSO and SPSO in most cases leads to a better accuracy than the classical PSO. It is also known from 

these tables that PPSO takes less time to converge than the classical PSO, whereas SPSO takes less time 

than PPSO. In short, both PPSO and SPSO beat the classical PSO in terms of convergence time and 

accuracy 

We have also plotted the fitness function against number of iterations in figures 4.7 to 4.1.0. These four 

figures also confirm that the segmentation method done by SPSO converges faster than PPSO. Also we 

see that segmentation done by PPSO takes less time than the classical PSO. in all four cases, PPSO/SPSO 

performs better than the classical PSO. 

Table 4.9 shows the mean convergence time for the segmentation of four images by the classical PSO, 

PPSO and SPSO respectively. We see from the table that the mean convergence time of PPSO is better 

than the classical PSO, whereas, the mean convergence time of SPSO is better than PPSO. 

4.8 Conclusion 

 In this chapter, we classified four images by classical PSO, and two modified PSO dynamics (ppso and 

SPSO) proposed by us. The Xie-Beni index was chosen as the duster validity index. According to the 

mean and standard deviation of the Xie-Beni index and the segmented images for these three dynamics, 

we see that SPSO performs better than PPSO, and PPSO performs better than the classical PSO in terms 

of accuracy. The t-test done over the Xie-Beni index confirms this. We have also drawn tables containing 

the fitness function values over 10 to 100 iterations to show that PPSO converges faster than the 

classical PSO, and SPSO converges faster than PPSO. However, for the segmentation of all four images, 

segmentation based on our proposed dynamics outperforms the segmentation based on the classical 

PSO.  
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Chapter 5 

Conclusion  

 

This chapter briefly highlights the findings and contributions of this thesis and discusses directions, far 

future research.  

5.1 Summary  

In this thesis, we have proposed three alternative approaches to modify the classical g -best Particle 

Swarm dynamics. The main issues of our research were improving accuracy and convergence speed in 

global search.  

Here, we proposed three modified dynamics inspired by the Lyapunov energy function. The first 

approach attempted to replace the inertial term in the dynamics by a factor that ensures asymptotic 

stability of the PSO dynamics. The second alternative was to add the weighted negative position of the 

particle to the velocity update formula. The third approach was to replace the inertial term by the 

negative position of the particle itself. A random factor is attached to this term to maintain exploration 

of the PSO dynamics to avoid its premature convergence. Computer simulations undertaken on the 

optimization problem of 30 dimensional benchmark functions ensure that the third attempt results in 

significant improvement in convergence time and accuracy compared to the results obtained by the first 

and second attempt. However, all three approaches outperform the classical PSO dynamics from the 

point of view of the convergence time and accuracy.  

We also applied the two modified dynamics (PPSO and SPSO) along with the classical PSO to the 

problem of unsupervised image segmentation. The objective of the algorithm was to minimize the 

fitness function and a well-known cluster validity index was used to determine  the relative performance 

of these three dynamics. For investigating the performance of the dynamics, four images were taken. In 

all four cases, the final value of fitness function and the cluster validity index was less in the two 

modified dynamics than the classical PSO. Also, segmentation done by PPSO and SPSO takes less time 

than the classical PSO. The results suggest that the performances of the modified dynamics are better 

than the classical PSO in terms of accuracy and convergence time.  

5.2 Future Research  

The future research may focus upon an in depth mathematical analysis of the three modified dynamics 

proposed in this thesis and perhaps it may help us to get more insight into the working principle of these 

dynamics. We also wish to extend the application part of the proposed dynamics in the field of machine 
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learning and bioinformatics. We are already in the process of testing these dynamics on constrained 

optimization problems. 

A  

Appendix A:  

Statistical Methods Used  

 

Particle Swarm Optimization algorithm is stochastic in nature. Therefore, it is important to analyze the 

results from several repeated runs by statistical methods to obtain empirical evidence of the capabilities 

of a given approach. The fundamental of our data analysis is the assumption that all test runs are 

independent; i.e, one run does not have any influence on subsequent runs. Appendix A includes a brief 

review of the statistical methods used to compare the performances of the algorithms.  

A.1 Mean  

Let, a series of n test runs yield the observations 𝑥1, 𝑥2, … . . 𝑥𝑛 from the stochastic variables  

𝑋1, 𝑋2, … . . 𝑋𝑛. Then the sample mean value is computed by 

𝜇 =  𝑥− =  
𝑙

𝑛
∑ 𝑥𝑖

𝑛
𝑖=𝑙   

 

A.2 Standard Deviation  

The mean value of n repetitions of an experiment is an indicator of what the expected outcome 

of this experiment will be. But this mean value does not express how much each of  the 

repetitions is different from the expected "average outcome". For measuring this, we use 

standard deviation. It is given by  

𝜎 =  √
𝑙

𝑛 − 𝑙
∑ (𝑥𝑖 −  𝑥−)^2

𝑛

𝑖 = 𝑙

 

 

. where, x Is the sample mean as defined in A.1.        (A.2)  
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A.3 Confidence Interval  

A confidence interval is the probability that a measurement will fall within a given closed interval la; b]. 

If we assume that a given stochastic variable is Gaussian distributed with the (density distribution 

function N (𝜇 , 𝜎2) , we can express the confidence interval in terms of p and .  

 

A.4 t-tests  

The t-test, like many statistical tests, assumes that we have sampled data from populations that follow a 

Gaussian bell-shaped distribution. The t-test assesses whether the means of two groups are statistically 

different from each other. When we are looking at the differences between scores for two groups, we 

have to judge the difference between their means relative to the spread or variability of their scores. 

The t-test does just this. The formula for the t-test is a ratio. The top part of the ratio is just the 

difference between the two means or averages. The bottom part is a measure of the variability or 

dispersion of the scores. This formula is essentially an example of the signal-to-noise metaphor in 

research: the difference between the means is the signal that, in this case, we think our program or 

treatment introduced into the data; the bottom part of the formula is a measure of variability that is 

essentially noise that may make it harder to see the group difference.  

                                                         t-value = 
Difference between group means

Variability of groups
   

 

Here, ni (i = T or C) denotes number of observations. The t-value will be positive if the first mean is larger 

than the second and negative if it is smaller. In the t-test, the most important results are the P value and 

the confidence interval. If the P value is small, then it is unlikely that that the observed difference is due 

to a coincidence of random sampling. If the P value is large, the data do not give us any reason to 

conclude that the overall means differ. When the P value is larger than 0.05, the 95% confidence interval 

will start with a negative number (representing a decrease) and go up to a positive number 

(representing an increase). To interpret the results in a scientific context, we have to look at both ends 

of the confidence interval and ask whether they represent a difference between means that would be 

scientifically important or scientifically trivial. 
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B  

Appendix B: Source Codes  

 

All the source codes, implemented using Visual C++ and MATLAB 7.1 come with the accompanying CD-

ROM. Sample runs are given in the Note Pad files bearing same name as that of the source file. The CD 

contains the following files  

1. PSO code.CPP and PSO_code.txt — an implementation of the classical PSO algorithm. 

 2. LyPSO.CPP and LyPSO.txt — an implementation of the LyPSO scheme with 8 different 

benchmark functions. 

 3. PPSO.CPP — an implementation of the PPSO scheme.  

4. SPSO.CPP — an implementation of the SPSO scheme.  

5. PSO jmage.CPP — program to segment an image by classical PSO, PPSO or SPSO. 

 6. MATLAB m-files implementing the visual plots of 8 benchmark functions in two 

dimensions. 

 

                                        

 


