
 
 

Simulation of Teleoperation and 

Interaction Control of Serial Robot 

Manipulator Employing ROS 

Based Modular Approach  
 
 
 
 
 

By 

 

Abhra Adhikari 
 

                                               Examination Roll No.: M6IAR19011 

 
Registration No.: 137301 

 
 
 

Under the Guidance of 

 

Prof. Ranjit Kumar Barai 
 

 
 
 
 

Thesis submitted in partial fulfillment of the requirement for the award of the     

Degree of Master of Technology in Intelligent Automation and Robotics               

under Electronics and Telecommunication Engineering Department 

 
 
 
 
 
 

Department of Electronics and Telecommunication 

Engineering 
Jadavpur University  

Kolkata – 700032  
 May, 2019



 
 

Faculty of Engineering and Technology 

Jadavpur University  

Kolkata – 700032 
 
 
 
 
                                                                                                                      Date: 
 
 

This is to certify that the thesis entitled “Simulation of Teleoperation and Interaction 

Control of Serial Robot Manipulator Employing ROS Based Modular Approach” has been 

carried out by Abhra Adhikari (University Registration No.: 137301 of 2016-17) under my 

guidance & supervision, be accepted in partial fulfillment of the requirement of the degree of 

Master in Technology in Intelligent Automation and Robotics under Electronics and 

Telecommunication Engineering Department of Jadavpur University. 

 

 

 

--------------------------------- 

Prof. (Dr.) Ranjit Kumar Barai 

                                                                       Supervisor 
Electrical Engineering Department 

 Jadavpur University 

 

 

 

                                                                                        

                                                                                           
 

 

 

 

 

                                                                                    

                                                                                                     

                                                                                                           

                     ----------------------------- 
                  Prof. (Dr.) Amit Konar   

                     Course Coordinator 

            Intelligent Automation & Robotics 

Electronics and Telecommunication Department 

                     Jadavpur University 

                                                                                                                                                                                                                                                                                         

 

 

                        ----------------------------- 
           Prof. (Dr.) Sheli Sinha Chaudhari 

                    Head of the Department 

Electronics and Telecommunication Department 

                      Jadavpur University 

 

 

                                  ----------------------------- 
                    Prof. (Dr.) Chiranjib Bhattacharya 

       Dean, Faculty Council of Engineering & Technology                    

                                Jadavpur University 

 

 



 
 

Faculty of Engineering and Technology 

Jadavpur University 

Kolkata – 700032 
 
 
 
 
 
 
 
 
 

 

CERTIFICATE OF APPROVAL * 
 
 
 
 

The foregoing thesis is hereby approved as a credible study of engineering subject to warrant 

its acceptance as a pre-requisite to obtain the degree for which it has been submitted. It is 

understood by this approval the undersigned do not endorse or approve any statement made, 

opinion expressed or conclusion drawn therein , but approve the thesis only for the purpose 

for which it is submitted. 

 
 
 
 
 

 
 

 

 

 

 

                   ------------------------------------ 

                       External Examiner 
 
 
 
 
 
  
 
                                                                                                     ------------------------------- 
 
                                                                                                                           Prof. (Dr.) Ranjit Kumar Barai       

                                                                                                                                          Supervisor 

 

 



 
 

 

FACULTY OF ENGINEERING AND TECHNOLOGY  

JADAVPUR UNIVERSITY  

  

  
DECLARATION OF ORIGINALITY AND COMPLIANCE OF  

ACADEMIC THESIS  

 
  
  

I hereby declare that this thesis titled “Simulation of Teleoperation and Interaction Control of 

Serial Robot Manipulator Employing ROS Based Modular Approach” contains literature 

survey and original research work by the undersigned candidate, as part of his Degree of 

Master of Technology in Intelligent Automation and Robotics.  

All information have been obtained and presented in accordance with academic rules and 

ethical conduct.   

I also declare that, as required by these rules and conduct, I have fully cited and referenced all 

materials and results that are not original to this work.  

    

  

  

Name:  Abhra Adhikari 

Examination Roll No:  M6IAR19011 

  

Thesis Title: SIMULATION OF TELEOPERATION AND INTERACTION CONTROL OF 

SERIAL ROBOT MANIPULATOR EMPLOYING ROS BASED MODULAR APPROACH  

 

 

 

Date: 

Place: Kolkata   

 

 

                                                                                            ------------------------------------------- 

                                                                                        Signature of the candidate



 

ABSTRACT 

 

 

                      Despite of the availability of highly sophisticated techniques and increasing 

computing capabilities, the problems associated with robots interacting with environments 

remains an open challenge. Despite great advancement in the field of autonomous robotics, 

there are certain situations where a human in the loop is still needed, especially in the hostile 

areas and robotic surgery based operations. The very fact lies behind is that current 

technologies cannot solely & reliably accomplish all piece of work autonomously. 

               This thesis presents a simulation environment for performing teleoperation of a 

serial robot manipulator and controlling its interaction with environment in its workspace in a 

master slave approach where the operator provides a position trajectory using a joystick or 

even using an interactive designed GUI. The novelty behind this approach lies in the fact we 

have selected Robot Operating System (ROS) as the underlying platform for all the 

communication and Gazebo as the simulation environment and ROS being an open source 

the solutions would be more accessible maintainable & extendable using high-quality code 

from the active ROS community. Also working with real hardware performing interaction 

control in hard real time can pose many difficulties in term of programming and cost which 

can be easily worked on first hand using a realistic and dynamic simulation environment like 

Gazebo alongside with highly modular software platform like ROS. 
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Chapter 1 

                                                                     

Introduction 
 

“Robot, any automatically operated machine that replaces human effort, though it may not resemble 

human beings in appearance or perform functions in a humanlike manner.” 

                                                                                Encyclopdia Britannica 

 

1.1 Background  

 

                   In the few decades conventional robotic systems have been employed in various 

industries. In most cases these systems have consisted of manipulator arms whose function 

has been to perform desired tasks using their end-effectors. These tasks have involved 

programming end-effector motion trajectories and then controlling individual joints to 

produce the desired motion at the end-effector. This has been accomplished by using 

kinematic relationships between the end-effector pose and the joint angles and by including 

the dynamic properties of the system in addition to the kinematics. A characteristic of many 

of these tasks is that they only involve motion in free space. That is, the end-effector and the 

manipulator links are not in contact with the environment. 

                       At present times robots have started to evolve from their ordered, rigid 

environment of factories and find their place in close space to humans. Robotic bodies are 

already capable enough to swim, fly and most recently there have been breakthroughs in the 

development of bipedal robots. Intelligence in robots is also developing rapidly, but at the 

same time they are limited by their cognitive capabilities. For most of the industrial 

applications robots are made to do a certain task mostly in highly ordered environment. At 

present there is a burring need for human robot collaboration.  Instead of putting the 

intelligent processor on the robot we can simply amend it with human teleoperation. 

Teleoperation is a form of remote control and is the least version of supervisory control 

interaction. During teleoperation the robot’s movements are determined not just by its 

environment and inner state, but rather the human operator.         
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                    From the different robot control types each having its pros and cons to 

accomplish a particular task, the one that is relevant for this thesis is controlling a robot arm 

using teleoperation. The simple way to explain it is by taking the origin of the word 

teleoperation; the word comes from Greek origins where the prefix tele means at a distance 

and suffix operation means, “operating from  a distance” [1]. For practical understanding it is 

a technique that involves execution by hand from a distant place. The reasons for the use of 

teleoperation are justified in the sense that the required operation must be performed by a 

human due the unpredictability of the tasks, and for the same reason are difficult to create a 

model and pre-program the tasks  

A teleoperation system is based in the master-slave architecture; with the master system 

situated in a control room (local environment), and the slave system situated in the remote 

environment, both systems require communication and data processing due the distance 

between them. In the system, the human operator acts upon the master system (local task 

objects) and is guided with the information feedback (display) in order to execute the task 

through the remote manipulator [2]. 

The direct and continuous interaction of the human operator with the control of the master-

slave system is commonly referred as teleoperation. If the teleoperation system uses a 

computer as intermediary for the human operator to supervise the task, is refers as 

telerobotics [3]. Both terms can be used interchangeably, but the term teleoperation 

encompass the term telerobotics.  

                    The human interface can be as simple as a keyboard, mouse for input; and a 

computer screen for output. A bit more ergonomic option is to use joysticks or console 

controllers. These methods are relatively cheap and can be used to accurately control the 

position trajectories of a slave manipulator. 

 

1.2 Problem Statement & Objective 

The problem statement for the current thesis was to design a simulation environment 

depicting master slave teleoperation of a serial robot manipulator primarily to control the 

interaction of the robot with the environment. 

Building an experimental robotic setup can be tedious, prone to hardware faults and involve 

large expenses. A common way to overcome some of these problems is to model a part or 

entire system in simulation environment. However, implementation of teleoperated robotic 
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systems with interaction control manifests additional problems. The human robot interfaces 

should exist in hardware and this in turn requires simulated system to work in proximity with 

a real-time. Hence to overcome these difficulties the Robot Operating System (ROS) [4] is 

being utilized as the underlying platform to carry out the entire simulation setup by using 

Gazebo which is 3D multi robot simulator. ROS supports a highly distributed and modular 

design enabling us to choose from a large variety of user written packages that is relevant to 

our need. More over ROS is open source & free hence appropriate for simulation and testing 

of any concept prior to be tested in real time scenario. ROS supports a distributed runtime 

environment that facilitates the working of different executable at the same time thus each 

one of them runs in parallel manner & can be tested or modified independently without 

analyzing the entire system. Gazebo supports ODE (Open dynamics engine) and other 

physics engines for handling the dynamics of the system as closely as a real robot interaction 

hence simulation in Gazebo environment  and its ROS supports enables the design a fully 

robust and realistic design in our case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

1.3 Motivation 

 

Decades of research and development in robotic manipulation has led to an incredible impact 

scientifically, socially and economically. Large manipulators move with sub millimeter 

accuracy at daunting speeds and have since long begun to relieve the human workforce from 

repetitive, non-ergonomic and dangerous tasks. The cost and the capabilities of robotic 

manipulators have so far limited their use to large-scale industrial production facilities, e.g. 

the auto manufacturing industry. Most such applications are characterized by a precise and 

deterministic task description and accurate position control which aims at rejecting any 

external forces applied on the robot. 

                    However in contrast, humans are capable of manipulation in uncertain 

environments, and exhibit physical compliance when subjected to perturbing forces. This 

compliance is realized by elasticity in the muscles that drive our limbs. We can vary the 

compliance by co-contraction of opposing muscle pairs. In this way, the compliance can be 

varied between different tasks and also during tasks. Human studies show that learning 

impedance variations are an important part of mastering a manipulation task (Burdet et al., 

2001; Selen et al., 2009). While traditional robot manipulators are inherently stiff due to their 

drivetrains, there is currently a strong trend toward torque-controlled, light-weight robots. 

These robots have been developed for quite some time and have now reached the level of 

maturity required for real applications. The availability of this class of robots opens a wealth 

of new possible applications, both in the industrial sector but perhaps even more so in the 

service robotics sector which involves health care and assistance applications. However, 

without suitable control these arms are no more useful than their predecessors. Indeed, 

for a robot to perform useful work, the controller and the task model is at least as important 

as the hardware. 

                       Thus for studying interaction control compliant or force control becomes a 

necessary approach. This thesis emphasizes on compliant manipulation tasks based on 

cooperative or interactive manipulation. 
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1.4 Thesis Outline 

The objective of this thesis is to design a simulation environment depicting complaint control 

of a robot arm in contact and controlling the interaction forces generated at the contact point. 

This is achieved using a master slave based teleoperation approach where the human user 

controls the robot trajectory and force at the end effector when the robot is making a steady 

contact. The thesis proceeds as follows: 

Chapter 1 we start with the introduction to the selected research domain giving an overview 

of the topic, problem statement and objectives, the underlying principles that inspire us work 

in this field and the hierchary of our thesis. 

Chapter 2 focuses on the literature survey in the selected area of work, by giving an overview 

of various robot control methods in the related area of interest, recent advancements in the 

topic and ends with a summary of the survey. 

Chapter 3 describes the problem statement of the thesis, challenges in this domain, the 

limitations under which the entire simulation environment works and the problems faced 

during work. 

Chapter 4 deals with the approach and implementation. It describes the software 

development process, the software, technical & structural architecture, overall date flow of 

the system, user interface for the user end. 

Chapter 5 deals with design and development process. It starts with the simulation 

environment design, the overall system architecture, simulation of UR5 robot manipulator, 

writing a plugin for simulating a 6 axis Force/torque sensor, modeling the compliant 

environment as a massless spring damper system, designing a virtual joystick interface for the 

master side & a user interface for force control and testing the working of the simulation in 

real time. 

Chapter 6 presents the results of the experiment under different conditions. 

Chapter 7 concludes our thesis by giving a thesis summary and presents the future scope and 

modifications that can be made with the design. 

References 
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Chapter 2 

                                                                     

  Literature Review 

 

This literature review discusses about robotic control in the literature, giving attention to 

position control of a robotic arm in free space and involving interaction with the environment 

with some relevant applications. 

First, a general overview of various manipulator control architectures is discussed before 

taking the focus to methods incorporated to deal under constrained situations when the  robot 

make a valid contact with the environment. Historical progression from explicit force control 

to more modern methods of controlling forces and positions simultaneously are presented as 

well as a look at recent advances in the literature. Although non-contact control is used in 

conjunction with the framework, the origins of this control will not be discussed in this 

literature review. This is because the framework uses proven and easily accessible methods to 

control the manipulator when not in contact with the environment. These methods 

incorporate kinematic calculations, motion trajectory planning, and collision avoidance and 

are achieved via the Robot Operating System (ROS) and will be discussed in the approach & 

implementation chapter. A brief history about Robot Operating System lastly, applications of 

robotics in the industries are considered and the current state of the art and innovative 

applications in the industry are reviewed.  

 

 

2.1 Overview of different manipulator control schemes  

 

The first form of reprogrammable robotic control in an industrial robot was the Unimate 

robot, patented in 1954 [5], and was used by General Motors for spot welding [6] and other 

tasks. Although machines capable of completing assembly line tasks existed before the 

Unimate, they were typically designed for a single task and therefore only such tasks that  
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were feasible for tasks that ran long term. The Unimate, on the other hand, could be “taught” 

to learn a new task without reconfiguration of the robot. This teaching process did not require 

a skilled technician to reprogram the Unimate. To teach the Unimate, an operator would 

move the robot to each position required to complete a task by using a simple control box 

seen in Figure 2.1 

 

                              Figure 2.1 Operator teaching the Unimate [7]  

 

This process of “teaching” a robot by recording positions is still used in the industry today, 

but more advanced position control schemes have also been developed. In modern robotic 

control schemes, the joint position controllers is typically a path planner that determines a 

stream of appropriate joint position commands, or a trajectory, that will take the robot from 

one set of joint positions to another. While generating this trajectory, the path planners also 

avoid known obstacles in the environment and positions in which control laws break down or 

behave undesirably, e.g. at travel limits or near singularities.  

The Unimate and many other industrial robots solely used position commanding to complete 

its task and do not take into consideration other important information that can be retrieved 

via sensors, e.g. cameras or force sensors. For more complex tasks, this sensory information 

can be used to avoid barriers to motion that have been introduced to the robot’s workspace, or 

to compensate for uncertainty. This lack of sensory information makes pure position 

commanding useful only for operations where the manipulator has minimal contact with the 

environment. Once there is contact, slight deviations in a robot’s desired position and its 

actual position, or deviations between the model and actual environment, lead to dangerously 
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high contact forces. For this reason, a robotic system must take into account model 

inaccuracies by sensing contact forces on the robot. This problem spawned the field of force 

control which commands the robot based on sensed forces. According to Whitney [8], one of 

the pioneers of force control, “gross motions”, i.e. open loop position control motions, are 

useful for “material handling tasks as well as ‘assembly’ tasks such as spot welding in which 

insertions of one part into another are not necessary”, but fine motions, i.e. closed loop 

motions based on force feedback, “are required for some types of assembly requiring 

insertions, push and twist actions, gear meshing, packing, and so on.”.  

The simplest way to apply force control is to command robot joint positions only based upon 

the knowledge of current and desired EEF contact forces. This can be useful in applications 

where a precise force is desired to be maintained. Such a method was proposed by Whitney 

and termed linear force feedback strategy. In this method, a force feedback matrix, a matrix 

of feedback gains, is used to convert sensed forces into desired EEF position deltas which are 

then converted into new joint position commands [8]. This process is illustrated in Figure.2.2 

 
Figure 2.2 Block diagram of force feedback control method [8] 

 

This literature review will focus on control algorithms that contain elements of both position 

and force control methods. This middle section is the area of active compliant control. Active 

compliant control attempts to track a trajectory, i.e. position control, while maintaining 

compliance with respect to physical contact (intentional or not).  

It is worth mentioning that there is another area of compliant control called passive compliant 

control. Active compliant control is attained through software whereas; passive compliant 

control requires that the robot or EEF is inherently mechanically compliant. Passive 

compliance is achieved using a spring, clutch or other compliant device between the EEF and 

last link of the robot manipulator [9], in the EEF itself [10], or in each actuator [11] [12]. In 

passive compliant control, the robot is position controlled, and the compliance of the robot 

itself allows for the contact forces to be minimized. While variable stiffness actuators have 
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been investigated [13], no physical system was identified that would give a passive controlled 

robot the range of performance in terms of precision, payload, etc. necessary for the 

applications proposed by the sponsor. Furthermore, active compliant control techniques can 

be implemented on proven affordable industrial manipulators, whereas multi-purpose passive 

compliant control architectures, exemplified by Rethink Robotics’ Baxter [14], have only 

been available on the market for a few years. 

Figure 2.3 shows the types of manipulator control. In the domain between explicit position 

control and explicit force control, there are two main types of control one of them belongs to 

the category of  split control, where the control method attempts to use explicit force and 

explicit position control separately in different Cartesian directions so that the robot may 

reach a desired position while also being compliant. The other, falls in the category of 

relational control where the control method tries to maintain a dynamic relation between the 

position of the EEF and contact forces in all directions.  

In between these two types of control there is hybrid impedance control which attempts to 

concatenate the benefits of both types of compliant control.  

 

Figure 2.3 Types of Manipulator Interaction Control 
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2.2 Compliant force control  

To manipulate objects in the environment or to avoid accidental contact with the 

environment, robotic control must implement more than just simple position control, it must 

also control the contact forces between the EEF and the environment. Force control uses 

sensory force and torque information to adjust the position of an EEF to maintain or reduce 

forces at the contact with the environment. Explicit force control relies solely on force data to 

calculate the desired robot movement that will maintain a desired force. This type of control 

can be very useful in certain applications, but its primary disadvantage is that it pays no 

attention to a desired position of the EEF. In a lot of cases, the operator would like to 

maintain a desired force profile while also staying as close as possible to the desired position 

of the EEF.  

2.2.1 Formalizing the Problem of Compliant Control  

Mason formalized the problem of controlling contact forces while maintaining a desired 

position in 1981 as compliant motion. According to Mason, “compliant motion occurs when 

the position of the manipulator is constrained by the task”[15]. Mason focused on active 

compliance solutions rather than passive compliance.  

Mason introduced the concept of a C-surface which is “a task configuration space which 

allows only partial positional freedom” [15]. A C-surface is the intermediate between two 

extremes, total positional freedom and no positional freedom. While not in contact with the 

environment, a manipulator has complete positional freedom. On the other extreme, a 

manipulator rigidly attached to a stiff object has no positional freedom and has complete 

freedom to control the forces on the EEF. While in contact with a C-surface, a manipulator 

must consider both position and force control.  

Mason went on to develop a method for breaking down the natural constraints of ideal C-

surfaces and adding artificial constraints that the operator would like to enforce. The simplest 

example of this is a manipulator following the surface of a table. A natural constraint is that 

the velocity of the manipulator in the direction that is normal to the surface of the table must 

be zero since it cannot move through the table. An artificial constraint constrains the velocity 

normal to this natural constraint, i.e. the velocity that moves the EEF along the surface of the 

table, to the desired velocity. Mason’s efforts to create this language describing contact tasks 
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was meant to allow future work of synthesizing control strategies that enforce these natural 

and artificial constraints. 

 

2.2.2 Hybrid Position/Force Control   

Active researchers proposed two methods for achieving compliant motion in the early 1980s 

which are still used today. First, Raibert and Craig developed hybrid position/force control 

[16]. Raibert and Craig took the direct logical step from Mason’s formalized constraints to 

synthesize a control strategy. They set up a Cartesian frame that described the natural and 

artificial constraints and used it to pick directions controlled by explicit position control and 

directions controlled by explicit force control. Then, they developed a method of 

transforming these control requirements to direct control of each individual robot joint. This 

method can be seen in equation 2.1.  

              𝜏𝑖 = ΣNj=i {Γ[𝑠𝑗Δ𝑓𝑗]+𝜓𝑖𝑗[(1−𝑠𝑗)Δ𝑥𝑗]} …………………………..(2.1)  

where 𝜏𝑖 is the torque applied to the ith actuator, N is the number force controlled degrees of 

freedom in the Cartesian reference frame plus the number of position controlled degrees of 

freedom in the Cartesian reference frame, Δ𝑓𝑗 is the force error, Δ𝑥𝑗 is the position error, Γ𝑖𝑗 

is a force compensation function, 𝜓𝑖𝑗 is a position compensation function, and sj is a binary (0 

or 1) vector that indicates which degrees of freedom are force controlled [16]. The equation 

takes the Cartesian force and position control efforts and maps them to the torque required to 

be applied to each joint to accomplish the control goal. Raibert and Craig implemented the 

controller on a 2 axis Scheinman manipulator to show that the controller was feasible and 

stable. However, it is important to note that Lipkin and Duffy refuted this method in 1988 

because it is “based on the metric of elliptic geometry and is thus non invariant” with respect 

to Euclidean collineations and change of Euclidean unit length [17]. Lipkin and Duffy, along 

with others proposed new invariant hybrid position/force control methods to attempt to solve 

the issues reported with Raibert and Craig’s version [17] [18] [19].  

2.2.3 Impedance Control  

 

The literature usually groups the other method of achieving compliant motion into a category 

called impedance control. Though there are many different control schemes thrown into this 

one category, e.g. stiffness control [20] and admittance control [21], the term impedance 

control comes from Hogan’s work in the field [22]. Hogan pointed out that while in general 
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absolute control of EEF position is desired, no controller can make up for the fact that the 

robot in contact with a physical system must behave according to the physical laws of the 

combined system. For this reason, the controller should command the desired motion of the 

manipulator, but also help it to react to disturbances that it encounters. According to Hogan, 

in impedance control “the controller attempts to implement a dynamic relation between 

manipulator variables such as end-point position and force rather than just control these 

variables alone” [22].  

                  In Hogan’s implementation of impedance control, he derives the following 

equation (2.2) for the desired relationship between the contact force and the dynamics of the 

system.  

                  𝐹𝑖𝑛𝑡=(𝑋0−𝑋)+𝐵(𝑉0−𝑉) − 𝑀𝑑𝑉/𝑑𝑡      ………………………….(2.2)  

where Fint is the “interface” force, K is and adjustable stiffness variable or nonlinear function, 

B is an adjustable damping variable or nonlinear function, (𝑋0−𝑋) is the difference between 

the commanded position and the actual position, (𝑉0−𝑉) is the difference between the 

commanded velocity and the actual velocity, and M is the inertia tensor of the manipulator. 

Therefore, according to Hogan, the equations of motion for the manipulator coupled with the 

environment are seen in equation 2.3.  

(𝑀𝑒+𝑀)𝑑𝑉 = (𝑋0−𝑋)+𝐵(𝑉0−𝑉)+𝐹𝑒𝑥𝑡           ……………………………………… (2.3)  

       𝑑𝑡 
where Fext is the external force, or the force that the manipulator will need to apply to 

maintain the desired dynamic behavior, and Me is the inertia tensor of the environment. In 

order to implement equation 2.3, one must have precise knowledge about the inertia of the 

environment and robot.  

 

2.2.4 Bridging the Gap between Hybrid Control and Impedance Control  

While the initial efforts by Raibert, Craig, Hogan and other early pioneers of compliant 

control individually gave a few possible solutions to the problem of controlling force and 

position together, researchers eventually realized that by combining the efforts there might be 

an even better solution to the problem. In 1988, Anderson and Spong applied these two 

methods to one control strategy and called it hybrid impedance control [23]. Not only did the 

control combine impedance and hybrid position/force control, but it also implemented an 

outer/inner loop of control so that the compliant control may be done separately from the 
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inverse dynamics calculations. Lui and Goldenberg studied this control method further in 

1991. They made it more robust by the use of the computed torque technique and a PI control 

law to compensate for model uncertainties [24].  

2.3 RECENT FORCE AND COMPLIANT CONTROL EFFORTS  

Since the early 2000’s, a dramatic increase in computing power and expanding robot 

infrastructure have influenced efforts to improve force and compliant control in the literature. 

With the rise of faster computers, the academic community has renewed its interest in more 

advanced control methodologies and design that allow for greater robustness and stability, 

especially in cases of uncertainty. This resurgence has also included the fields of artificial 

learning, and neural networks. Recent literature in the field of force and compliant control 

schemes mirrors these advances in the state of the art of control and computing.  

One issue with the original idea of impedance control is that there will be uncertainty in the 

robot model and especially in the model of the environmental stiffness. This issue makes it 

difficult to perform robust force tracking. Jung proposed a force tracking impedance control 

scheme that uses an adaptive control philosophy to adjust the velocity profile during motion 

as a function of the force error [25]. Jung showed that this controller works well in unknown 

environments and when the environment stiffness is abruptly changed. Researchers have also 

made similar efforts for adapting to unknown parameters using neural networks. In [26], a 

neural network is used to adjust an impedance controller for unknown environments. In [27] 

a neuro-adaptive controller is used to track position and force along a flat surface with non-

parametric uncertainties in the models of the robot and environment. Another innovative 

advancement is the use of model-free reinforcement learning and optimal control to learn 

variable impedance for a robotic system. Buchli [28] developed a method to allow a robot to 

learn variable impedance so that the robot may be compliant when able, yet stiff when 

required. Lee [29] took a biological approach to impedance control. By looking at the way 

humans interact with objects, Lee developed a control algorithm that adapts the arm stiffness 

based on the force error and interestingly even allows for negative stiffness.  

Researchers have also made many efforts to enhance robustness of impedance control. Jin 

[30] used time delay estimation and ideal velocity feedback to allow for nonlinearities in 

robot dynamics without actually modeling them. He showed that the controller improves 

robustness in cases involving nonlinear friction and allows for relatively simple tuning. 

Another approach using time delay estimation, [31], attempts to improve robustness without 
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sacrificing accuracy using internal model control. Another example of an effort to enhance 

robustness can be found in [32], where researchers attempt to improve robustness of task 

space impedance control on a redundant 7 degree of freedom (DOF) manipulator. Kikuuwe 

[33] attempted to deal with robustness in cases where the robot actuators become saturated by 

using a proxy-based sliding mode controller. According to the author, this saturation can 

result in “undesirable behaviors such as oscillation, repeated overshoots, and instability” [33].  

 

The literature shows that compliant control is a very mature topic dating back to the late 

1980’s. Research has been done on both passive and active compliance, and even passively 

compliant devices that actively change their stiffness. Active compliance has advanced to 

learn and adjust compliance automatically for specific tasks. The real barrier between the 

academic research and industrial application is generality. While researchers have studied 

these learned compliant behaviors in academia and applied them to specific situations, a 

factory worker, or even a non-expert programmer, cannot program a commercially available 

robot to behave in this manner. Until roboticist develops general, non-task-specific, 

applications of active compliant control to be easily adopted into the current state of 

industrial automation, most industrial automation processes will be limited to the traditional 

learned position procedures that industrial automation has used since the invention of the 

Unimate. 
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2.4 Advent of Robot Operating System 

 

Robot Operation System (ROS) came into development in 2007 at Stanford Artificial 

Intelligence Laboratory [34] with Willow Garage taking its active development and 

maintenance from 2008 to 2013. The goal behind the creation of ROS as explained in the 

official ROS documentation is 

 

                                  “ROS (Robot Operating System) provides libraries and tools to help 

software developers create robot applications. It provides hardware abstraction, device 

drivers, libraries, visualizers, message-passing, package management, and more. ROS is 

licensed under an open source, BSD license.” 

 

The design choices behind the architecture of ROS and the initial collaboration of 20 

universities are most likely the reason that leads to the initial adoption. The framework was 

easier to use, code was reusable by design, and the level of abstraction between the hardware 

and software allowed researchers to quickly adopt the framework to their required use. One 

of the reasons for continued adoption of ROS can be attributed to the ROS Community and 

open source availability. 

 

As more and more researchers and labs started using ROS, hardware agnostic code that was 

readily usable began pouring in. The "Reinventing the wheel" was no longer necessary by 

adopting ROS. This alone was a good enough reason for many to start using it. Thus the ease 

of usage, being open source and a node based architecture lured many researchers in, who 

eventually created packages that further lured more people in. The cycle continues to this 

day, with ROS being the popular choice among the many robotics communities worldwide. 

At this point, ROS has more than several thousand packages for different types of robot and 

sensory applications, available free and open source in the ROS community. 

 

           ROS is a very popular architecture across the world as of now and its adoption rate is 

quite impressive [35]. The demographic (Figure 2.4) shows the usage of ROS across the 

world a few years ago in the all major continents with thousands of research labs using ROS 
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as a development environment. The usage has definitely increased from then as researchers is 

South Asia specifically started adopting.   

 

 

 

Figure 2.4: Usage of ROS demographics as of 2011 

 

2.5 SUMMARY OF LITERATURE REVIEW  

 

Researchers developed the fundamental ideas used in modern applications of compliant 

control in the early 1980s. Most force and compliant control, even in modern systems, 

revolves around force/position hybrid control, impedance control, or some combination of the 

two. Although the initial theories rely highly on setting up the task space and knowing a 

precise model of the robot dynamics and the environment, later research expanded compliant 

controllers allowing them to learn stiffness and function in uncertain environments. Rapid 

advances in computing technology led to resurgence in the fields of control and artificial 

intelligence. The robotic community used these advances and integrated them into the 

ideology of compliant control. 

 

 

 

 



17 
 

 

 

Chapter 3 

                                                                     

  Problem Description & Challenges 
 

3.1 Overview 

In this chapter we present to the reader the problem that we try to solve; the scientific 

importance of it and the difficulties behind it. Robot control is essential in robotics and in the 

current scenario where there is burying need for cooperative manipulation [] it is essential 

that the robot motion is compliant as possible. We are focused on a targeted setup problem. 

In particular we are interested in designing a simulation environment depicting a master slave 

teleoperation thus controlling a slave manipulator when interacting with an environment.  

                With the increasing complexity of tasks that are required of manipulators contact 

with the environment has become more common whether we are seeing robots working in 

hostile environments or in medical applications these days interaction control is of significant 

importance. Additionally, applications for robots have expanded beyond traditional industrial 

settings into close human environments. There is a large need for Physical interaction 

between robots & the humans, and hence the environment has to be taken into consideration. 

Therefore controlling the robots trajectory solely using position control approach will end up 

in damaging the environment or the manipulator itself. Thus control strategies should be 

designed that deal with these situations in a safer way & performing the required task. 

The motion of a robot when it is in contact with the environment is often referred to as 

constrained motion as the motion is not free but rather constrained by the environment [54].  

For the presence of environmental constraints the control scheme that have been adopted are 

often referred to as compliant motion control strategies since the robot must be controlled in a 

manner that is responsive and compliant to the environment [55]. The goal of these control 

strategies is to successfully perform the desired tasks without compromising the robot or the 
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environment. While being constrained by the environment the robot must control the motion 

and contact forces simultaneously and responsively. 

3.2 Problem Description 

The problem statement has been already stated in the chapter 1 under section 1.2 

Main objective of my thesis was to incorporate Robot Operating System as the underlying 

platform for designing a simulation in Gazebo in order to visualize the teleoperation of a 

serial manipulator and studying its control of interaction when the end effector is making a 

valid contact. 

                  Thus it is required to assemble a ROS (Robot Operating System) software 

package for controlling a serial-chain robotic manipulator in Cartesian space using positional 

data from the robot & force-torque (FT) data from the FT sensor at the wrist of the robot. The 

software bundle should be capable of reusing existing functionalities (sub-packages) to take 

the full advantage of the built-in modular approach of ROS framework. To make different 

software packages work which were originally not meant to work together or with particular 

robot, can be challenging in many cases. ROS certainly helps to overcome many hurdles but 

we also need to bear in mind that it is difficult to make fully hardware-independent software 

but in doing that inside a simulation environment some assumptions & generalizations 

needed to be made. 

                             In order to combine already developed ROS packages and make them 

function together, improvements have to be done to existing solutions. Furthermore, profound 

understanding of how current software packages work is a prerequisite for enhancing and 

binding different modules. To use some existing packages in my work needed some tweaks 

accordingly. In addition to these technical modifications, various of functional adjustments 

has to be done to extend the stability and compatibility of contact control framework that will 

be discussed in section 
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3.3 Open Problems in the selected area of work 

The goal of Teleoperation is to allow a user to remotely control a slave robot through a 

master device while maintaining some degree of transparency from the remote environment. 

Such a system can be of great potential, but the challenging task is to connect master and 

slave module in a coherent manner. While the master module is run by a human operator, the 

slave module (manipulator) is often present in an unknown and dynamic environment. The 

nature of interaction between a robot & the environment has a great influence in the overall 

system performance. 

For successful teleoperation of a robot arm when the arm is acting as slave and control 

signals are provided by the user from the master end a using joystick or keyboard three main 

criterions that determine the performance of a teleoperation process. They are transparency 

time delay and stability. 

As long as the slave manipulator is moving in free space and the motion is not constrained 

telepresence in term of transparency can be maintained by using visual feedback of the slave 

side using any vision system. Our interface has that facility as the user can get a view of the 

world in the slave side and thus using visual feedback change the end effector trajectory 

accordingly( refer to chapter 5). But as soon as the arm interacts with an environment 

transparency refers to the capability of the telerobotic system to make the human operator 

feel as if directly interacting with the remote environment. It is considered that the remote 

environment is expected to be unknown. Some approximations need to be done in order to 

model such remote environment and therefore, environment modeling is also an important 

part in teleoperation based interaction control. Master slave systems are usually kinematic 

dissimilar which leads to a coupling in the task space. The master device sends pose 

commands to the end effector of the slave manipulator. This requires a precise solution of the 

slave IK problem. Force feedback capabilities should be actively present in the system such 

that the user can feel the environment in a much more interactive manner especially needed 

for medical applications. This has to be achieved using bilateral teleoperation [ ] where there 

is force-force analogy between the master and the slave units. There should be local force 

control on either side of the system. However, in practice these conditions are not easily met 

especially, when the frictional forces and modeling error are taken into consideration.  
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Another inherent characteristic of teleoperation systems is the time delay in the 

communication link. For active force control techniques which fully depends on control loops 

this problem can be significant. 

In order to achieve telepresence transparency of the teleoperation system has to be realized, 

i.e., accurate position tracking while operating in in free space and force or impedance 

matching during interaction 

One difficulty in controlling robots in contact involves maintaining stability. In particular, 

instability arises during contact with stiffness environments [6]. Since the system response to 

contact forces must be fast in this case, sampling time is often a limitation when 

implementing a stable controller. Also, the environment that is in contact with the robot is 

typically not easily modeled. 
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3.4 Challenges faced during our design: 

The objective of robot teleoperation is to move the end effector in the Cartesian space (world 

frame) by using a user interface like joystick or keyboard. 

My design uses a virtual joystick interface for controlling the end effector in the world frame. 

The virtual joystick interface is based on the ros_qml package []. However the interface could 

only publish twist messages as it was originally designed to maneuver a differential drive 

robot. In order to make that interface to actually move our manipulator’s end effector 

separate ros node is written that takes in account of kinematics of the robot involved uses the 

ROS’s inbuilt IK solver and MoveIt for motion planning to actually move the robot in 

Cartesian space. 

Instead of using a position or a velocity controller for the actuation of the joint of robot model 

in gazebo, Effort controllers can be used to control the individual joint. In that case gravity 

compensation techniques need to be implemented in order to drive the individual joints 

against the gravity acting down.  

When a force torque sensor is affixed with the wrist of a simulated robot force sensor will 

make false readings as it is takes into account of the weight of the last link. In order to 

compensate for that a virtual link is defined inside the robot description format which is used 

to compensate for the weight of the last link. A force control loop can be also used to 

compensate for the weight of the link. 

Our design did not have active force feedback capabilities hence to teleopearate the robot arm 

in Cartesian space using contact force data we had to rely on the real time GUI that ROS has 

based on rqt. If the end effector is pointing down along Z axis and making an interaction with 

the environment a response of reaction force along the Z axis can be used to identify any 

sorts of contact with the environment. 

To reduce complexity we have only used translational force values for force calculations  

Lastly to simulate a virtual mass spring damper system or mass less spring damper system 

inside gazebo in order to simulate it as a compliant surface for testing interaction control. A 

custom model is defined in gazebo having its mass damping properties set accordingly. Also 

the object can be simulated as prismatic joint to visually see the spring like effect when the 

robot makes a contact with the object. 
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Chapter 4 

                                                                     

  Approach & Implementation 
 

4.1 Overview 

In this chapter, we describe the approach of this thesis by presenting the main ideas to reach 

our goals by designing a simulation environment and trying to control a simulated robot arm 

in a remote location using teleoperation. The robot is made to interact with a virtual object in 

the environment. The goal was to successfully design a master & slave unit running parallelly 

in real time taking into account certain design aspects: 

 

• Realistic simulation - The realism can be defined by the similarity of sensor data and 

consequences of robot actions between simulation and reality. The realism of the 

simulation has many different aspects. The first group of aspects is about the realism 

of sensor data. Gazebo which is an open source 3D robot simulator enables us to 

simulate real time sensors in our case a force/torque sensor to get the interaction at the 

contact point when the robot meets any environment. Also, Gazebo with ODE (Open 

Dynamics Engine [36]) also provides high realism out of the box. Nevertheless, it is 

important to find good physical parameters for the simulated objects. Examples of 

those parameters are the mass and coefficients of friction. Another important aspect of 

simulation-realism is that the simulation should not introduce new problems which do 

not occur in reality. Such a problem, which occurred in the development of the thesis, 

is that the simulation ran slower than the system time as the robot software used the 

system time. This may cause a time delay in real time teleoperation especially when 

the robot is in a constrained environment. 

• Different levels of simulation: Sometimes, it is also useful to test with a more 

abstract and less realistic simulation. This allows testing the optimal case without 

sensor noise or without using low level components, such as localization, if those 
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produce new errors or are not finished yet.  We use multi-level abstraction for sensing 

and for actuators. How we use multiple abstraction levels is shown in the next section 

about the architecture.  

 

Building an experimental robotic setup can be a very difficult, prone to hardware faults and 

expensive process. A common way to overcome some of these problems is to model a part or 

entire system in simulation environment. Moreover, it comes handy to model hazardous or 

inaccessible sites using virtual environments. However, implementation of teleoperated 

robotic systems with force feedback manifests additional problems. The human robot 

interfaces should exist in hardware and this in turn requires simulated system to work in 

proximity with a real-time. 

      With the objective of our thesis described in chapter 3, we describe a successful 

implementation of such a system in Gazebo simulator with Robot Operating System. We 

simulate an experimental setup having a master side which is to be operated by a human 

controlling a slave side having a serial robot arm that is teleoperated to interact with a virtual 

object. Since the complete setup runs on Gazebo writing the software plays a major role in 

my thesis. This chapter presents to the reader the software implementation process that 

includes software requirements & architecture, technical requirements & architecture, 

structural architecture. Once such a setup is ready this can serve as a platform for 

experimental validation of robot interaction related problems. 

 

4.2 Software implementation  

4.2.1 Objective  

The main objective of implementing software is to make our design usable, configurable and 

hardware-independent as much possible. Finally, a link between user and robot control 

software has to be made, meaning graphical and/or physical user interface acts a human robot 

interface that should be easy to understand and intuitive enough for the user to use in real 

time communication with robot. 
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4.2.2 Requirements  

This section describes a number of requirements that the software package should fulfill. 

Identifying the requirements for software system is essential part of the development process 

4.2.2.1 Functional requirements  

The purpose of the software under development is to make it possible to use compliant 

control on a serial open-chain manipulator as in our case. Moreover, the human input for the 

robot should be easily understandable in the form of Graphical User Interface (GUI). The 

requirements that describe needed functionalities of the software are following:  

General movement control- To control the robot in the first place, it needs jogging 

capabilities, meaning that the software should be able to control robot’s EEF Cartesian space 

relative to known reference frame. That includes capabilities for forward and inverse 

kinematics solving.  

Manual control abilities through some external device (e.g. keyboard, joystick-. This is 

needed for testing the robot, for cooperation capabilities and other applications, where 

manual position control of the robot’s EEF is needed.  

Processing force-torque data- Should be capable of receiving raw data from robot’s low-

level controller and/or from driver. As various manufacturers implement their robot’s FT 

sensitivity differently, the filtering functionality should be configurable. For our case the 

sensor is a simulate one so filtering was not done.  

Compliant, position/force control rules-The method for converting or generating jog 

commands (velocity commands) from FT data depending on different predefined control 

rules. In my case only position based force control is being implemented.  

Graphical User Interface (GUI) - The user should be able vary parameters of the object being 

manipulated. To change the degree of compliance 

4.2.2.2 Technical requirements  

Technical requirements include the different prerequisites on ability of the software. The 

requirements are brought out as described below:  
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ROS support-. In addition to fulfilling general ROS package infrastructure standards [36], 

interconnection capability with other ROS packages is necessary. Thus, every added module 

must contain some interface for communicating with it through some available ROS 

communication pattern, such as topics, services and/or actions [37].  

Performance specification- As the compliant position control happens in real time, the 

performance of the calculations is crucial. Although, the bottleneck of the performance might 

also be the controlling computer, the best effort should be made to minimize the use of 

computational resources, e.g. avoiding or limiting the use of thread sleep-functions, memory 

allocation and exponential complexity. For a robot manipulator to act as expected, the 

trajectory and forces processing calculations should be made around 50 Hz.  

Hardware independent- Hardware independency is one of the most important aspects of 

software in robotics. The fact that single software can be used with many different 

manipulators advances is of significant important. 

Software configurability- The software should be reconfigurable to facilitate hardware 

independent Different robot-specific variables can be changed externally modified without 

recompiling the code.  

Safety requirements. Despite the fact that most co-robots have safety functionalities 

integrated in controller level, another layer of safety features in higher level of code helps to 

assure that the system is safe to use. Safety features include ability of setting maximum force 

and torque parameters on individual axes as well as maximum velocity that the EEF of the 

manipulator could reach. Additionally, revival strategies from erroneous situations need to be 

defined.  

4.2.2.3 Requirements for the robot  

Most of the industrial robotic arms are similar to each other in term of their design and usage. 

For example, consider serial manipulators – all this type of robots share common 

functionalities and are conceptually same. Therefore, it would be logical that some software 

module responsible for certain common functionality should work on different robots. It is 

impossible to achieve ideal hardware independence, although it is possible to define certain 

rules that a hardware system has to follow, so it would be compatible with the software. The 

software used in the current thesis can be applied on a robot that meets the following 

requirements:  
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1. it is a serial open kinematic robotic manipulator;  

2. it has ROS support, meaning that there should be a compatible driver [38] for controlling 

the robot through well-known standardized ROS messages [39];  

3. compatible with ROS MoveIt! [40];  

4. A Force/torque sensor is used at the wrist and the driver of the robot should be able to 

publish wrench values. In our case force/torque sensor is defined as a joint inside the robot 

description to make the sensor publish the wrench values [41].  

 

4.3 Technical architecture  

 

In current subsection, various lower level architectural decisions, used in the development of 

the software, are stated and justified. 

Robot Operating System (ROS). ROS is widespread, active, and matured framework for 

developing robot software systems. Considering ROS’s advantages, such as various 

communication patterns between nodes, asynchronous nature and modularity, the decision of 

choosing ROS was straightforward. Also, enormous community and open source code base 

encouraged the choice even further. For current project, Kinetic distribution [42] of ROS is 

used since it is officially recommended release as of May 2018 

.  

C++ programming language. The stimulus for choosing C++ for fundamental programming 

language for the project derives from using ROS in the first place, as the framework as well 

as previous related projects is developed in C++. Furthermore, due to strict real time 

restrictions, C++ is optimal programming language performance wise. Finally, as C++ is 

object oriented language, it is intuitive to write and understand for software developer with 

moderate amount of experience.  

 

Publish-subscribe pattern. Due to robotic systems need for asynchronous operations, the 

publish-subscribe pattern for exchanging messages between nodes is used in certain cases. 

The patterns principle is that a node can subscribe or publish messages on previously defined 

specific topics and the communication takes place asynchronously.  
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Client-server pattern. Information transfer with a node, which provides return value after 

performing an action that was initiated by second node, requires client-server pattern 

(services and actions in ROS). This type of interaction is synchronous.  

 

4.4 Software architecture  

 

Software architecture can be classified into two related, but different, concepts. Architectural 

structure consist of subsystems and descriptions how the subsystems will interact with each 

other, whereas technical architecture (or architectural style) specifies different lower level 

techniques and concepts that underlie a given system. Unfortunately, in many existing robot 

systems, it is difficult to specify clear boundaries between different approaches and 

subsystems, meaning that the architectural structure is blurred and different architectural 

styles are tied together [43]. Consequently, clean and well-conceived architecture of software 

can have significant influence on the quality of the code. 

 

4.4.1 Software development process  

 

4.4.1.1 Developing principles  

 

It is important to clearly define the requirements of software development process. This helps 

to discipline the developer to design understandable, maintainable and scalable software and 

makes sure that every piece of programming could be useful in future and for wider 

community.  

 

Make use of any related available packages- Before starting to code functionally, it is 

sensible to look into already written software. Often, there is similar functionality already 

implemented and it just needs some adaption or generalization. Since ROS is open 

community and all the code is open-source, it is easy to contribute by improving previously 

written code.  
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Maintainability- Newly written code should be maintainable, which means understandable 

for other users. It is possible to follow some rules of clean code [44], including naming 

conventions, formatting conventions etc.  

 

Software design rules- Software should be designed modularly, so the modules are open for 

extension but closed for changes in functionality. This kind of approach ensures that the 

particular software is scalable. 

 

Documentation- Instructions for how to interface the different modules and using the 

software is very important for making the software open-community friendly. The purpose is 

to develop software for larger community and thus help robotics to grow faster in the means 

of reusability. 

 

4.4.1.2 Development tools  

The appliances for software development used by the author of this thesis can be listed as 

follows:  

➢ Framework for developing robotic systems. As described in section (Technical 

architecture), the software was developed using Robot Operating System (ROS) 

framework and its Kinetic distribution. In addition to architectural element, ROS can 

also be used as a development tool. It provides core functionalities, such as package 

management [45], code compilation tools and infrastructure [46]. Moreover, 

communication between nodes is standardized and the data transfer is accessible, thus 

debugging and monitoring of the code at runtime is practically effortless. There are 

number of tools available that are built for ROS that can be beneficial in system 

development process, including tools, described in forthcoming points. 

➢  Simulation environment Gazebo [47] was used during the project. Newly written 

code might be unstable or even dangerous for robots or surrounding environment, 

thus it is sensible to test the code in simulation environment before launching it on 

real robot manipulator. Gazebo is excellent fit for this kind of task being compliant 

with ROS and 3D URDF models are available of both robots used in this project.  

➢ MoveIt! is a set of software packages integrated with ROS. Along other capabilities of 

MoveIt! there is analytical kinematics solver, which is one key component of current 
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thesis’s software. Additionally, it provides move group interface which is used for 

sharing information and giving commands about robot’s pose and state.  

➢ Operating system (OS) that was used in this project is Linux distribution Ubuntu 

16.04 [48]. The OS was used for both, running as well as developing the software for 

manipulators. The main reason for choosing Ubuntu was ROS’s prerequisites, 

meaning that the Kinetic version of ROS will run only on corresponding OS. Ubuntu 

is also an ideal environment for writing and managing code, as it supports several of 

IDEs. Again, it is perfect for controlling robot manipulators, because it is possible to 

install real-time kernel for low latency communication.  

4.5 Structural architecture  

 

A modular approach has been taken when designing current system. In ROS, software is 

always organized into packages. A ROS package is an entity that contain library can contain 

library, dataset, configuration files, launch files, makelists  and other  logically useful set of 

elements. The aim is to assemble everything into a single package, to maintain scalability and 

reusability of the packages. Besides, the modularity of the developed software is successfully 

attained by reusing already available packages and the modular nature of ROS.  

 

Fig 4.5 Structural architecture scheme of the software package 
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The schematic of the structural architecture of the software bundle has been shown in Figure 

4.5. It shows the interaction and dependencies between different modules involved in the 

system. In order to clarify the functionalities, main purpose of each component is now 

described. Contact control package holds contact control node, which processes force control 

and impedance configuration data from user and passes it on to ContactControl class. Contact 

control node acts as a middleware between the GUI and ContactControl class. It helps to 

change the format of the data & acts as a bridge between the two. Contact control package 

includes ContactControl class, which receives the force/torque (FT) data from robot’s 

force/torque sensor using ft_sensor topic and sends velocity commands to jog_arm package 

which then to the controllers of manipulator. The jog_arm package  includes jog_arm_server 

node that handles kinematic calculations, in order to move manipulator’s EEF in Cartesian 

space and continuously publishes joint trajectory messages to robot’s positional controller. 

The path_planning package is helper package that can be used for path planning of the robot. 

MoveIt! package is used as an interface between manipulator’s driver and the rest of the 

functionality. Essentially, MoveIt! package provides other components with 

MoveGroupInterface that communicates over ROS topics, services and actions to the 

move_group node which then provides other modules with kinematic data, such as robots 

current pose. The TF package [49] is used for retrieving and computing transformation 

between robot individual frames, such as fixed base frame and EEF frame. It ensures the 

functionality even when different robot controllers expect velocity data in different 

coordinate frames. Final part of the scheme is robot driver package which is always robot-

specific and contains the hardware driver, MoveIt! configuration and relevant configuration 

files that override default configuration. 

 

4.5.1 Moving manipulators’ EEF in Cartesian space  

 

Controlling the manipulator’s EEF in Cartesian space is not an easy task because it requires 

real-time kinematic calculations to convert between joint space and Cartesian space of the 

manipulator. Initially, joint level pose is received from manipulator joint’s states using 

Joint_State Package; forward kinematic calculations are to be performed to get the POS of 

the EEF in Cartesian space. All the velocity calculations are then done on the EEF. In order 

to translate the new EEF velocity back to joint space velocity inverse kinematic calculations 

are needed. 
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However, there are manipulators that do have this kind of functionality already implemented 

at controller level, so next level of code just has to provide Cartesian space EEF velocities. 

Otherwise, joint-level velocities need to be calculated on a higher level. The jog_arm 

package [50] provides such higher level joint velocity calculation. It includes jog_arm_server 

node that subscribes to Cartesian velocity data and publishes joint space velocity data. The 

package uses MoveIt! for real-time kinematic calculations.  

During current thesis, the jog_arm package was used for controlling UR5 manipulator inside 

the simulation environment. 

` 

4.5.2 User interfaces  

 

In order to communicate with manipulators’ controllers at runtime, a user interface makes 

things lot easier. The user interface can be divided into graphical (GUI) and physical  (PUI) 

interfaces. During current thesis project, both approaches have been used and worked upon  

PUI was mainly used for testing manipulator EEF movements in Cartesian space and 

manually controlling the manipulator joints & torques. Two options for moving the 

manipulator through PUI are kept – joystick and keyboard. Joystick interface functionality 

was already available in jog_arm package but for simulation we have used a virtual joystick 

interface.  The virtual joystick was designed on QT platform and a part of ros_qml [51] 

package was used here for communication with other ROS nodes. Along with a virtual 

joystick, an interface through keyboard had to developed, thus keyboard publisher package 

[52] was developed. The key_to_twist node in this package translates key presses into 

velocity commands. The above mentioned node was also used inside the virtual joystick 

package. 

GUI is designed to vary certain parameters and control rules to corresponding node at 

runtime. For this purpose, manipulator_control_gui package was designed. The GUI is 

developed using rqt, which is ROS a wrapper for QT toolkit [53]. The package was written to 

provide intuitive graphical interface for applying different control laws and vary certain 

parameters. It has been designed such that full customization for every parameter is possible. 

All the communication between GUI and contact_c_node is done using ROS service calls. 

The GUI is still in the developing phase and not fully functional. 

 

The next chapter presents in details about the design and shows a framework of the 

developed design. 
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Chapter 5 

                                                                     

  Design & Development 
 

The previous chapter describes the approach taken and ways to implement the proposed 

simulation to design a master slave teleoperation of a serial robot manipulator and control its 

interaction with a virtual object. The current chapter presents in details about design of the 

simulation components. 

 

5.1 Simulation Environment: 

With real-world applications in our mind and the fact that it is necessary to integrate program 

interfaces with a real hardware we chose the Robot Operating System (ROS) as underlying 

platform and used Gazebo for designing our simulation system. As we know ROS is not an 

operating system in true sense but rather a software framework that brings/facilitates the 

various hardware components, such as sensors and actuators, by means of very well defined 

structured communication layer above the hosting operating systems [48]. 

 

In the following list we will highlight some of the concepts used by ROS.  

• Nodes are the run-time processes. Node can be a pure computation process, e.g. calculating 

inverse kinematics of a robot, or a driver for a sensor or actuator. Usual robot setups consist 

of many nodes. 

• Messages are the data structures comprising typed fields. Nodes communicate with each 

other by means of messages. A message can consists both of basic data types (integer, 

floating point, boolean etc.), arrays and data structures themselves. 

• Topics are named and strictly typed message buses. Any node can publish/subscribe to a 

topic and send/receive messages as long as they are of a right data type. 
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• Packages are the main unit for organizing software in ROS on the level of file system. A 

package may contain nodes, plugins (shared libraries), datasets, configuration files, or 

anything else that is usefully organized together. 

• Stacks are collections of packages that provide an aggregated functionality, for instance, 

navigation or image processing algorithms and routines. 

 

5.2 Components of the Simulation 

Our implementation of the system (figure 5.2) in Gazebo and ROS consists of the following 

components: 

• Contact force node: provides interface to display the contact force generated during 

interaction. 

• Teleoperation node: provides the mapping of the local coordinate frame of a virtual joystick 

to a global frame of the virtual environment. This node is in charge of the motion scaling and 

indexing as well as switching between the modes of teleoperation, e.g. ‘Direct Force Control’ 

& ‘Position Control’) of the virtual slave manipulator. 

• Virtual Slave node: presents the slave manipulator as a single slave to the master site. It 

provides control decomposition routines. 

• GazeboRosControllerManager plugin: provides CM interface for JT Cartesian Controller in 

Gazebo. 

• JT Cartesian Controller: calculates inverse dynamics of the robot  

• FT Sensor plugin: provides ROS interface for forces and torques calculated by physics 

engine in simulation. 

• Camera plugin: simulates the cameras located in a virtual environment and provides ROS 

interface for image visualization tools. 
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Figure 5.2 Intercommunication of numerous components of the system is outlined  

 

Brief description of all the components: 

Contact force node: The role of contact force node is to accept force and torque data from the 

FT sensor at the wrist of the robot and determine the appropriate velocity commands that 

reduce undesired contact forces on the robot and the manipulated object. This is based on the 

GCCF  

Teleoperation node: provides the mapping of the local coordinate frame of a virtual joystick 

to a global frame of the virtual environment. This node is in charge of the motion scaling and 

indexing as well as switching between the modes of teleoperation, e.g. ‘Direct Force Control’ 

& ‘Position Control’) of the virtual slave manipulator. 

Virtual Slave node- loads the robot URDF file into the ROS server and spawns the respective 

joint controllers using the defined ROS transmissions to actuate the arm . Also it loads the 

trajectory controller for the manipulator which is used to take position & orientation values 

from the user end. 
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FT Sensor plugin: A simulated force/torque sensor is used at the wrist of the robot to measure 

the contact forces at the point of interaction. The plugin is written in c++ &provides ROS 

interface for forces and torques calculated by physics engine in simulation. This plugin can 

get the force/torque data, manipulate it, and output it to destination ros topic in our case sends 

it to the contact_force node. 

 

5.3 System Architecture:  

Robotic systems are often based on an ROS (Robot Operating System), which is widely 

accepted 

as the standard framework for robotic system development. ROS helps to develop a robot 

easily by adding many ROS packages to a software stack. ROS itself is one example for a 

modular system, as different ROS packages can be combined in a modular manner.  

 

Our simulated system consists of two main components broadly. One is a master devise 

working as Node in ROS environment and a virtual slave robot working as a different node 

both are connected to ROS server & can communicate over topics or can interact with each 

other using ROS actions/services. Master devices are represented by a virtual joystick and 

GUI for communication with the slave manipulator. The virtual joystick is used to give 

commands to the slave robot in terms of position trajectory whereas the GUI is used for 

varying the environmental (virtual object’s) parameters like stiffness or damning used during 

the interaction control.  

As a result of a high popularity of ROS in the robotics research community and due to its 

modular nature most of the components that are necessary to implement in our system are 

available in the repository. For instance, one of the key components in our simulation – a 

model of UR5 manipulator is available from universal_robots stack under ROS-Industrial 

program and was adopted with some modifications. Our system requires measuring the 

contact forces when the robot EEF interacts with an environment. In order to do that a 

force/torque sensor is used at the wrist of the robot. Gazebo permits to write custom plugins 

in order to incorporate a force/torque sensor working in real time. A detail description about 

modeling the sensor has been discussed later on. ROS understands a robot model specified 

only in URDF which is written in XML language. To use a force/torque sensor it has to be 

included inside the main robot URDF file also and defined as child link to the last link of our 

http://wiki.ros.org/action/fullsearch/universal_robots?action=fullsearch&context=180&value=linkto%3A%22universal_robots%22
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robot which is wrist_3. This is the conventional process of placing a sensor with the wrist of a 

manipulator. The F/T sensor is purposely defined as joint in the URDF file to facilitate ROS 

inbuilt joint_state_publisher package to publish the wrench values at the point of contact. 

However, Gazebo model itself is just a set of rigid links connected by joints. In order to 

actually use them as actively controlled actuators an appropriate controller has to be designed 

Here, it is very easy to see the demarcating line between ‘bare hardware’ (Gazebo) and 

controlling software (ROS). The model of manipulator presents a passive articulated object 

with a set of dynamic properties such as inertia, mass etc., which is unable to move by itself. 

In general a real manipulator would have the same properties and therefore control 

algorithms developed on the base of simulation can be transferred to the real hardware 

without major changes. 

To simplify development of the robot controllers ROS provides a special interface by means 

of PR2 Controller Manager (CM). Despite its name CM can be used with any robot that is 

possible to define with Unified Robot Description Format (URDF).PR2 Controller Manager 

is a vital component of the system. It builds abstraction layer over hardware actuators 

whether it is a real actuator or a simulated one. While the pr2 controller manager package 

provides the infrastructure to run controllers in a hard real time with real robots the 

GazeboRosControllerManager provides the same interface for controllers in our simulation. 

The Gazebo ROS Control web page should be referred for the more details. 

The actual work flow for our system has been shown in the previous chapter under structural 

architecture column. 
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5.4 Design of Master and Slave nodes in Gazebo 

 

Figure 5.4 Screenshot of Slave Manipulator with the controllers loaded inside the Gazebo 

world 

 

Figure 5.5 Shows Virtual Joystick user interface 
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Figure 5.6a     Master Node                               Figure 5.6b           Slave Node 

 

5.4.1 Master Node: It is the user side view of the system. Thanks to parallel processing 

architecture of ROS the two nodes communicate over ROS topics using internet connection 

in real time which acts as the communication medium in this case. To make things easier a 

virtual joystick interface is made based on the ros_qml package that publish twist messages to 

control the robot end effector tip in Cartesian space. A separate set of program is written in 

C++ that takes into account of all the kinematic calculations to map the Cartesian space 

position & orientation into joint angles. It uses the inverse kinematics and differential 

kinematics as the end effector velocity is to controlled based on the individual joint 

velocities. Next it uses the MoveIt planning tool to move the robot end effector in real time. 

Using MoveIt facilitates all the inverse kinematics calculations due to its inbuilt topologies 

for handling those calculations. Also a separate user interface in form of GUI has been 

designed to vary the stiffness/damping of the virtual simulated environment in real time to 

vary the responses. 
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5.4.2 Virtual joystick Node:  Figure shows the virtual joystick interface. It has been designed 

using ros_qml package.The purpose of this interface is to publish twist messages to maneuver 

the end effector in the Cartesian space. For our simplicity the orientation of the last link is 

kept constant is kept unchanged to omit the torque measurements from our design. The 

sliders control scaling factors geometry_msgs/Twist message is published while the thumb 

position changes. Once the mouse button released the thumb goes back to center. It is based 

on the QT platform  

The ros_qml package provides Qt 5.4 QML plugin for integration with ROS. The plugin is 

written in Python and thus depends on PyQt 5.4. (A minimum version of Python 2.7 is 

required for compiling). 

 

5.4.3 Keyboard teleop node: Figure 5.10 shows the screen shot of keyboard teleop node. The 

teleop node is an open source code ROS package that takes input as keystroke from the 

keyboard and output the equivalent position & orientation of the end effector tip in the 

Cartesian space. It outputs the desired velocities to move the end effector accordingly. Also 

there is provision kept to change the control modes between joint space and Cartesian 

coordinate space. 

 

5.4.4 Slave Node:  It is the working side of our system that has the simulated robot 

manipulator with a fixed base and the virtually simulated environment. The manipulator 

selected is UR5 from Universal Robotics. Universal_robotics stack under ros-industrial 

provides all the necessary tools for interfacing the robot in the Gazebo environment. It 

contains packages that provide nodes for communication with Universal's industrial robot 

controllers, URDF models for various robot arms and the associated MoveIt packages. In 

order to use the above package to our use we have made certain modifications in the robot 

URDF file. Our design has a simulated force/torque sensor affixed with the wrist of the robot 

in our case it is the 6th link for the UR5 manipulator. Hence, the model for the sensor is added 

in the URDF file to make the FT link acting a child to the last link of the robot. Also the 

gazebo plugin for the force/torque is initialized for the sensor to actually work. The FT sensor 

is purposely defined in form of a joint to make use of ROS inbuilt capabilities to publish the 

force/torque data which is later subscribed by the contact_force node for viewing the 

interaction forces. The sensor modeling part is discussed in this chapter later on. The slave 

node also has the virtual object that is defined as a straight line fixed to the default plane in 

http://wiki.ros.org/moveit
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the gazebo world. It represents a mass less spring damper system that acts as a complaint 

surface for robot manipulation. 

 
                Master Node                                                          Slave Node 

 

                                  Figure 5.7   Slave side view from Master Unit/Node 

For a master slave teleoperation maintaining some degree of telepresence of the slave unit to 

the master side is highly demanded feature. Since bilateral force feedback is absent which 

could have improved the telepresence actively visual telepresence is provided to the user in 

the master side that so that the user can guide the tool tip independently from the master 

node. A camera is used in the gazebo world that streams the real time image when the system 

is running Figure show the screenshot of the above mentioned idea. 

In order to start communication with the UR5 in ROS, arm’s controller needed to be 

initialized in ROS. To do so, roslaunch ur_5_gazebo.launch. It immediately creates a node 

that starts to publish information about robot’s state. UR driver also subscribes to the 

follow_joint_trajectory topic to receive command from another ROS node. RQT graph for 

robotic arm is shown in Figure 5.8 
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Figure 5.8 UR5 in ROS computational graph 

 

 

ROS UR5 library was modified to remotely move the robotic arm into desired position. This 

program takes input as joint angles that the robot has to follow. The robot’s end effector was 

manually moved in the Cartesian space flowing inverse kinematics using the Fast IK solver 

package with the virtual joystick. In order to move the manipulator in joint space another 

.The robot can be also controlled via another node apart from the virtual joystick using 

keyboard_teleop (figure 5.10) which has two modes either the motion could be in the joint 

space or with respect to the Cartesian space. Incorporating the IK solver package with the 

following teleoperater nodes that takes into account of all the transformations motion of the 

end effector in the world space is achieved. To do that the file mentioned publishes the value 

of joint angles into follow_joint_trajectory topic that UR driver listens to. Graph for this 

system is presented on Figure 5.9 when the robot changes its state its gets reflected in the 

topic robot_state_publisher. 
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Figure 5.9 Computational graph for the arm following position received from master 

side 

 

 

 

 Figure 5.10 Keyboard teleop Node 
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5.5 Design of force sensor in Gazebo 

Force feedback implies using devices with the robot arm generally at the robot wrist placed in 

between the wrist & tool tip that are able to detect the forces at the point of contact. In our 

case the entire setup is simulated in Gazebo hence a 6 axis Force/torque sensor has to be also 

designed inside the simulation environment. Gazebo facilitates the simulation of a 

force/torque sensor by writing a plugin and incorporating that into the environment. 

Understanding the Force/Torque Sensor 

Generic properties 

5.5.1 Force/Torque specific parameters 

A force/torque sensor is created by adding <sensor> tag with the attribute type set to force 

torque. There are two additional parameters that can be set. 

<sensor name="force_sensor" type="force_torque"> 

  <force_torque> 

    <frame>child</frame> 

    <measure_direction>child_to_parent</measure_direction> 

  </force_torque> 

</sensor>  

<frame> 

The value of this element may be one of: child, parent, or sensor. It is the frame in which the 

forces and torques should be expressed. The values parent and child refer to the parent or 

child links of the joint. The value sensor means the measurement is rotated by the rotation 

component of the <pose> of this sensor. The translation component of the pose has no effect 

on the measurement. 

Regardless of this setting, the torque component is always expressed about the origin of the 

joint frame. 

<measure_direction> 

This is the direction of the measurement.  
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Adding a force/torque sensor to a link 

While the SDF schema allows a <sensor> tag to be placed on either a link or a joint, the force/torque sensor 

only works on joints.  

Modeling a Real Force/Torque Sensor 

The above example places a force/torque sensor on a revolute joint. However, real 

force/torque sensors are typically rigidly mounted to another rigid body. A real sensor could 

not measure the force and torque exactly at the revolute joint origin. Modeling this way is 

reasonable if the real sensor is close enough to the joint that the error from the offset is 

negligible. 

 

 

Figure 5.11 Connection of sensor to the link of robot 

If this error is not negligible, the rigid body can be split into two links with a fixed joint at the 

location of the real sensor. 
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5.5.2 Preparing sensor for work 

The simulated Force and Torque sensor is able to detect forces in three directions, as well 

as torques along corresponding axes. Maximam force that sensor can detect is 100 N, 

therefore, the maximum force that the arm can ensure at the end effector has to be set at 

100 N. This means that when this force is exceeded, robotic arm will stop executing the 

program and a message will be displayed on the terminal screen saying that force limits 

have been exceeded.  This is done as a safety feature in the simulation. If a real arm was 

being used instead it would go into STOP condition. This can be also included as a 

security system that helps to protect both the robot & humans around it.  

Before setting up the force feedback system certain design aspects have to be taken into 

account to make work easy and realistic as possible. 

First, it is obvious that the sensor to consider mass properties of the payload (in this case – 

the last link ). For our case we have considered the mass to be negligible inside the 

simulation. 

Second, the sensor needs  to automatically take gravity into account. This is very important 

feature, because it completely removes need to adapt program code to the gravity, which 

can include complex calculations indeed. If mass properties are considered it has to be 

compensated in the control loop. 

 

To view that the simulated sensor is actually publishing the force/torque data, arm’s end 

effector  is moved in the 3 orthogonal directions X, Y, Z sensor axis are pointing 

downwards in the Cartesian space Figure 5.12 
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Figure 5.12 Screenshot showing force/torque value in free space (contact 

force/moments= 0) 

 

Initially, force readings in 3 axes were equal to zero, because sensor readings were made 

to take gravity into account. After applying external forces, readings started change 

accordingly. The external forces & moments in our case are applied manually using 

ROS in built rqt GUI tool. Figure 5.13 shows a screenshot of rqt application with three 

plugins loaded, message publisher plugin, plot plugin and service caller. 

 

5.6 GUI based on ROS rqt 

rqt is a Qt-based framework for GUI development for ROS. It consists of 

parts/metapackages .  

rqt metapackage provides a widget rqt_gui that enables multiple `rqt` widgets to be 

docked in a single window. 

rqt is a software framework of ROS that implements the various GUI tools in the form of 

plugins. One can run all the existing GUI tools as dockable windows within rqt! The 

tools can still run in a traditional standalone method, but rqt makes it easier to manage 

all the various windows on the screen at one moment. 

 

http://ros.org/wiki/rqt_gui
http://wiki.ros.org/rqt
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Figure 5.13 rqt gui showing change in force values on manually publishing the force 

values 

 

Force and torque sensor works as a plugin that publishes readings for listener on the main 

station. When the robot URDF is loaded into the world the sensor starts to publish its values upon when 

made in contact. For our simplicity all the files are written in a single launch file as per ROS 

build tools. So launching a single file will start all the respective nodes accordingly. 

Sensor publishes data into /robotiq_force_torque_sensor node that /contact force node, 

which reads from and process it into positional  values (Orientation is kept unchanged ) to 

maintain the required force at the contact  of the robotic arm, the motion is kept along the 

surface. Hence the contact force is generated along the Z axis which is the normal direction 

in this case. Only force readings are considered during this work, therefore, Mx, My and Mz 

torques are ignored, as no change in orientation is considered. 
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5.7 Simulation of the virtual object for Interaction 

 
Massless Spring-Damper Object Environment 

 

We develop a virtual object being manipulated by the manipulator by applying forces on the 

end effector. These forces are generated by the difference between the length of the object vs 

the initial length of the object when the simulation started: 

 

Fi = v0,I    [Ke(Xe,i(t) - Xo) + Ce(Xe,i(t) - Xe,i(t-1))]                                       (5.1) 

       v0,i 

 

where Fi is the force on link i, Ke the stiffness of the environment/object, Ce the damping of 

the environment/object, vo,i the vector representing the object and its norm,     Xe,i(t)        the 

Cartesian position of link i at time t, Xe,i(t-1) the Cartesian position of link i at time t-1, and 

xo the initial position of link i at the start of the simulation. A rosnode is created that listens 

to the end effector positions, calculates the applied force (5.1), and applies the force on the 

two manipulators. 

 

 

Figure 5.14 ROS controller architecture with RViz simulation. Squares represent 

rosnodes and arrows represent rostopics for communication. 
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5.8 ROS Controller Architecture 

 

The controller was developed to work for both the RViz and Gazebo simulations. The ROS 

architecture of this controller interaction with RViz (Figure 5.14) and Gazebo (Figure 5.15) is 

shown below. The ROS software environment consists of rosnodes depicted by squares. Each 

rosnode is an individual process that performs computation where each node communicates 

with another node using ROS TCP/IP like communication called rostopics (arrows). This 

type of architecture reduces code complexity by reducing exposed API to other nodes. Node 

ur_controller represents the main controller which receives the Cartesian positions of the 

robot from the topic /ur_poses, calculates the desired Cartesian positions, computes inverse 

kinematics, and outputs the desired joint angles with the topic /joint poses 

 

Figure 5.15 ROS controller architecture with Gazebo simulation. 

. 

              The teleop node is an open source code ROS package [ ] that takes keystroke data 

and in this work, is modified to output x,y, or z desired Cartesian increments and x, y, z Euler 

angles increments with topic /robot/cmd vel. It also outputs an increment set force with the 

topic /robot/cmd force. A data collection node called ur listener receives link position and 

rotation data from the RViz or Gazebo simulation and publishes the data to ur controller. In 

RViz, it reads link positions and rotations using the tf library. In Gazebo, the topic 

gazebo/link states publish link positions and rotations. 

            Other supplementary nodes that launch with the RViz simulation are the joint state 

publisher which is a GUI to change the robot joint angles via joint states. Here this node is 

used as it was programmed to receive joint commands from other nodes. Robot state 

publisher is a node that contains the robot kinematic data from the URDF, receives desired 
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joint angle data from joint state publisher and publishes the correct position and rotation of 

each link of the robot to the RViz simulation. 

is a node that contains the robot kinematic data from the URDF, receives desired joint angle 

data from joint state publisher and publishes the correct position and rotation of each link of 

the robot to the RViz simulation. 

Other nodes developed to communicate with Gazebo are the gazebo controller node. This 

node is just complementary converting the rostopic /joint poses to rostopics that gazebo reads 

(top right of Figure 6.5). 

 

The environment node is the virtual object for Gazebo that simulates an elastic massless 

spring-damper that reads link Cartesian positions via gazebo/link states 

 

 

At the end of this chapter it should be clear to the reader about the various components of our 

simulation and how each one interacts with other in real time to perform the act of 

teleoperation of a slave manipulator for interaction with a virtually simulated environment. 
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Chapter 6 

                                                                     

  Testing &Results  
 

6.1 Initial testing  

 

In order to successfully test the software and its working a rough testing plan was prepared. 

The plan includes some test cases following by. The test plan is designed to cover all needed 

functionality while iteratively getting closer to real use scenario, where real robot is using 

data from the wrist sensor and uses a local force control at the slave side   

A number of different rqt plugins (Figure 5.13 chapter 5) [58] were used during testing:  

 

✓ Plot – for plotting and visualizing sensor and velocity data on graph;  

✓ Message publisher – for manually publishing various of data for testing purposes 

(e.g. FT data and EEF velocities);  

✓ Topic monitor – for monitoring published messages in real time;  

✓ Service caller – for manually communicating with nodes that use services;  

✓ Node graph – for getting overview of interconnections between ROS nodes; 

✓  TF tree – for viewing robots’ transformation tree to get the transforms for all the 

links 

 

The testing steps are following:  

1. Test master & slave communication in fully simulated environment. That means, a 

simulated robot is loaded into Gazebo and the FT data is published manually using rqt plugin. 

The purpose of this test is to confirm that GCCF functionality works.  

2. Test jogger on the simulated robot manipulator. That is to check by manually publishing 

velocity messages using keyboard interface. & twist messages using the virtual joystick node. 
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The aim of this test is to assure that the controller can move its EEF linearly in Cartesian 

space.  

 

3. Test contact control package on simulated robot. Purpose of this test is to see how the 

robot may respond on the FT data coming from simulated FT sensor.  

4. Try contact control package on the manipulator while publishing FT data manually. 

Purpose of this test is to see, how the robot responds to velocity commands published by the 

package.  

 

The primary objective of my thesis was to control a manipulator when it is interacting 

with an environment maintaining some degree of compliance. Since the entire system is 

designed in simulation I have considered a virtual object (Figure 6.1) inside Gazebo in 

form of a straight line which is fixed with the base plane. For testing the end effector tip 

is made to follow that virtual object for some pre specified distance keeping contact and 

trying to maintain a desired interaction (contact) force. 

           After performing the initial tests listed under section 6.1, interactive teleoperation of 

the manipulator with the virtual object is carried on. The end effector is made to follow a 

position trajectory along Y axis inside the simulation world. 

           Gazebo is a dynamic simulator wrapper for ROS based on the Open dynamic engine. 

It allows dynamic simulations of robot manipulators communicating through ROS. The 

gazebo simulations used parameters from real robot because parameter identification of the 

real hardware resulted in base parameters for the simplified kinematic model.  
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Figure 6.1 Screenshot of Control simulation in Gazebo with force tracking on object                                                                                             
(red line) 

 
 

 

  

6.2 Results 

 

To validate the effectiveness of our simulation design & the performance of the implemented 

control strategies during interaction with the environment certain experimental results are 

presented in the following section. 

 

During tests, ROS inbuilt debugging tools are being used. The basic rqt is a software 

framework of ROS that utilizes different GUI implementations in the form of plugins. We 

have used rqt_plot which provides a GUI plugin for visualizing 2D plot using different 

plotting methods. 

 

http://wiki.ros.org/rqt
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6.2.1 Position Control in Free Space Tracking Results 

At first in order to test whether simulation of teleoperation of a serial robot manipulator is 

working properly the jogging of the arm has been tested. The position control of the arm in 

free space is tested. Hence no interaction is considered. The jogging of the arm is performed 

in order check whether the serial robot manipulator is seamlessly following the joystick 

commands from the user end. 

 

In this experiment, the arm was controlled by virtual joystick, and position of the end effector 

in Y axis was considered. It is visible that arm is able to reach position of the joystick; 

however, inverse kinematics adds delay that affects its overall responsiveness. Figure shows 

the response. 

 

Figure 6.2 Position of joystick and UR5 end effector in Y axis. 
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Figure 6.3 Position of joystick and UR5 end effector in X axis 

 

 

 

 

6.2.2 Position Control based Force Tracking Results 

 

 

For simulation of interaction control of a serial robot manipulator the manipulator needs to 

interact with the environment. On interaction with the environment contact forces will be 

generated at the point of interaction.  

To measure that force a 6 axis force/torque sensor has been affixed with the wrist of our UR5 

manipulator. Details of implementation have been covered in the previous chapter. A virtual 

object in form of massless spring damper is used as a manipulation object  

 

 

Figure shows the simulation in gazebo for the interaction control with end effector moving  

20 mm in the y-direction while tracking a desired tensile force of 5 N on the object (red). For 

performing this test, the stiffness for equation (5.1) under section 5.7 selected is Ke = 1000 

[N/m]. The controller is running at 450 Hz. Figure shows relevant data of the y-position of 

the end effector (above) and force acting on the object (below). The end effector moves in the 

y direction and results in the satisfactory tracking of the Force. 
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       Figure 6.4 Response of the controller for tracking a desired position trajectory 

 

 

Figure 6.5 Response of the controller for tracking a desired vertical force of 5N when the 

end effector is moved along y direction for 20 mm horizontally. 
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6.2.3 Position Based Force Tracking 

 

In order to check validity and closeness of the robot kinematics calculations, the motion of 

the slave side manipulator is being controlled using a standard Cartesian position controller. 

The slave manipulator is made to move to compensate the force that is acting on the end 

effector tip which is measured using a wrist force sensor. It is desired to maintain a force of   

5N vertically. When the force deadband is 0.2N and the controller is running at 500 Hz   

Figure shows the result for this test having the first three curves from top showing the desired 

position and actual position [m] along x, y and z directions. And the curve in the bottom 

shows the force output of the force sensor. The horizontal axis is selected as the inbuilt timer 

of the ROS working platform. It is clear from the figure  that, force tracking results are not 

stable enough .  

  

 

Figure 6.6 Position based Cartesian force tracking result (Not stable) 
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When the deadband is changed to 0.4N (Figure 6.7) the force tracking is more stable when 

the EEF is moved for 5 cm this time along the x-direction. This result shows that that a 

position based Cartesian force tracking is dependent on environment stiffness and the gains 

needed to be suitably adjusted.  

 

 

Figure 6.7 Position based Cartesian force tracking result (More stable) 
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Chapter 7 

                                                                     

 Conclusion & Future Work 
 

Although there have been remarkable advancements in robotic capabilities in research labs 

and particular industry applications since the first years of reprogrammable robotic control 

have arrived, many industries, still limit their use of robotics to simple pick and place and 

non-contact tasks. And in cases when contact-tasks are considered, overall costs are typically 

much higher. Also most of the commercially available robot arms have no access to their 

individual joint actuator currents hence the only option is to append a wrist torque sensor at 

the tool tip to make the force measurements at the contact points. And there are certain 

manipulators like KUKA LBR iiwa which are light weight & due to its joint torque sensors, 

they can detect contact immediately and reduces its level of force and speed instantly. Its 

position and compliance control enables it to handle delicate components easily without 

exceeding the permissible force. But they come at the cost of their high price. Hence 

designing a realistic simulation and simulating the environment, manipulators & sensors 

gives an easy hassle free working platform from the research point of view. Thus it can be 

used to validate test algorithms in a virtual environment. As complex robots are usually 

managed by robotics frameworks, framework-simulator integration is a powerful tool, which 

allows design and verification of algorithms implemented straight into frameworks. The 

Gazebo simulator is already integrated with the Robot Operating System (ROS) hence has its 

importance to the robotics community. To export simulation resources, framework 

components are instantiated and synchronized inside a Gazebo system plug in. Each 

component is a C++ class implemented separately from others classes.  

The work presented in this thesis creates a test bed for finding interaction control issues, for 

controlling the manipulator trajectories during interaction with environment or by varying the 

contact force information maintaining a desired force profile permissible both for 

manipulator & the environment depending majorly upon the task specified. However the 

current scenario with Gazebo simulator has a limitation that it only works with rigid bodies 
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that move through articulation and not by deformation. Gazebo supports 3 types physics 

engine namely ODE (Open Dynamics Engine), Bullet Physics Engine & DART (Dynamic 

Animation & Robotics Toolkit). By default Gazebo uses ODE for all the simulations and 

Open Dynamics Engine (ODE) is a free, industrial quality library for simulating articulated 

rigid body dynamics. And because of its support for ROS, it is limited by the fact that it 

cannot yet simulate deformable objects. 

 

Gazebo has two main parts, the server and the client. The server processes the physics of the 

environment, which involves calculating the full state of each body involved in the simulation 

taking into account the forces and velocities on each object as well as any additional data 

inputted from external controllers. The client receives pose data in messages from the server 

and displays the environment in a neat graphical user interface that adds convenient 

functionality and visualization. The server allows for the use of several different physics 

engines, each of which is optimized for different kinds of simulations.  

However to simulate deformable objects the Bullet physics engine can be used. While 

Gazebo supports Bullet, it does not yet support Bullet's soft body libraries specially. Gazebo 

does, however, support third party plugins that allow for hard coded customization. These 

plugins needed to be written separately to add Bullet soft body functionality to Gazebo. 

Bullet simulates soft bodies as collections of nodes, links, and faces. Nodes contain the pose, 

mass, force, and velocity information of each vertex in the soft body. The links act as springs 

between the nodes and allows for customization of deformation constants like bending and 

stretching. The faces give the soft body surface area allowing it to interact with fluid forces 

like wind. Collision shapes are commonly used in simulations to allow the user to simplify 

the simulated object in order to cut back on computational strain. Bullet processes rigid body 

collisions by determining the proximity of each body's collision shape. However, this shape is 

determined at compilation time, which is problematic for soft objects because their shape 

changes during the simulation. Bullet handles collisions between a soft body and another 

body by iterating through the soft body's nodes any checking if any of them is in contact with 

the other body's collision object. 

If so then compliant motion can be more realistically studied as the environment will in that 

case provide varying reactance (nonlinear) that can be used to simulate human like body or 

even very high precision working environment. The interaction forces will vary dynamically 

hence adaptive control paradigms could be easily worked on in the simulation environment, 
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whereas now a model for the environment (contact point) has to be taken into consideration 

for testing while working on a constrained surface. 

Use of Active Force feedback joysticks can accurately provide the reaction forces at the 

contact point of interaction back to user side using virtual spring law. This will enable 

successful bilateral teleoperation simulations in real-time. 

For example Geo magic Touch is a motorized device that applies force feedback on the 

user’s hand, allowing them to feel the objects and producing true-to-life touch sensations as 

user manipulates any 3D objects. With their use in research areas it becomes so intuitive to 

actually get a presence of the environment or the interaction on the master side accurately. 

 

Use of force estimation methods like Active observers design (AOB) (AOBs; Cortesão 

2002) in the control loop can improve the teleoperation performance by reducing the time 

delay. 

 

However in our work we have considered the contact model as a massless spring damper 

system for simplicity and bring the effect of compliance on the environment. In real scenario 

for a compliant surface like a human body the reaction forces are nonlinear hence other 

contact models can be used to verify the stability of the results. 

 

We have also considered that the robot is making contact at a single point which is ideally 

good at the initial testing but consideration of multiple contact points will bring more realistic 

situations that can be worked upon. 

 

 

6.2 Conclusion 

 

The novelty of my work lies in the fact that the entire system has been designed and operated 

in Gazebo Simulator and Robot Operating System (ROS) platform. ROS being an open 

source platform along with the 3D multi robot simulator Gazebo the implementation should 

be universally acceptable. Also using ROS as a design platform features a high degree of 

modularity in terms of software. 
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             In this work, we have implemented a system which allows to teleoperate, in real time, 

an industrial robot in an intuitive way using simulated virtual joystick. The implemented 

software packages exploit the potentialities and the modularity of ROS, allowing .the 

developed software framework to work with other robots family compatible with ROS 

architecture. The task space of an industrial robot could be greatly increased in these fields by 

expanding control to include contact task procedures using a controller that is easily 

accessible and reconfigurable 

 

In general experimental setup based on Gazebo and ROS has shown good results. However 

one of the major problems we faced was the significant drop of performance (in terms of 

coherence with wall-clock time) during dynamic interaction with other object. 

 

Although the divergence of wall-clock and simulated clock time may be treated as a time-

delay (a property of any real teleoperation system) it poses additional difficulties which we 

were trying to avoid by using simulation. 

 

To summarize, following are the pros and cons of the developed system are formulated: 

 

 

Pros 

Free of charge software. Most packages in ROS are available under permissive BSD-licence, 

while Gazebo is distributed under Apache Licence v2.0. Thus the system can be used in 

commercial applications. 

 

Rapid prototyping. The large number of very generic ROS packages allows to rapidly build a 

prototype of a system. Particular subsystems later can be replaced with more sophisticated 

versions without changing the interface. Compatibility with real-world robots. Since the 

system utilizes conventional ROS interfaces the simulated environment can be replaced with 

the real teleoperation system with very little effort. 

 

Cons 

Not real-time. Although certain ROS packages, e.g. pr2 controller manager, are able to work 

in the hard real-time loops, the simulation subsystem, i.e. Gazebo, is not designed for it. That 



63 
 

introduces a variable time-delay, which is also depends on the complexity of simulated 

environment. 

 

Difficult to tune physics engine parameters. The version of Gazebo that we used in our tests 

still utilize legacy.Open Dynamic Engine (ODE). The main problem of ODE is that the 

parameters are not very intuitive to tune and the engine itself is not actively developed. The 

newer versions of Gazebo are promised to support Bullet physics engine, which should help 

to solve some of the issues and also bring new features such as soft body contacts and GPU-

accelerated calculations. Nevertheless, developed system possesses the great potential that 

mitigates most of the problems we mentioned above. 

 

6.3 Future Work 

 

Some future aspect includes: 

 

➢ Incorporation of deformable objects in place of rigid bodies in Gazebo environment 

can have more realistic compliant control simulations as then varying reaction forces 

will be taken into account. 

➢ Using active force feedback devices as the master device can feel the working 

environment seamlessly. 

➢  Inclusion of force estimation techniques in the control loop can improve the time 

delay.  

➢ For achieving human like compliance contact model should be highly nonlinear. 
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