
A simple recommendation system

for movies
Faculty of Engineering & Technology, Jadavpur University in the partial

fulfillment of the requirements for the degree of Master Of Computer Science And

Engineering

Submitted by

Prosenjit Biswas

 Registration Number: 140758 of 2017-18

 Class Roll Number: 001710502019

 Examination Roll No: M4CSE19005

Under the Supervision of

Dr. SarmisthaNeogy

Professor, Dept. of Computer Science & Engineering

Jadavpur University

Dept. of Computer Science & Engineering

Faculty of Engineering and Technology

 Jadavpur University

 May 2019

Declaration of Originality &

Compliance of Academics Ethics

I hereby declare that this thesis contains literature survey and original research

work done by me, as part of my MCSE studies. All information in this document

have been obtained and presented in accordance with academic rules and ethical

conduct.

Name: Prosenjit Biswas

Registration No:140758 of 2017-18

Class Roll No: 001710502019

Examination Roll No:M4CSE19005

Thesis Report Title:A simple recommendation system for movies

__

ProsenjitBiswas

Department of Computer Science & Engineering

Faculty of Engineering & Technology

Jadavpur University

To Whom It May Concern,

This is to certify thatPROSENJIT BISWAS, Registration Number: 140758 of 2017-18, Class

Roll Number: 001710502019, Examination Roll Number: M4CSE19005, a student of MCSE,

from the Department of Computer Science & Engineering, under the Faculty of Engineering and

Technology, Jadavpur University has done a thesis report under my supervision, entitled as "A

Simple recommendation system for movies". The thesis is approved for submission towards the

fulfillment of the requirements for the degree of Master of Computer Science &Engineering,

from the Department of Computer Science & Engineering, Jadavpur University for the session

2018-19.

__

Dr. Sarmistha Neogy

(Supervisor)

Professor

Department of Computer Science and Engineering

Jadavpur University

__

Dr.Mahantapas Kundu

(Head of the Department)

Professor

Department of Computer Science and Engineering

Jadavpur University

__

Dr. Chiranjib Bhattacharjee

(Dean)

Professor

Faculty of Engineering and Technology

Jadavpur University

Certificate of Approval

(Only in case the thesis report is approved)

The forgoing thesis is hereby approved as a creditable study of an engineering subject carried out

and presented in a manner satisfactory to warrant its acceptance as a prerequisite to the degree

for which it has been submitted. It is understood that by this approval the undersigned do not

necessarily endorse or approve any statement made, opinion expressed or conclusion drawn

therein, but approve this thesis only for the purpose for which it is submitted.

_______________________________ _______________________________

Signature of the Examiner Signature of the Examiner

Date:

Date:

 Abstract

Recommendation system plays important role in Internet world and used in many applications. It

has created the collection of many application, created global village and growth for numerous

information. This report represents the overview of Approaches and techniques generated in

recommendation system. Recommendation system is categorized in three classes: Collaborative

Filtering, Content based and hybrid based Approach. This report classifies collaborative filtering

in two types: Memory based and Model based Recommendation .The paper elaborates these

approaches and their techniques with their limitations. The result of our system provides much

better recommendations to users because it enables the users to understand the relation between

their emotional states and the recommended movies.

Acknowledgement

I would like to express my deepest gratitude to my advisor and guide Dr. SarmisthaNeogy, for

her excellent guidance, caring, patience, and providing me with an excellent atmosphere for

doing research. I strongly believe that I got a lot of encouragement and inspiration from her

throughout the project. With her invaluable guidance, this work is a successful one. I am equally

grateful to Dr. MahantapasKundu, Head of The Department, Computer Science & Engineering,

Jadavpur University, for his support towards our department. Last but not least, I would like to

thank my parents and all respected teachers for their valuable suggestions and helpful

discussions.

Regards,

ProsenjitBiswas

Department of Computer Science & Engineering

MCSE

Jadavpur University

 TABLE OF CONTENTS

Content ---

Chapter 1- Introduction---

Chapter 2 - Related Work---

Chapter 3- Phases of recommendation process----------------------

Chapter 4 – Basic concepts of recommender system

 4.1 Content based Filtering----------------------------------

 4.2 Collaborative Filtering

 4.2.1 Model-Based Techniques------------------------------------

 4.2.2 Memory Based Techniques--------------------------------

 4.3 Hybrid Filtering---

Chapter 5 - Design and implementation of a recommender

system for movies

 5.1 Dataset

 5.1.1 Users ---

 5.1.2 Ratings ---

 5.1.3 Items --

 5.2 Implementation ---

 5.3 Workflow and result

 5.3.1 Simple Recommendation ------------------------------------

 5.3.2 Memory Based Collaborative Filtering --------------------

 5.3.3 Model Based Collaborative Filtering ----------------------

Chapter 6 - Concluding Remarks -------------------------------------

Reference ---

 CHAPTER 1

INTRODUCTION :

In today’s world where internet has become an important part of human life, users often face the

problem of too much choice. Right from looking for a motel to looking for good investment

options, there is too much information available. To help the users cope with this information

explosion, companies have deployed recommendation systems to guide their users. The research

in the area of recommendation systems has been going on for several decades now, but the

interest still remains high because of the abundance of practical applications and the problem

rich domain. A number of such online recommendation systems implemented and used are the

recommendation system for books at Amazon.com , for movies at MovieLens.org, CDs at

CDNow.com (from Amazon.com), etc.

Recommender Systems have added to the economy of the some of the e-commerce websites

(like Amazon.com) and Netflix which have made these systems a salient parts of their websites.

A glimpse of the profit of some websites is shown in table below:

Netflix:2/3rd of the movies watched are recommended.

Googles News: recommendation generate 38% more click-throughs.

Amazons:35% sales are from recommendations.

Choicestream: 28% of the people would buy more music if they found what they liked.

Recommender Systems generate recommendations; the user may accept them according to their

choice and may also provide, immediately or at a next stage, an implicit or explicit feedback.

The actions of the users and their feedbacks can be stored in the recommender database and may

be used for generating new recommendations in the next user-system interactions. The economic

potential of theses recommender systems have led some of the biggest e-commerce websites

(like Amazon.com, snapdeal.com) and the online movie rental company Netflix to make these

systems a salient part of their websites. High quality personalized recommendations add another

dimension to user experience. The web personalized recommendation systems are recently

applied to provide different types of customized information to their respective users. These

systems can be applied in various types of applications and are very common now a day.

 CHAPTER 2

 RELATED WORK

Many recommendation systems have been developed over the past decades. These systems use

different approaches like collaborative approach, content based approach, a utility base approach,

hybrid approach etc.

Looking at the purchase behavior and history of the shoppers, Lawrence et al. 2001 presented a

recommender system which suggests the new product in the market. To refine the

recommendation collaborative and content based filtering approach were used. To find the

potential customers most of the recommendation systems today use ratings given by previous

users. These ratings are further used to predict and recommend the item of one’s choice.

In 2007 Weng, Lin and Chen performed an evaluation study which says using multidimensional

analysis and additional customer’s profile increases the recommendation quality. Weng used MD

recommendation model (multidimensional recommendation model) for this purpose.

multidimensional recommendation model was proposed by Tuzhilin and Adomavicius (2001).

 CHAPTER 3

PHASES OF RECOMMENDATION PROCESS:

The system normally asks a person via the device interface to provide rating for items to

construct and enhance his version. The accuracy of recommendation relies upon on the amount

of ratings provided via the person. The only shortcoming of this method is, it requires effort from

the customers and additionally, customers may not be always ready to provide sufficient facts.

Despite the fact that specific feedback needs more effort from consumer, it is still seen as

presenting extra dependable information, since it does now not involve extracting options from

moves, and it additionally provides transparency into the recommendation system that effects in

a slightly better perceived recommendation great and greater confidence inside the

recommendations

Fig1:Recommendation Phases

The use of efficient and accurate recommendation techniques is very important for a system that

will provide good and useful recommendation to its individual users. This explains the

importance of understanding the features and potentials of different recommendation techniques.

 CHAPTER 4

RECOMMENDER SYSTEMBASICS CONCEPT

 Recommender systems are information filtering tools that are used to predict the rating

for users and items, predominantly from big data to recommend their likes. Movie

recommendation systems provide a mechanism to assist users in classifying users with similar

interests. This makes recommender systems essentially a central part of websites and e-

commerce applications.

 In this project we propose a movie recommendation system, where user specific interests

are taken into account, to determine recommendations.

 A Recommendation System is composed of two modules: a database and a filtering

technique. The database is responsible for storing the information about users, items and the

associated ratings. The filtering technique is implemented by an algorithm.There are three

important types of recommender systems:

 Collaborative Filtering

 Content based Filtering

 Hybrid Filtering

 Fig2:Recommender system based on filtering

4.1.Content-Based Filtering:
Content-based technique is a domain-dependent algorithm and it emphasizes more on the

analysis of the attributes of items in order to generate predictions. When documents such as web

pages, publications and news are to be recommended, content-based filtering technique is the

most successful. In content-based filtering technique, recommendation is made based on the user

profiles using features extracted from the content of the items the user has evaluated in the past.

Items that are mostly related to the positively rated items are recommended to the user. CBF uses

different types of models to find similarity between documents in order to generate meaningful

recommendations. It could use Vector Space Model such as Term Frequency Inverse Document

Frequency (TF/IDF) or Probabilistic models such as Decision Trees. Neural Networks to model

the relationship between different documents within a corpus. These techniques make

recommendations by learning the underlying model with either statistical analysis or machine

learning techniques. Content-based filtering technique does not need the profile of other users

since they do not influence recommendation. Also, if the user profile changes, CBF technique

still has the potential to adjust its recommendations within a very short period of time. The major

disadvantage of this technique is the need to have an in-depth knowledge and description of the

features of the items in the profile.

4.2Collaborative Filtering:
Collaborative filtering is a domain-independent prediction technique for content that cannot

easily and adequately be described by metadata such as movies and music. Collaborative

filtering technique works by building a database (user-item matrix) of preferences for items by

users. It then matches users with relevant interest and preferences by calculating similarities

between their profiles to make recommendations. Such users build a group called neighborhood.

A user gets recommendations to those items that he has not rated before but that were already

positively rated by users in his neighborhood. Recommendations that are produced by CF can be

of either prediction or recommendation. Prediction is a numerical value, Rij, expressing the

predicted score of item j for the user i, while Recommendation is a list of top N items that the

user will like the most. The technique of collaborative filtering can be divided into two

categories: memory-based and model-based .

4.2.1.Model-Based Techniques:
This technique employs the previous ratings to learn a model in order to improve the

performance of Collaborative filtering Technique. The model building process can be done using

machine learning or data mining techniques. These techniques can quickly recommend a set of

items for the fact that they use pre-computed model and they have proved to produce

recommendation results that are similar to neighborhood-based recommender techniques.

Examples of these techniques include Dimensionality Reduction technique such as Singular

Value Decomposition (SVD), Matrix Completion Technique, Latent Semantic methods, and

Regression and Clustering. Model-based techniques analyze the user-item matrix to identify

relations between items; they use these relations to compare the list of top-N recommendations.

Model based techniques resolve the sparsity problems associated with recommendation systems.

 Model-based Collaborative Filtering is based on matrix factorization(MF)which has

received greater exposure, mainly as an unsupervised learning method for latent variable

decomposition and dimensionality reduction. Matrix factorization is widely used for

recommender systems where it can deal better with scalability and sparsity than Memory-based

Collaborative Filtering. The goal of MF is to learn the latent preferences of users and the latent

attributes of items from known ratings (learn features that describe the characteristics of ratings)

to then predict the unknown ratings through the dot product of the latent features of users and

items. When you have a very sparse matrix, with a lot of dimensions, by doing matrix

factorization you can restructure the user-item matrix into low-rank structure, and you can

represent the matrix by the multiplication of two low-rank matrices, where the rows contain the

latent vector. You fit this matrix to approximate your original matrix, as closely as possible, by

multiplying the low-rank matrices together, which fills in the entries missing in the original

matrix .

 A well-known matrix factorization method is Singular value decomposition (SVD).

Collaborative Filtering can be formulated by approximating a matrix X by using singular value

decomposition.The general equation can be expressed as follows:

 X=UxSxVT

Given anmxn matrixX:

 Uis anmxr orthogonal matrix

 Sis anrxr diagonal matrix with non-negative real numbers on the diagonal

 VTis anrxn orthogonal matrix

Elements on the diagnoal inS are known as singular values of X.

MatrixX can be factorized toU, S and V. TheU matrix represents the feature vectors

corresponding to the users in the hidden feature space and theV matrix represents the feature

vectors corresponding to the items in the hidden feature space.

 https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html

Now we can make a prediction by taking dot product ofU, S andVT.

https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html

 Just as its name suggest matrix factorization is to, obviously, factorize a matrix, i.e. to

find out two (or more) matrices such that when you multiply them you will get back the original

matrix. matrix factorization can be used to discover latent features underlying the interactions

between two different kinds of entities. (Of course, you can consider more than two kinds of

entities and you will be dealing with tensor factorization, which would be more complicated.)

And one obvious application is to predict ratings in collaborative filtering.

 In a recommendation system such as Netflix or MovieLens , there is a group of users and

a set of items (movies for the above two systems). Given that each users have rated some items

https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html
https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html
http://www.netflix.com/
http://movielens.umn.edu/

in the system, we would like to predict how the users would rate the items that they have not yet

rated, such that we can make recommendations to the users. In this case, all the information we

have about the existing ratings can be represented in a matrix. Assume now we have 5 users and

10 items, and ratings are integers ranging from 1 to 5, the matrix may look something like this (a

hyphen means that the user has not yet rated the movie):

D1 D2 D3 D4

U1 5 3 - 1

U2 4 - - 1

U3 1 1 - 5

U4 1 - - 4

U5 - 1 5 4

 Hence, the task of predicting the missing ratings can be considered as filling in the blanks

(the hyphens in the matrix) such that the values would be consistent with the existing ratings in

the matrix.

 The intuition behind using matrix factorization to solve this problem is that there should

be some latent features that determine how a user rates an item. For example, two users would

give high ratings to a certain movie if they both like the actors/actresses of the movie, or if the

movie is an action movie, which is a genre preferred by both users. Hence, if we can discover

these latent features, we should be able to predict a rating with respect to a certain user and a

certain item, because the features associated with the user should match with the features

associated with the item.

 In trying to discover the different features, we also make the assumption that the number

of features would be smaller than the number of users and the number of items. It should not be

difficult to understand this assumption because clearly it would not be reasonable to assume that

each user is associated with a unique feature (although this is not impossible). And anyway if

this is the case there would be no point in making recommendations, because each of these users

would not be interested in the items rated by other users. Similarly, the same argument applies to

the items.

 MATHEMATICS OF MATRIX FACTORIZATION:

 Having discussed the intuition behind matrix factorization, we can now go on to work on

the mathematics. Firstly, we have a set of users, and a set of items. Let R of

size |U|X|D| be the matrix that contains all the ratings that the users have assigned to the items.

Also, we assume that we would like to discover K latent features. Our task, then, is to find two

matrices P (a |U|XK matrix) and Q (a |D|XK matrix) such that their product approximates R

 In this way, each row of would represent the strength of the associations between a

user and the features. Similarly, each row of would represent the strength of the associations

between an item and the features. To get the prediction of a rating of an item dj by Ui, we can

calculate the dot product of the two vectors corresponding to Ui and dj:

 Now, we have to find a way to obtain and . One way to approach this problem is the

first initialize the two matrices with some values, calculate how `different’ their product is to ,

and then try to minimize this difference iteratively. Such a method is called gradient descent,

aiming at finding a local minimum of the difference .

 The difference here, usually called the error between the estimated rating and the real

rating, can be calculated by the following equation for each user-item pair:

 Here we consider the squared error because the estimated rating can be either higher or

lower than the real rating.

 To minimize the error, we have to know in which direction we have to modify the values

of pik and qkj. In other words, we need to know the gradient at the current values, and therefore

we differentiate the above equation with respect to these two variables separately:

 Having obtained the gradient, we can now formulate the update rules for both pik and qkj:

 Here, α is a constant whose value determines the rate of approaching the minimum.

Usually we will choose a small value for α, say 0.0002. This is because if we make too large a

step towards the minimum we may run into the risk of missing the minimum and end up

oscillating around the minimum.

 we are not really trying to come up with P and Q such that we can reproduce R exactly.

Instead, we will only try to minimise the errors of the observed user-item pairs. In other words, if

we let T be a set of tuples, each of which is in the form of (ui,dj,rij), such that contains all the

observed user-item pairs together with the associated ratings, we are only trying to minimise

every eij for (ui,dj,rij)εT. (In other words, T is our set of training data.) As for the rest of the

unknowns, we will be able to determine their values once the associations between the users,

items and features have been learnt.

Using the above update rules, we can then iteratively perform the operation until the error

converges to its minimum. We can check the overall error as calculated using the following

equation and determine when we should stop the process .

 REGULARIZATION:

 The above algorithm is a very basic algorithm for factorizing a matrix. There are a lot of

methods to make things look more complicated. A common extension to this basic algorithm is

to introduce regularization to avoid overfitting. This is done by adding a parameter β and modify

the squared error as follows:

In other words, the new parameter β is used to control the magnitudes of the user-feature and

item-feature vectors such that P and Q would give a good approximation of without having

to contain large numbers. In practice, β is set to some values in the range of 0.02. The new

update rules for this squared error can be obtained by a procedure similar to the one described

above. The new update rules are as follows.

4.2.2.Memory Based Techniques :
The items that were already rated by the user before play a relevant role in searching for a

neighbor that shares appreciation with him .Once a neighbor of a user is found, different

algorithms can be used to combine the preferences of neighbors to generate recommendations.

Due to the effectiveness of these techniques, they have achieved widespread success in real life

applications. Memory-based CF can be achieved in two ways through user-based and item-based

techniques. User based collaborative filtering technique calculates similarity between users by

comparing their ratings on the same item, and it then computes the predicted rating for an item

by the active user as a weighted average of the ratings of the item by users similar to the active

user where weights are the similarities of these users with the target item. Item-based filtering

techniques compute predictions using the similarity between items and not the similarity between

users. It builds a model of item similarities by retrieving all items rated by an active user from

the user-item matrix, it determines how similar the retrieved items are to the target item, then it

selects the k most similar items and their corresponding similarities are also determined.

Prediction is made by taking a weighted average of the active users rating on the similar items k.

 Memory-based algorithms are easy to implement and produce reasonable prediction

quality.This Collaborative Filtering approaches can be divided into two main sections: user-item

filtering and item-item filtering. A user-item filtering takes a particular user, find users that are

similar to that user based on similarity of ratings, and recommend items that those similar users

liked. In contrast, item-item filtering will take an item, find users who liked that item, and find

other items that those users or similar users also liked. It takes items and outputs other items as

recommendations .

 Item-Item Collaborative Filtering: “Users who liked this item also liked …”

 User-Item Collaborative Filtering: “Users who are similar to you also liked …”

 In both cases, we create a user-item matrix whichwe build from the entire dataset. Since

we have split the data into testing and training we will need to create two 943 ×× 1682 matrices.

The training matrix contains 75% of the ratings and the testing matrix contains 25% of the

ratings.

Example of user-item matrix:

 https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html

 After building the user-item matrix we calculate the similarity and create a similarity

matrix.

 The similarity values between items in Item-Item Collaborative Filtering are measured by

observing all the users who have rated both items.

https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html

 https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html

 For User-Item Collaborative Filtering the similarity values between users are measured

by observing all the items that are rated by both users.

 https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html

 A distance metric commonly used in recommender systems is cosine similarity, where

the ratings are seen as vectors in n-dimensional space and the similarity is calculated based on

the angle between these vectors. Cosine similarity for users a and m can be calculated using the

formula below, where you take dot product of the user vector Uk and the user vectorUa and

divide it by multiplication of the Euclidean lengths of the vectors.

To calculate similarity between items m and b you use the formula:

https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html
https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html

Now we can make a prediction by applying following formula for user-based Collaborative

Filtering:

 We can look at the similarity between users k and a as weights that are multiplied by the

ratings of a similar user a (corrected for the average rating of that user). We need to normalize it

so that the ratings stay between 1 and 5 and, as a final step, sum the average ratings for the user

that we are trying to predict .

 The idea here is that some users may tend always to give high or low ratings to all

movies. The relative difference in the ratings that these users give is more important than the

absolute values. To give an example: suppose, user k gives 4 stars to his favourite movies and 3

stars to all other good movies. Suppose now that another user t rates movies that he/she likes

with 5 stars, and the movies he/she fell asleep over with 3 stars. These two users could have a

very similar taste but treat the rating system differently.

 When making a prediction for item-based CF we don't need to correct for users average

rating since query user itself is used to do predictions.

 The most popular metric used to evaluate accuracy of predicted ratings is Root Mean

Squared Error (RMSE).

 Problems of Collaborative Filtering Techniques:

Collaborative Filtering has some major advantages over CBF in that it can perform in domains

where there is not much con-tent associated with items and where content is difficult for a

computer system to analyze (such as opinions and ideal). Also, CF technique has the ability to

provide serendipitous recommendations, which means that it can recommend items that are

relevant to the user even without the content being in the user’s profile . Despite the success of

CF techniques, their widespread use has revealed some potential problems such as follows

 Cold-Start Problem:
This refers to a situation where a recommender does not have adequate information about a user

or an item in order to make relevant predictions. This is one of the major problems that reduce

the performance of recommendation system. The profile of such new user or item will be empty

since he has not rated any item; hence, his taste is not known to the system .

 Data Sparsity Problem:
This is the problem that is occur as a result of lack of enough information, that is, when only a

few of the total number of items available in a database are rated by users . This always leads to

a sparse user-item matrix, inability to locate successful neighbors and finally, the generation of

weak recommendations. Also, data sparsity always leads to coverage problems, which is the

percentage of items in the system that recommendations can be made for.

 Scalability:
This is another problem associated with Recommendation algorithms because computation

normally grows linearly with the number of users and items .A recommendation technique that is

efficient when the number of dataset is limited may be unable to generate satisfactory number of

recommendations when the volume of dataset is increased. Thus, it is crucial to apply

recommendation techniques which are capable of scaling up in a successful manner as the

number of dataset in a database increases. Methods used for solving scalability problem and

speeding up recommendation generation are based on Dimensionality reduction techniques, such

as Singular Value Decomposition (SVD) method, which has the ability to produce reliable and

efficient recommendations.

 Examples of Collaborative Systems:

Ringo is a user-based CF system which makes recommendations of music albums and artists. In

Ringo, when a user initially enters the system, a list of 125 artists is given to the user to rate

according to how much he likes listening to them. The list is made up of two different sections.

The first session consists of the most often rated artists, and this affords the active user

opportunity to rate artists which others have equally rated, so that there is a level of similarities

between different users’ profiles. The second session is generated upon a random selection of

items from the entire user-item matrix, so that all artists and albums are eventually rated at some

point in the initial rating phases.

Group Lens is a CF system that is based on client/server architecture; the system recommends

Usenet news which is a high volume discussion list service on the Internet. The short lifetime of

Netnews, and the underlying sparsity of the rating matrices are the two main challenges

addressed by this system. Users and Netnews are clustered based on the existing news groups in

the system, and the implicit ratings are computed by measuring the time the users spend reading

Netnews.

Amazon.com is an example of e-commerce recommendation engine that uses scalable item-to-

item collaborative filtering techniques to recommend online products for different users. The

computational algorithm scales independently of the number of users and items within the

database. Amazon.com uses an explicit information collection technique to obtain information

from users. The interface is made up of the following sections, your browsing history, rate these

items, and improve your recommendations and your profile. The sys-tem predicts users interest

based on the items he/she has rated

4.3.Hybrid Filtering:
Hybrid filtering technique combines different recommendation techniques in order to gain better

system optimization to avoid some limitations and problems of pure recommendation systems.

The idea behind hybrid techniques is that a combination of algorithms will provide more

accurate and effective recommendations than a single algorithm as the disadvantages of one

algorithm can be overcome by another algorithm .Using multiple recommendation techniques

can suppress the weaknesses of an individual technique in a combined model. The combination

of approaches can be done in any of the following ways: separate implementation of algorithms

and combining the result, utilizing some content-based filtering in collaborative approach,

utilizing some collaborative filtering in content-based approach, creating a unified

recommendation system that brings together both approaches.

 Fig3: Hybrid system

 CHAPTER 5

 DESIGN AND IMPLENTATION OF A

RECOMMENDER SYSTEM FOR MOVIE:

5.1DATA SET:

We will be using the MovieLensdataset forrecommendation. It has been collected by the Group

Lens research project at the University of Minnesota/. The characteristics of the MovieLens ml-

100K datasetare as follows:

 100,000 ratings (1-5) from 943 users on 1682 movies.

 Each user has rated at least 20 movies.

 Simple demographic info for the uses(age, gender, occupation.zip)

 Genre information of movies.

This data is loaded into python. There are many files in ml-100k.zip file which we used. We

loaded three important files. There is also a recommendation to read the readme document which

gives a lot of information about difference files.

 5.1.1.USERS :

There are 943 rows as there are 943 users and 5 columns for 5 featured for each namely their

unique user_id, age, sex, occupation, zip_code.

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 943 entries, 0 to 942

Data columns (total 5 columns):

user id 943 non-null int64

age 943 non-null int64

gender 943 non-null object

occupation 943 non-null object

zip code 943 non-null object

dtypes: int64(2), object(3)

memory usage: 25.8+ KB

None

We can print the head of the user dataset as follows:

 user id age gender occupation zip code

0 1 24 M technician 85711

1 2 53 F other 94043

2 3 23 M writer 32067

3 4 24 M technician 43537

4 5 33 F other 15213

5 6 42 M executive 98101

6 7 57 M administrator 91344

7 8 36 M administrator 05201

9 9 29 M student 01002

9 10 53 M lawyer 90703

5.1.2.RATINGS :

There are 100000 ratings as there are 100K ratings for different users and movie combinations.

Also each ratings has a timestamp associated with it.

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 100000 entries, 0 to 99999

Data columns (total 4 columns):

user id 100000 non-null int64

movie id 100000 non-null int64

rating 100000 non-null int64

timestamp 100000 non-null int64

dtypes: int64(4)

memory usage: 3.1 MB

None

We can print the head of the data dataset as follows:

 user id movie id rating timestamp

0 196 242 3 881250949

1 186 302 3 891717742

2 22 377 1 878887116

3 244 51 2 880606923

4 166 346 1 886397596

5 298 474 4 884182806

6 115 265 2 881171488

7 253 465 5 891628467

8 305 451 3 886324817

9 6 86 3 883603013

5.1.3.ITEMS :

This dataset contains attributes of 1682 movies. There are 24 columns out of which 19 specify

the genre of a particular movie. The last 19 columns are for each genre and a value of 1 denotes

that movie belongs to that genre and 0 otherwise.

<class 'pandas.core.frame.DataFrame'>

Int64Index: 1682 entries, 1 to 1682

Data columns (total 24 columns):

movie id 1682 non-null object

movie title 1681 non-null object

release date 0 non-null float64

video release date 1679 non-null object

IMDb URL 1682 non-null int64

unknown 1682 non-null int64

Action 1682 non-null int64

Adventure 1682 non-null int64

Animation 1682 non-null int64

Childrens 1682 non-null int64

Comedy 1682 non-null int64

Crime 1682 non-null int64

Documentary 1682 non-null int64

Drama 1682 non-null int64

Fantasy 1682 non-null int64

Film-Noir 1682 non-null int64

Horror 1682 non-null int64

Musical 1682 non-null int64

Mystery 1682 non-null int64

Romance 1682 non-null int64

Sci-Fi 1682 non-null int64

Thriller 1682 non-null int64

War 1682 non-null int64

Western 1682 non-null object

dtypes: float64(1), int64(20), object(3)

memory usage: 295.7+ KB

None

We can print the head of the item dataset as follows:

 movie id ... Western

0 1 ... 0

1 2 ... 0

2 3 ... 0

3 4 ... 0

4 5 ... 0

5 6 ... 0

6 7 ... 0

7 8 ... 0

8 9 ... 0

9 10 ... 0

[10 rows x 24 columns]

5.2.IMPLEMENTATION:

We have implemented movie recommendation system in python .we have used various library

functions. We have used panda We used the scikit-learn library to split the dataset into testing

and training.

http://scikit-learn.org/stable/

 We have used panda which is an open source, BSD-licensed library providing high-

performance, easy-to-use data structures and data analysis tools for the Python programming

language.

 We have used NumPy is the fundamental package for scientific computing with Python.

 Also we have used codecs which defines a set of base classes which define the interface and can

also be used to easily write your own codecs for use in Python.

 We have used standard operators as functions. For example, operator.add(x, y) is equivalent to

the expression x+y. Many function names are those used for special methods, without the double

underscores. For backward compatibility, many of these have a variant with the double

underscores kept. The variants without the double underscores are preferred for clarity.

 We have also used importlib thepurpose this package is two-fold. One is to provide the

implementation of the import statement (and thus, by extension, the __import__() function)

in Python source code. This provides an implementation of import which is portable to any

Python interpreter. This also provides an implementation which is easier to comprehend than one

implemented in a programming language other than Python. Two, the components to

implement import are exposed in this package, making it easier for users to create their own

custom objects (known generically as an importer) to participate in the import process.

 We have also imported Scripy.parse which is SciPy 2-D sparse matrix package for numeric

data.

5.3WORK FLOW AND RESULTS:

5.3.1.SIMPLE RECOMMENDATION: It’s a generalized recommendation for every

user , based on movie popularity. More popular and critically acclaimed will have a higher

probability of being liked by the average audience. IMDB Top 250 is an example of this system.

 The dataset has 3 comma separated files namely u.data, u.item, u.user.

 25 MOST RATED MOVIES:

WORKFLOW:

I. Merge the 3 dataset user, data and item.

https://www.python.org/
https://docs.python.org/3/reference/simple_stmts.html#import
https://docs.python.org/3/reference/simple_stmts.html#import
https://docs.python.org/3/glossary.html#term-importer

II. Name the merged data set as “dataset”.

III. Count the number of times a movie is rated by user which is group by “movie title” .

IV. Make the total ratings into a dataframe and sort them into the descending order and print the

25top rated movies.

OUTPUT:

movie id movie title ... occupation zip code

0 1 Toy Story (1995) ... retired 95076

1 4 Get Shorty (1995) ... retired 95076

2 5 Copycat (1995) ... retired 95076

3 7 Twelve Monkeys (1995) ... retired 95076

4 8 Babe (1995) ... retired 95076

5 9 Dead Man Walking (1995) ... retired 95076

6 11 Seven (Se7en) (1995) ... retired 95076

7 12 Usual Suspects, The (1995) ... retired 95076

[8 rows x 31 columns]

15 random order rated movies:

0 'Til There Was You (1997) 9

1 1-900 (1994) 5

2 101 Dalmatians (1996) 109

3 12 Angry Men (1957) 125

4 187 (1997) 41

5 2 Days in the Valley (1996) 93

6 20,000 Leagues Under the Sea (1954) 72

7 2001: A Space Odyssey (1968) 259

8 3 Ninjas: High Noon At Mega Mountain (1998) 5

9 39 Steps, The (1935) 59

10 8 1/2 (1963) 38

11 8 Heads in a Duffel Bag (1997) 4

12 8 Seconds (1994) 4

13 A Chef in Love (1996) 8

14 Above the Rim (1994) 5

25 Top rated movies:

 movie title total ratings

1398 Star Wars (1977) 583

333 Contact (1997) 509

498 Fargo (1996) 508

1234 Return of the Jedi (1983) 507

860 Liar Liar (1997) 485

460 English Patient, The (1996) 481

1284 Scream (1996) 478

1523 Toy Story (1995) 452

32 Air Force One (1997) 431

744 Independence Day (ID4) (1996) 429

1205 Raiders of the Lost Ark (1981) 420

612 Godfather, The (1972) 413

1190 Pulp Fiction (1994) 394

1543 Twelve Monkeys (1995) 392

1329 Silence of the Lambs, The (1991) 390

780 Jerry Maguire (1996) 384

293 Chasing Amy (1997) 379

1251 Rock, The (1996) 378

456 Empire Strikes Back, The (1980) 367

1394 Star Trek: First Contact (1996) 365

1500 Titanic (1997) 350

113 Back to the Future (1985) 350

987 Mission: Impossible (1996) 344

570 Fugitive, The (1993) 336

747 Indiana Jones and the Last Crusade (1989) 331

 Highly rated movies:

I. Group the movies by movie title from the dataset “dataset”.

II. Evaluating the Mean[mean is the average of list of values] of each movies.

III. Store the mean rated movies into dataframes “ ratings_mean”

IV. Sort them by descending order and print the 25 highly rated movies,

Mean rating of movies in random order:

mean ratings movie title

0 2.333333 'Til There Was You (1997)

1 2.600000 1-900 (1994)

2 2.908257 101 Dalmatians (1996)

3 4.344000 12 Angry Men (1957)

4 3.024390 187 (1997)

5 3.225806 2 Days in the Valley (1996)

6 3.500000 20,000 Leagues Under the Sea (1954)

7 3.969112 2001: A Space Odyssey (1968)

8 1.000000 3 Ninjas: High Noon At Mega Mountain (1998)

9 4.050847 39 Steps, The (1935)

10 3.815789 8 1/2 (1963)

11 3.250000 8 Heads in a Duffel Bag (1997)

12 3.750000 8 Seconds (1994)

13 4.125000 A Chef in Love (1996)

14 3.000000 Above the Rim (1994)

25 highly rated movies:

 mean ratings movie title

1472 5.000000 They Made Me a Criminal (1939)

944 5.000000 Marlene Dietrich: Shadow and Light (1996)

1273 5.000000 Saint of Fort Washington, The (1993)

1359 5.000000 Someone Else's America (1995)

1387 5.000000 Star Kid (1997)

633 5.000000 Great Day in Harlem, A (1994)

30 5.000000 Aiqingwansui (1994)

1277 5.000000 Santa with Muscles (1996)

1172 5.000000 Prefontaine (1997)

462 5.000000 Entertaining Angels: The Dorothy Day Story (1996)

1130 4.625000 PatherPanchali (1955)

1357 4.500000 Some Mother's Son (1996)

956 4.500000 Maya Lin: A Strong Clear Vision (1994)

79 4.500000 Anna (1996)

472 4.500000 Everest (1998)

318 4.491071 Close Shave, A (1995)

1281 4.466443 Schindler's List (1993)

1652 4.466102 Wrong Trousers, The (1993)

273 4.456790 Casablanca (1942)

1597 4.447761 Wallace &Gromit: The Best of AardmanAnimatio...

1317 4.445230 Shawshank Redemption, The (1994)

1215 4.387560 Rear Window (1954)

1572 4.385768 Usual Suspects, The (1995)

1398 4.358491 Star Wars (1977)

3 4.344000 12 Angry Men (1957)

 Mean rating of movie along with no of ratings of user :

I. Evaluate the mean rating of each movie then count the number of user who gives rating and

group meand ratings and total ratings by “movie title”

II. Print 25 mivies in random order.

III. Sort the movies on the basic of total rating and print the top 24 movies along with mean rating

and total rating(descending order).

IV. print the top 10 movies along with mean rating and total rating(descending order) where total

ratings less than 300.

Random order:
 Rating no of ratings

movie title

'Til There Was You (1997) 2.333333 9

1-900 (1994) 2.600000 5

101 Dalmatians (1996) 2.908257 109

12 Angry Men (1957) 4.344000 125

187 (1997) 3.024390 41

2 Days in the Valley (1996) 3.225806 93

20,000 Leagues Under the Sea (1954) 3.500000 72

2001: A Space Odyssey (1968) 3.969112 259

3 Ninjas: High Noon At Mega Mountain (1998) 1.000000 5

39 Steps, The (1935) 4.050847 59

8 1/2 (1963) 3.815789 38

8 Heads in a Duffel Bag (1997) 3.250000 4

8 Seconds (1994) 3.750000 4

A Chef in Love (1996) 4.125000 8

Above the Rim (1994) 3.000000 5

Absolute Power (1997) 3.370079 127

Abyss, The (1989) 3.589404 151

Ace Ventura: Pet Detective (1994) 3.048544 103

Ace Ventura: When Nature Calls (1995) 2.675676 37

Across the Sea of Time (1995) 2.750000 4

Addams Family Values (1993) 2.816092 87

Addicted to Love (1997) 3.166667 54

Addiction, The (1995) 2.181818 11

Adventures of Pinocchio, The (1996) 3.051282 39

Adventures of Priscilla, Queen of the Desert, T... 3.594595 111

25movies in sorted order:

rating movie title total ratings

1398 4.358491 Star Wars (1977) 583

333 3.803536 Contact (1997) 509

498 4.155512 Fargo (1996) 508

1234 4.007890 Return of the Jedi (1983) 507

860 3.156701 Liar Liar (1997) 485

460 3.656965 English Patient, The (1996) 481

1284 3.441423 Scream (1996) 478

1523 3.878319 Toy Story (1995) 452

32 3.631090 Air Force One (1997) 431

744 3.438228 Independence Day (ID4) (1996) 429

1205 4.252381 Raiders of the Lost Ark (1981) 420

612 4.283293 Godfather, The (1972) 413

1190 4.060914 Pulp Fiction (1994) 394

1543 3.798469 Twelve Monkeys (1995) 392

1329 4.289744 Silence of the Lambs, The (1991) 390

780 3.710938 Jerry Maguire (1996) 384

293 3.839050 Chasing Amy (1997) 379

1251 3.693122 Rock, The (1996) 378

456 4.204360 Empire Strikes Back, The (1980) 367

1394 3.660274 Star Trek: First Contact (1996) 365

1500 4.245714 Titanic (1997) 350

113 3.834286 Back to the Future (1985) 350

987 3.313953 Mission: Impossible (1996) 344

570 4.044643 Fugitive, The (1993) 336

 Top 10 highly rated under total ratings 300:

 rating movie title total ratings

1281 4.466443 Schindler's List (1993) 298

1652 4.466102 Wrong Trousers, The (1993) 118

273 4.456790 Casablanca (1942) 243

1317 4.445230Shawshank Redemption, The (1994) 283

1215 4.387560 Rear Window (1954) 209

1572 4.385768 Usual Suspects, The (1995) 267

1398 4.358491 Star Wars (1977) 583

3 4.344000 12 Angry Men (1957) 125

303 4.292929 Citizen Kane (1941) 198

1507 4.292237 To Kill a Mockingbird (1962) 219

 Mean rating of movies on genderwise:

I. From the dataset, we find the mean rating of movies according to the given rating

of male and female. Then print the 25 movies in random order.

II. We find the movies whose total ratings are greater than or equal to300. Then

among these movies, we find the mean rating of movies according to the given

rating of male and female. Then print the 15movies in random order.

III. Then we find the highly rated movies based on female rating and then print 15

highly rated movies on female rating.

IV. We find the difference between mean ratings given by male and female.Print 15

movies.

V. Sort the movies in descending order based on the difference and then print the 15

movies which are most disagree on male and female. (Here all the movies whose

total ratings are greater than or equal to 300).

 Mean rating of movies based on male and female:

 gender

 F M

movie title

'Til There Was You (1997) 2.200000 2.500000

1-900 (1994) 1.000000 3.000000

101 Dalmatians (1996) 3.116279 2.772727

12 Angry Men (1957) 4.269231 4.363636

187 (1997) 3.500000 2.870968

2 Days in the Valley (1996) 3.235294 3.223684

20,000 Leagues Under the Sea (1954) 3.214286 3.568966

2001: A Space Odyssey (1968) 3.491228 4.103960

3 Ninjas: High Noon At Mega Mountain (1998 1.00000 1.000000

39 Steps, The (1935) 4.000000 4.060000

8 1/2 (1963) 2.800000 3.969697

8 Heads in a Duffel Bag (1997) 2.500000 4.000000

8 Seconds (1994) 4.000000 3.666667

A Chef in Love (1996) 3.750000 4.500000

Above the Rim (1994) NaN 3.000000

Absolute Power (1997) 3.451613 3.343750

Abyss, The (1989) 3.814815 3.540323

Ace Ventura: Pet Detective (1994) 3.105263 3.035714

Ace Ventura: When Nature Calls (1995) 2.300000 2.814815

Across the Sea of Time (1995) 2.666667 3.000000

Addams Family Values (1993) 3.000000 2.757576

Addicted to Love (1997) 3.074074 3.259259

Addiction, The (1995) 2.000000 2.222222

Adventures of Pinocchio, The (1996) 2.909091 3.107143

Adventures of Priscilla, Queen of the Desert, T... 3.659091 3.552239

 Movies whose rating are greater than or equal to 300:

Index([u'Air Force One (1997)', u'Back to the Future (1985)',

u'Chasing Amy (1997)', u'Contact (1997)',

u'E.T. the Extra-Terrestrial (1982)',

u'Empire Strikes Back, The (1980)', u'English Patient, The (1996)',

u'Fargo (1996)', u'Forrest Gump (1994)', u'Fugitive, The (1993)',

u'Full Monty, The (1997)', u'Godfather, The (1972)',

u'Independence Day (ID4) (1996)',

u'Indiana Jones and the Last Crusade (1989)', u'Jerry Maguire (1996)',

u'Liar Liar (1997)', u'Men in Black (1997)',

u'Mission: Impossible (1996)',

u'Monty Python and the Holy Grail (1974)',

u'Princess Bride, The (1987)', u'Pulp Fiction (1994)',

u'Raiders of the Lost Ark (1981)', u'Return of the Jedi (1983)',

u'Rock, The (1996)', u'Saint, The (1997)', u'Scream (1996)',

u'Silence of the Lambs, The (1991)', u'Star Trek: First Contact (1996)',

u'Star Wars (1977)', u'Terminator, The (1984)', u'Titanic (1997)',

u'Toy Story (1995)', u'Twelve Monkeys (1995)',

u'WillyWonka and the Chocolate Factory (1971)'],

dtype='object', name=u'movie title')

 15 highly rated movies based on female rating:

gender F M

movie title

Silence of the Lambs, The (1991) 4.320000 4.279310

Titanic (1997) 4.278846 4.231707

Star Wars (1977) 4.245033 4.398148

Fugitive, The (1993) 4.166667 4.011364

Godfather, The (1972) 4.133333 4.334416

Raiders of the Lost Ark (1981) 4.084211 4.301538

Princess Bride, The (1987) 4.044944 4.221277

Full Monty, The (1997) 4.020408 3.884793

Fargo (1996) 4.016000 4.201044

Return of the Jedi (1983) 4.008065 4.007833

Empire Strikes Back, The (1980) 3.978022 4.278986

Indiana Jones and the Last Crusade (1989) 3.923077 3.932806

Pulp Fiction (1994) 3.916667 4.100000

Rock, The (1996) 3.879121 3.634146

Monty Python and the Holy Grail (1974) 3.863636 4.120000

 Difference of mean ratings of movies based on male and female ratings:

gender F ... diff

movie title ...

Air Force One (1997) 3.690476 ... -0.083919

Back to the Future (1985) 3.766667 ... 0.091026

Chasing Amy (1997) 3.819149 ... 0.026465

Contact (1997) 3.686131 ... 0.160643

E.T. the Extra-Terrestrial (1982) 3.839080 ... -0.008095

Empire Strikes Back, The (1980) 3.978022 ... 0.300964

English Patient, The (1996) 3.809211 ... -0.222584

Fargo (1996) 4.016000 ... 0.185044

Forrest Gump (1994) 3.772152 ... 0.108013

Fugitive, The (1993) 4.166667 ... -0.155303

Full Monty, The (1997) 4.020408 ... -0.135616

Godfather, The (1972) 4.133333 ... 0.201082

Independence Day (ID4) (1996) 3.688679 ... -0.332642

Indiana Jones and the Last Crusade (1989) 3.923077 ... 0.009729

Jerry Maguire (1996) 3.724138 ... -0.018914

[15 rows x 3 columns]

 Male and female are most deagree on movies:

gender F ... diff

movie title ...

Independence Day (ID4) (1996) 3.688679 ... -0.332642

Rock, The (1996) 3.879121 ... -0.244975

Mission: Impossible (1996) 3.487179 ... -0.224022

English Patient, The (1996) 3.809211 ... -0.222584

Star Trek: First Contact (1996) 3.835616 ... -0.219178

Saint, The (1997) 3.247059 ... -0.169137

Willy Wonka and the Chocolate Factory (1971) 3.752688 ... -0.168997

Fugitive, The (1993) 4.166667 ... -0.155303

Full Monty, The (1997) 4.020408 ... -0.135616

Air Force One (1997) 3.690476 ... -0.083919

Titanic (1997) 4.278846 ... -0.047139

Silence of the Lambs, The (1991) 4.320000 ... -0.040690

Jerry Maguire (1996) 3.724138 ... -0.018914

E.T. the Extra-Terrestrial (1982) 3.839080 ... -0.008095

Return of the Jedi (1983) 4.008065 ... -0.000232

[15 rows x 3 columns]

5.3.2MEMORY BASED COLABORATIVE FILTERING :

WORK FLOW

i. Read u.data file

ii. Convert it into dataframe named df

iii. Split the dataset into training and test dataset where percentage of test example (test_size)

is 0.25

iv. Create two user-item matrices one for training another for testing

v. Calculate the cosine similarity of the train data (user_similarity, item_similarity)

vi. Make prediction for item-based CF using formulae(user_prediction, item_prediction)

vii. Evaluate accuracy of user-based CF and item-based CF using MSE function

OUTPUT

User-based CF RMSE: 3.1278912151704135
Item-based CF RMSE: 3.4562654942596227

5.3.3MODEL BASED COLABORATIVE FILTERING:

WORK FLOW of finding root meansquare error

i. Read in the file which contains the full dataset

ii. Split the dataset into training(train_data_matrix) and test(test_data_matrix) dataset where

percentage of test example (test_size) is 0.25

iii. Find sparsity level of movie lens dataset

iv. Choose k=20

v. Find SVD components (s,u,vt) from test matrix

vi. Make a prediction (X_predict) by taking dot product of s,u,vt
vii. Calculate root mean square value between X_predict and test_data_matrix

OUTPUT

The sparsity level of MovieLens100K is 93.7%
User-based CF MSE: 2.710957747278451

WORK FLOW of Matrix Factorization

i. Build movie dicitionary(movies_dict) with line no as numpy movie id,its actual movie id

as the key

ii. Read data from ratings file where each line of i/p file represents one tag applied to one

movie by one user, which has the following format: userId,movieId,tag,timestamp

iii. Return a numpy array named numpy_arr

iv. Create P an initial matrix of dimension N x K, where is n is no of users and k is hidden

latent features

v. Create Q an initial matrix of dimension M x K, where M is no of movies and K is hidden

latent features

vi. Initialize steps variable which is the maximum number of steps to perform the

optimisation, hardcoding the values

vii. Initialize alpha variable the learning rate, hardcoding the values

viii. Initialize beta variable the regularization parameter, hardcoding the values

ix. For each user, each item calculate the error of the element, second norm of P and Q for

regularization, sum of norms

x. Compute the gradient from the error of each user, each item

xi. Compute total error

xii. Predictnumpy array of users and movie ratings

WORK FLOW of Recommendation

i. Read the rating file for the missing

ii. Get the mapping between movie names, actual movie id and numpy movie id

iii. Build predicted numpy movie id from the saved predicted matrix of user and movie

ratings

iv. Create a dictionary of unrated movies for each user

v. Recommend top 25 unrated movies based on their the predicted score

OUTPUT

Top 25 movies recommendation for the user 1

Letters from Iwo Jima (2006) with Movie rating value 9.360346877845387
Eddie Murphy Raw (1987) with Movie rating value 9.236018165660075
Dear Wendy (2005) with Movie rating value 9.203698523462286
Talking About Sex (1994) with Movie rating value 8.956160676896394
Love! Valour! Compassion! (1997) with Movie rating value 8.947410581308626
Brave (2012) with Movie rating value 8.934428106940143
Wild at Heart (1990) with Movie rating value 8.929597840739088

Taking Chance (2009) with Movie rating value 8.865345347150067
Wonderland (1999) with Movie rating value 8.858284085776976
Goldfinger (1964) with Movie rating value 8.85507043606452
Advantageous (2015) with Movie rating value 8.841811638780884
Hurt Locker The (2008) with Movie rating value 8.827438714746878
Character (Karakter) (1997) with Movie rating value 8.814686428454374
Man from Elysian Fields The (2001) with Movie rating value 8.804616845028592
Elite Squad (Tropa de Elite) (2007) with Movie rating value 8.800233480476749
Andalusian Dog An (Chien andalou Un) (1929) with Movie rating value 8.782505251474689
All About the Benjamins (2002) with Movie rating value 8.773890359394672
Tortilla Soup (2001) with Movie rating value 8.758542219008639
Irma la Douce (1963) with Movie rating value 8.745150922721505
Lion in Winter The (1968) with Movie rating value 8.73719699262219
Mystery Science Theater 3000: The Movie (1996) with Movie rating value 8.730271624625018
Buried (2010) with Movie rating value 8.710702189343554
Ride the High Country (1962) with Movie rating value 8.709931728714334
Ice Harvest The (2005) with Movie rating value 8.700350486013615
Musketeer The (2001) with Movie rating value 8.666684616297236

Top 25 movies recommendation for the user 2

Star Maker The (Uomo delle stelle L') (1995) with Movie rating value 10.13880104020052
Haunting The (1999) with Movie rating value 10.09639976129478
Dersu Uzala (1975) with Movie rating value 9.986568480207652
Gran Torino (2008) with Movie rating value 9.633308061739772
Dot the I (2003) with Movie rating value 9.593458722493194
Love! Valour! Compassion! (1997) with Movie rating value 9.578484363839507
Repulsion (1965) with Movie rating value 9.525752185140883
No Country for Old Men (2007) with Movie rating value 9.489700718703212
Steam: The Turkish Bath (Hamam) (1997) with Movie rating value 9.464359147721858
Insurgent (2015) with Movie rating value 9.455806020643394
Great Santini The (1979) with Movie rating value 9.431101171056332
Bloodsport 2 (a.k.a. Bloodsport II: The Next Kumite) (1996) with Movie rating value
9.427678213008964
Dear Wendy (2005) with Movie rating value 9.322087684615997
Factotum (2005) with Movie rating value 9.312970454745962
To Catch a Thief (1955) with Movie rating value 9.25597696293851
Collapse (2009) with Movie rating value 9.20992322565514
Darkness (2002) with Movie rating value 9.177683020889742
Sword in the Stone The (1963) with Movie rating value 9.16489314214196
Upstream Color (2013) with Movie rating value 9.136938290335344
Taking Chance (2009) with Movie rating value 9.113214062168026
Green Hornet The (2011) with Movie rating value 9.107034466975747
Herbie Rides Again (1974) with Movie rating value 9.100971983950002
Dog Day Afternoon (1975) with Movie rating value 9.094729114359401
Midnight Cowboy (1969) with Movie rating value 9.088105650764051
Shower (Xizao) (1999) with Movie rating value 9.081735532919996

Top 25 movies recommendation for the user 3

Talking About Sex (1994) with Movie rating value 10.204998351509273
Suriyothai (a.k.a. Legend of Suriyothai The) (2001) with Movie rating value 9.947882319852024
Everyone Says I Love You (1996) with Movie rating value 9.865275533587132
Can't Buy Me Love (1987) with Movie rating value 9.856880582067522
Safe Conduct (Laissez-Passer) (2002) with Movie rating value 9.784257297830154
Death in Brunswick (1991) with Movie rating value 9.784003891609235
Poison Ivy II (1996) with Movie rating value 9.72720674424106
Low Life (1994) with Movie rating value 9.721290686061655
Jules and Jim (Jules et Jim) (1961) with Movie rating value 9.67255094340262
Making Plans for Lena (Non ma fille tu n'iras pas danser) (2009) with Movie rating value
9.617833833089582
Forbidden Planet (1956) with Movie rating value 9.59833795485311
Lion in Winter The (1968) with Movie rating value 9.490113114953642
Vertigo (1958) with Movie rating value 9.489959791757553
Eddie Murphy Raw (1987) with Movie rating value 9.478330514789848
Wild at Heart (1990) with Movie rating value 9.462678235822004
Trip to the Moon A (Voyage dans la lune Le) (1902) with Movie rating value
9.413287809691331
Sentinel The (2006) with Movie rating value 9.39122760646115
Great Santini The (1979) with Movie rating value 9.357351563700892
Evita (1996) with Movie rating value 9.332073442188022
Letters from Iwo Jima (2006) with Movie rating value 9.326944306809107
Alice in Wonderland (1951) with Movie rating value 9.321912754319111
No Country for Old Men (2007) with Movie rating value 9.318230556471313
Joe Kidd (1972) with Movie rating value 9.311247251165236
Wonderland (1999) with Movie rating value 9.288325162517323
Buried (2010) with Movie rating value 9.280888142401098

Memory-based techniques use the data (likes, ratings, etc) that we have to establish correlations

(similarities?) between either users (Collaborative Filtering) or items (Content-Based

Recommendation) to recommend an item i to a user u who’s never seen it before. In the case of

collaborative filtering, we get the recommendations from items seen by the user’s who are

closest to u, hence the term collaborative. In contrast, content-based recommendation tries to

compare items using their characteristics (movie genre, actors, book’s publisher or author… etc)

to recommend similar new items.

In a nutshell, memory-based techniques rely heavily on simple similarity measures (Cosine

similarity, Pearson correlation, Jaccard coefficient… etc) to match similar people or items

together. If we have a huge matrix with users on one dimension and items on the other, with the

http://inside.mines.edu/~ckarlsso/mining_portfolio/similarity.html

cells containing votes or likes, then memory-based techniques use similarity measures on two

vectors (rows or columns) of such a matrix to generate a number representing similarity.

Model-based techniques on the other hand try to further fill out this matrix. They tackle the task

of “guessing” how much a user will like an item that they did not encounter before. For that they

utilize several machine learning algorithms to train on the vector of items for a specific user, then

they can build a model that can predict the user’s rating for a new item that has just been added

to the system..

Popular model-based techniques are Bayesian Networks, Singular Value Decomposition, and

Probabilistic Latent Semantic Analysis (or Probabilistic Latent Semantic Indexing). For some

reason, all model-based techniques do not enjoy particularly happy-sounding names.

 CHAPTER 6

CONCLUDING REMARKS:
 Here we traversed through the process of making a basic recommendation engine in

python. We stated by understanding the fundamentals of recommendations. Then we went on to

load the Movie lens data set for the purpose of experimentation.

 Subsequently we made a first model as a simple popularity model in which the most

popular model in which the most popular movies are recommended for users. They can also find

mean rating of a particular movie or search for top rated movies of particular genre or search for

the movies by director name. But this lacked personalization. So we made another model based

collaborative filtering and content based collaborative filtering.

 We found that the the root means square error is less in model based filtering than both

user based collaborative filtering and item based collaborative filtering . The important aspect is

that the Collaborative Filtering model uses data (user_id, movie_id, rating) to learn the latent

features. If there is little amount of data available model-based CF model will predict poorly,

since it will be more difficult to learn the latent features.

 Models that use both ratings and content features are called Hybrid Recommender

Systems where both Collaborative Filtering and Content-based Models are combined. Hybrid

recommender systems usually show higher accuracy than Collaborative Filtering or Content-

based Models on their own: they are capable to address the cold-start problem better since if

there is no ratings for a user or an item,one could use the metadata from the user or item to make

a prediction.

 We would like to propose another type of recommendation algorithm where factors like

ratings, type of movie watched, age, occupation can be used to group users into "clusters" with

similar viewing habits. A customer can belong to multiple clusters. Based on the cluster, we can

then identify the movie characteristics that would be most appealing to the user. And we can

recommend the user the top rated movie within that cluster.

 REFERENCE:

1. GauravArora, Ashish Kumar, Gitanjali Sanjay Devre, Prof. AmitGhumare , (2014) ,

MOVIE RECOMMENDATION SYSTEM BASED ON USERS’ SIMILARITY , 4(3) , 765-

766

2. Richhi F, Rokach L, Shapira B, Recommender Systems Handbook, DOI

10.1007/978-0-387-85820-3_1, © Springer Science+Business Media, LLC 2011,

http://www.inf.unibz.it/~ricci/papers/intro-rec-sys-handbook.pdf

3. Manoj Kumar, D.K.Yadav, Ankur Sing, Vijay Kr. Gupta, 920150, International

Journal of Computer Applications: A Movie Recommender System: MOVREC,

123(3), 7-10

4. Bhumika Bhatt, Prof. Premal J Patel, Prof. HetalGaudani, (2014), A Review Paper on

Machine Learning Based Recommendation System, 2(4), 3955-3956

5. http://files.grouplens.org/datasets/movielens/ml-100k.zip

6. https://www.sciencedirect.com/science/article/pii/S1110866515000341

7. http://beyondvalence.blogspot.in/2014/09/python-and-pandas-part-2-movie-

ratings.html

8. https://www.datacamp.com/community/tutorials/recommender-systems-python

9. http://www.quuxlabs.com/blog/2010/09/matrix-factorization-a-simple-tutorial-and-

implementation-in-python/

10.https://blog.dominodatalab.com/recommender-systems-collaborative-filtering/

11.http://dataconomy.com/2015/03/an-introduction-to-recommendation-engines/

12.https://www.upwork.com/hiring/data/how-collaborative-filtering-works/

13.https://www.upwork.com/hiring/data/what-is-content-based-filtering/

14.http://www.cs.carleton.edu/cs_comps/0607/recommend/recommender/memorybas

ed.html

15.https://acodeforthought.wordpress.com/2016/12/26/building-a-simple-

recommender-system-with-movie-lens-data-set/

16.https://www.analyticsvidhya.com/blog/2016/06/quick-guide-build-

recommendation-engine-python/

17.http://enhancedatascience.com/2017/04/22/building-recommender-scratch/

18.https://cambridgespark.com/content/tutorials/implementing-your-own-

recommender-systems-in-Python/index.html

http://files.grouplens.org/datasets/movielens/ml-100k.zip
https://www.sciencedirect.com/science/article/pii/S1110866515000341
http://beyondvalence.blogspot.in/2014/09/python-and-pandas-part-2-movie-ratings.html
http://beyondvalence.blogspot.in/2014/09/python-and-pandas-part-2-movie-ratings.html
https://www.datacamp.com/community/tutorials/recommender-systems-python
http://www.quuxlabs.com/blog/2010/09/matrix-factorization-a-simple-tutorial-and-implementation-in-python/
http://www.quuxlabs.com/blog/2010/09/matrix-factorization-a-simple-tutorial-and-implementation-in-python/
https://blog.dominodatalab.com/recommender-systems-collaborative-filtering/
http://dataconomy.com/2015/03/an-introduction-to-recommendation-engines/
https://www.upwork.com/hiring/data/how-collaborative-filtering-works/
https://www.upwork.com/hiring/data/what-is-content-based-filtering/
http://www.cs.carleton.edu/cs_comps/0607/recommend/recommender/memorybased.html
http://www.cs.carleton.edu/cs_comps/0607/recommend/recommender/memorybased.html
https://acodeforthought.wordpress.com/2016/12/26/building-a-simple-recommender-system-with-movie-lens-data-set/
https://acodeforthought.wordpress.com/2016/12/26/building-a-simple-recommender-system-with-movie-lens-data-set/
https://www.analyticsvidhya.com/blog/2016/06/quick-guide-build-recommendation-engine-python/
https://www.analyticsvidhya.com/blog/2016/06/quick-guide-build-recommendation-engine-python/
http://enhancedatascience.com/2017/04/22/building-recommender-scratch/
https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html
https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html

