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                                          Abstract 
 

 

 

 

Recommendation system plays important role in Internet world and used in many applications. It 

has created the collection of many application, created global village and growth for numerous 

information. This report represents the overview of Approaches and techniques generated in 

recommendation system. Recommendation system is categorized in three classes: Collaborative 

Filtering, Content based and hybrid based Approach.  This report classifies collaborative filtering 

in two types: Memory based and Model based Recommendation .The paper elaborates these 

approaches and their techniques with their limitations. The result of our system provides much 

better recommendations to users because it enables the users to understand the relation between 

their emotional states and the recommended movies. 
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                  CHAPTER 1 

 

 
 

 

INTRODUCTION : 

In today’s world where internet has become an important part of human life, users often face the 

problem of too much choice. Right from looking for a motel to looking for good investment 

options, there is too much information available. To help the users cope with this information 

explosion, companies have deployed recommendation systems to guide their users. The research 

in the area of recommendation systems has been going on for several decades now, but the 

interest still remains high because of the abundance of practical applications and the problem 

rich domain. A number of such online recommendation systems implemented and used are the 

recommendation system for books at Amazon.com , for movies at MovieLens.org, CDs at 

CDNow.com (from Amazon.com), etc.  

 

Recommender Systems have added to the economy of the some of the e-commerce websites 

(like Amazon.com) and Netflix which have made these systems a salient parts of their websites. 

A glimpse of the profit of some websites is shown in table below: 

Netflix:2/3rd of the movies watched are recommended. 

Googles News: recommendation generate 38% more click-throughs. 

Amazons:35% sales are from recommendations. 

Choicestream: 28% of the people would buy more music if they found what they liked. 

 

 

Recommender Systems generate recommendations; the user may accept them according to their 

choice and may also provide, immediately or at a next stage, an implicit or explicit feedback. 

The actions of the users and their feedbacks can be stored in the recommender database and may 

be used for generating new recommendations in the next user-system interactions. The economic 

potential of theses recommender systems have led some of the biggest e-commerce websites 

(like Amazon.com, snapdeal.com) and the online movie rental company Netflix to make these 

systems a salient part of their websites. High quality personalized recommendations add another 

dimension to user experience. The web personalized recommendation systems are recently 

applied to provide different types of customized information to their respective users. These 

systems can be applied in various types of applications and are very common now a day. 

  



                  CHAPTER 2 
 

 

 

 

 

 

 

                    RELATED WORK 
 

 

 

Many recommendation systems have been developed over the past decades. These systems use 

different approaches like collaborative approach, content based approach, a utility base approach, 

hybrid approach etc.  

 

Looking at the purchase behavior and history of the shoppers, Lawrence et al. 2001 presented a 

recommender system which suggests the new product in the market. To refine the 

recommendation collaborative and content based filtering approach were used. To find the 

potential customers most of the recommendation systems today use ratings given by previous 

users. These ratings are further used to predict and recommend the item of one’s choice.  

 

In 2007 Weng, Lin and Chen performed an evaluation study which says using multidimensional 

analysis and additional customer’s profile increases the recommendation quality. Weng used MD 

recommendation model (multidimensional recommendation model) for this purpose. 

multidimensional recommendation model was proposed by Tuzhilin and Adomavicius (2001).  



                     CHAPTER 3 

 
PHASES OF RECOMMENDATION PROCESS: 
 
The system normally asks a person via the device interface to provide rating for items to 

construct and enhance his version. The accuracy of recommendation relies upon on the amount 

of ratings provided via the person. The only shortcoming of this method is, it requires effort from 

the customers and additionally, customers may not be always ready to provide sufficient facts. 

Despite the fact that specific feedback needs more effort from consumer, it is still seen as 

presenting extra dependable information, since it does now not involve extracting options from 

moves, and it additionally provides transparency into the recommendation system that effects in 

a slightly better perceived recommendation great and greater confidence inside the 

recommendations 

 

 

Fig1:Recommendation Phases  

 

 

The use of efficient and accurate recommendation techniques is very important for a system that 

will provide good and useful recommendation to its individual users. This explains the 

importance of understanding the features and potentials of different recommendation techniques.  



                                              CHAPTER 4 

 

RECOMMENDER SYSTEMBASICS CONCEPT 

 

 Recommender systems are information filtering tools that are used to predict the rating 

for users and items, predominantly from big data to recommend their likes. Movie 

recommendation systems provide a mechanism to assist users in classifying users with similar 

interests. This makes recommender systems essentially a central part of websites and e-

commerce applications. 

           In this project we propose a movie recommendation system, where user specific interests 

are taken into account, to determine recommendations. 

            A Recommendation System is composed of two modules: a database and a filtering 

technique. The database is responsible for storing the information about users, items and the 

associated ratings. The filtering technique is implemented by an algorithm.There are three 

important types of recommender systems: 

 Collaborative Filtering 

 Content based Filtering 

 Hybrid Filtering 



 

 

                                     Fig2:Recommender system based on filtering 

4.1.Content-Based Filtering: 
Content-based technique is a domain-dependent algorithm and it emphasizes more on the 

analysis of the attributes of items in order to generate predictions. When documents such as web 

pages, publications and news are to be recommended, content-based filtering technique is the 

most successful. In content-based filtering technique, recommendation is made based on the user 

profiles using features extracted from the content of the items the user has evaluated in the past. 

Items that are mostly related to the positively rated items are recommended to the user. CBF uses 

different types of models to find similarity between documents in order to generate meaningful 

recommendations. It could use Vector Space Model such as Term Frequency Inverse Document 

Frequency (TF/IDF) or Probabilistic models such as Decision Trees. Neural Networks to model 

the relationship between different documents within a corpus. These techniques make 

recommendations by learning the underlying model with either statistical analysis or machine 

learning techniques. Content-based filtering technique does not need the profile of other users 

since they do not influence recommendation. Also, if the user profile changes, CBF technique 

still has the potential to adjust its recommendations within a very short period of time. The major 

disadvantage of this technique is the need to have an in-depth knowledge and description of the 

features of the items in the profile.  

 

 



4.2Collaborative Filtering: 
Collaborative filtering is a domain-independent prediction technique for content that cannot 

easily and adequately be described by metadata such as movies and music. Collaborative 

filtering technique works by building a database (user-item matrix) of preferences for items by 

users. It then matches users with relevant interest and preferences by calculating similarities 

between their profiles to make recommendations. Such users build a group called neighborhood. 

A user gets recommendations to those items that he has not rated before but that were already 

positively rated by users in his neighborhood. Recommendations that are produced by CF can be 

of either prediction or recommendation. Prediction is a numerical value, Rij, expressing the 

predicted score of item j for the user i, while Recommendation is a list of top N items that the 

user will like the most. The technique of collaborative filtering can be divided into two 

categories: memory-based and model-based . 

 

 

4.2.1.Model-Based Techniques: 
This technique employs the previous ratings to learn a model in order to improve the 

performance of Collaborative filtering Technique. The model building process can be done using 

machine learning or data mining techniques. These techniques can quickly recommend a set of 

items for the fact that they use pre-computed model and they have proved to produce 

recommendation results that are similar to neighborhood-based recommender techniques. 

Examples of these techniques include Dimensionality Reduction technique such as Singular 

Value Decomposition (SVD), Matrix Completion Technique, Latent Semantic methods, and 

Regression and Clustering. Model-based techniques analyze the user-item matrix to identify 

relations between items; they use these relations to compare the list of top-N recommendations. 

Model based techniques resolve the sparsity problems associated with recommendation systems. 

  
 Model-based Collaborative Filtering is based on matrix factorization(MF)which has 

received greater exposure, mainly as an unsupervised learning method for latent variable 

decomposition and dimensionality reduction. Matrix factorization is widely used for 

recommender systems where it can deal better with scalability and sparsity than Memory-based 

Collaborative Filtering. The goal of MF is to learn the latent preferences of users and the latent 

attributes of items from known ratings (learn features that describe the characteristics of ratings) 

to then predict the unknown ratings through the dot product of the latent features of users and 

items. When you have a very sparse matrix, with a lot of dimensions, by doing matrix 

factorization you can restructure the user-item matrix into low-rank structure, and you can 

represent the matrix by the multiplication of two low-rank matrices, where the rows contain the 

latent vector. You fit this matrix to approximate your original matrix, as closely as possible, by 

multiplying the low-rank matrices together, which fills in the entries missing in the original 

matrix . 

 A well-known matrix factorization method is Singular value decomposition (SVD). 

Collaborative Filtering can be formulated by approximating a matrix X by using singular value 

decomposition.The general equation can be expressed as follows:  

 

    X=UxSxVT 

Given anmxn matrixX: 



 Uis anmxr orthogonal matrix 

 Sis anrxr diagonal matrix with non-negative real numbers on the diagonal 

 VTis anrxn orthogonal matrix 

Elements on the diagnoal inS are known as singular values of X. 

MatrixX can be factorized toU, S and V. TheU matrix represents the feature vectors 

corresponding to the users in the hidden feature space and theV matrix represents the feature 

vectors corresponding to the items in the hidden feature space. 

 

 
 https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html 

 

Now we can make a prediction by taking dot product ofU, S andVT.  

 
https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html 

 

 Just as its name suggest matrix factorization is to, obviously, factorize a matrix, i.e. to 

find out two (or more) matrices such that when you multiply them you will get back the original 

matrix.  matrix factorization can be used to discover latent features underlying the interactions 

between two different kinds of entities. (Of course, you can consider more than two kinds of 

entities and you will be dealing with tensor factorization, which would be more complicated.) 

And one obvious application is to predict ratings in collaborative filtering. 

 In a recommendation system such as Netflix or MovieLens , there is a group of users and 

a set of items (movies for the above two systems). Given that each users have rated some items 

https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html
https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html
http://www.netflix.com/
http://movielens.umn.edu/


in the system, we would like to predict how the users would rate the items that they have not yet 

rated, such that we can make recommendations to the users. In this case, all the information we 

have about the existing ratings can be represented in a matrix. Assume now we have 5 users and 

10 items, and ratings are integers ranging from 1 to 5, the matrix may look something like this (a 

hyphen means that the user has not yet rated the movie): 

 

 

D1 D2 D3 D4 

U1 5 3 - 1 

U2 4 - - 1 

U3 1 1 - 5 

U4 1 - - 4 

U5 - 1 5 4 

  

 Hence, the task of predicting the missing ratings can be considered as filling in the blanks 

(the hyphens in the matrix) such that the values would be consistent with the existing ratings in 

the matrix. 

 The intuition behind using matrix factorization to solve this problem is that there should 

be some latent features that determine how a user rates an item. For example, two users would 

give high ratings to a certain movie if they both like the actors/actresses of the movie, or if the 

movie is an action movie, which is a genre preferred by both users. Hence, if we can discover 

these latent features, we should be able to predict a rating with respect to a certain user and a 

certain item, because the features associated with the user should match with the features 

associated with the item. 

 In trying to discover the different features, we also make the assumption that the number 

of features would be smaller than the number of users and the number of items. It should not be 

difficult to understand this assumption because clearly it would not be reasonable to assume that 

each user is associated with a unique feature (although this is not impossible). And anyway if 

this is the case there would be no point in making recommendations, because each of these users 

would not be interested in the items rated by other users. Similarly, the same argument applies to 

the items. 

 

 MATHEMATICS OF MATRIX FACTORIZATION: 
 

 Having discussed the intuition behind matrix factorization, we can now go on to work on 

the mathematics. Firstly, we have a set  of users, and a set  of items. Let R of 

size |U|X|D| be the matrix that contains all the ratings that the users have assigned to the items. 



Also, we assume that we would like to discover $K$ latent features. Our task, then, is to find two 

matrices P (a |U|XK matrix) and Q (a |D|XK matrix) such that their product approximates R 

     
 In this way, each row of  would represent the strength of the associations between a 

user and the features. Similarly, each row of  would represent the strength of the associations 

between an item and the features. To get the prediction of a rating of an item dj by Ui, we can 

calculate the dot product of the two vectors corresponding to Ui and dj: 

 

     
 

 Now, we have to find a way to obtain  and . One way to approach this problem is the 

first initialize the two matrices with some values, calculate how `different’ their product is to , 

and then try to minimize this difference iteratively. Such a method is called gradient descent, 

aiming at finding a local minimum of the difference . 

 The difference here, usually called the error between the estimated rating and the real 

rating, can be calculated by the following equation for each user-item pair: 

 

    
 

 Here we consider the squared error because the estimated rating can be either higher or 

lower than the real rating. 

  To minimize the error, we have to know in which direction we have to modify the values 

of pik and qkj. In other words, we need to know the gradient at the current values, and therefore 

we differentiate the above equation with respect to these two variables separately: 

    

    
 

 Having obtained the gradient, we can now formulate the update rules for both pik and qkj: 

    

    
 

 Here, α is a constant whose value determines the rate of approaching the minimum. 

Usually we will choose a small value for α, say 0.0002. This is because if we make too large a 

step towards the minimum we may run into the risk of missing the minimum and end up 

oscillating around the minimum. 

 we are not really trying to come up with P and Q such that we can reproduce R exactly.  

Instead, we will only try to minimise the errors of the observed user-item pairs. In other words, if 

we let T be a set of tuples, each of which is in the form of  (ui,dj,rij), such that  contains all the 

observed user-item pairs together with the associated ratings, we are only trying to minimise 

every eij for (ui,dj,rij)εT. (In other words, T is our set of training data.) As for the rest of the 



unknowns, we will be able to determine their values once the associations between the users, 

items and features have been learnt. 

Using the above update rules, we can then iteratively perform the operation until the error 

converges to its minimum. We can check the overall error as calculated using the following 

equation and determine when we should stop the process . 

 

  
 

 

 REGULARIZATION: 
 

 The above algorithm is a very basic algorithm for factorizing a matrix. There are a lot of 

methods to make things look more complicated. A common extension to this basic algorithm is 

to introduce regularization to avoid overfitting. This is done by adding a parameter β and modify 

the squared error as follows: 

 

  
 

 

In other words, the new parameter β is used to control the magnitudes of the user-feature and 

item-feature vectors such that P and Q would give a good approximation of  without having 

to contain large numbers. In practice, β is set to some values in the range of 0.02. The new 

update rules for this squared error can be obtained by a procedure similar to the one described 

above. The new update rules are as follows. 

 

   

   
 

4.2.2.Memory Based Techniques : 
The items that were already rated by the user before play a relevant role in searching for a 

neighbor that shares appreciation with him .Once a neighbor of a user is found, different 

algorithms can be used to combine the preferences of neighbors to generate recommendations. 

Due to the effectiveness of these techniques, they have achieved widespread success in real life 

applications. Memory-based CF can be achieved in two ways through user-based and item-based 

techniques. User based collaborative filtering technique calculates similarity between users by 

comparing their ratings on the same item, and it then computes the predicted rating for an item 

by the active user as a weighted average of the ratings of the item by users similar to the active 

user where weights are the similarities of these users with the target item. Item-based filtering 

techniques compute predictions using the similarity between items and not the similarity between 

users. It builds a model of item similarities by retrieving all items rated by an active user from 

the user-item matrix, it determines how similar the retrieved items are to the target item, then it 



selects the k most similar items and their corresponding similarities are also determined. 

Prediction is made by taking a weighted average of the active users rating on the similar items k. 

 Memory-based algorithms are easy to implement and produce reasonable prediction 

quality.This Collaborative Filtering approaches can be divided into two main sections: user-item 

filtering and item-item filtering. A user-item filtering takes a particular user, find users that are 

similar to that user based on similarity of ratings, and recommend items that those similar users 

liked. In contrast, item-item filtering will take an item, find users who liked that item, and find 

other items that those users or similar users also liked. It takes items and outputs other items as 

recommendations . 

 Item-Item Collaborative Filtering: “Users who liked this item also liked …” 

 User-Item Collaborative Filtering: “Users who are similar to you also liked …” 

 In both cases, we create a user-item matrix whichwe build from the entire dataset. Since 

we have split the data into testing and training we will need to create two 943 ×× 1682 matrices. 

The training matrix contains 75% of the ratings and the testing matrix contains 25% of the 

ratings. 

Example of user-item matrix: 

 
 https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html 

 After building the user-item matrix we calculate the similarity and create a similarity 

matrix. 

 The similarity values between items in Item-Item Collaborative Filtering are measured by 

observing all the users who have rated both items. 

https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html


 
 https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html 

 For User-Item Collaborative Filtering the similarity values between users are measured 

by observing all the items that are rated by both users. 

 
 https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html 

 A distance metric commonly used in recommender systems is cosine similarity, where 

the ratings are seen as vectors in n-dimensional space and the similarity is calculated based on 

the angle between these vectors. Cosine similarity for users a and m can be calculated using the 

formula below, where you take dot product of the user vector Uk and the user vectorUa and 

divide it by multiplication of the Euclidean lengths of the vectors. 

 

To calculate similarity between items m and b you use the formula: 

https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html
https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html


 
Now we can make a prediction by applying following formula for user-based Collaborative 

Filtering: 

 
 We can look at the similarity between users k and a as weights that are multiplied by the 

ratings of a similar user a (corrected for the average rating of that user). We need to normalize it 

so that the ratings stay between 1 and 5 and, as a final step, sum the average ratings for the user 

that we are trying to predict . 

 The idea here is that some users may tend always to give high or low ratings to all 

movies. The relative difference in the ratings that these users give is more important than the 

absolute values. To give an example: suppose, user k gives 4 stars to his favourite movies and 3 

stars to all other good movies. Suppose now that another user t rates movies that he/she likes 

with 5 stars, and the movies he/she fell asleep over with 3 stars. These two users could have a 

very similar taste but treat the rating system differently. 

 When making a prediction for item-based CF we don't need to correct for users average 

rating since query user itself is used to do predictions. 

 
 The most popular metric used to evaluate accuracy of predicted ratings is Root Mean 

Squared Error (RMSE). 

 
 

 

 

 



 Problems of Collaborative Filtering Techniques: 

Collaborative Filtering has some major advantages over CBF in that it can perform in domains 

where there is not much con-tent associated with items and where content is difficult for a 

computer system to analyze (such as opinions and ideal). Also, CF technique has the ability to 

provide serendipitous recommendations, which means that it can recommend items that are 

relevant to the user even without the content being in the user’s profile . Despite the success of 

CF techniques, their widespread use has revealed some potential problems such as follows  

 Cold-Start Problem: 
This refers to a situation where a recommender does not have adequate information about a user 

or an item in order to make relevant predictions. This is one of the major problems that reduce 

the performance of recommendation system. The profile of such new user or item will be empty 

since he has not rated any item; hence, his taste is not known to the system . 

 Data Sparsity Problem: 
This is the problem that is occur as a result of lack of enough information, that is, when only a 

few of the total number of items available in a database are rated by users . This always leads to 

a sparse user-item matrix, inability to locate successful neighbors and finally, the generation of 

weak recommendations. Also, data sparsity always leads to coverage problems, which is the 

percentage of items in the system that recommendations can be made for.  

 Scalability: 
This is another problem associated with Recommendation algorithms because computation 

normally grows linearly with the number of users and items .A recommendation technique that is 

efficient when the number of dataset is limited may be unable to generate satisfactory number of 

recommendations when the volume of dataset is increased. Thus, it is crucial to apply 

recommendation techniques which are capable of scaling up in a successful manner as the 

number of dataset in a database increases. Methods used for solving scalability problem and 

speeding up recommendation generation are based on Dimensionality reduction techniques, such 

as Singular Value Decomposition (SVD) method, which has the ability to produce reliable and 

efficient recommendations.  

 

 Examples of Collaborative Systems:  

Ringo is a user-based CF system which makes recommendations of music albums and artists. In 

Ringo, when a user initially enters the system, a list of 125 artists is given to the user to rate 

according to how much he likes listening to them. The list is made up of two different sections. 

The first session consists of the most often rated artists, and this affords the active user 

opportunity to rate artists which others have equally rated, so that there is a level of similarities 

between different users’ profiles. The second session is generated upon a random selection of 

items from the entire user-item matrix, so that all artists and albums are eventually rated at some 

point in the initial rating phases.  

Group Lens is a CF system that is based on client/server architecture; the system recommends 

Usenet news which is a high volume discussion list service on the Internet. The short lifetime of 

Netnews, and the underlying sparsity of the rating matrices are the two main challenges 

addressed by this system. Users and Netnews are clustered based on the existing news groups in 

the system, and the implicit ratings are computed by measuring the time the users spend reading 

Netnews.  



Amazon.com is an example of e-commerce recommendation engine that uses scalable item-to-

item collaborative filtering techniques to recommend online products for different users. The 

computational algorithm scales independently of the number of users and items within the 

database. Amazon.com uses an explicit information collection technique to obtain information 

from users. The interface is made up of the following sections, your browsing history, rate these 

items, and improve your recommendations and your profile. The sys-tem predicts users interest 

based on the items he/she has rated  

 

4.3.Hybrid Filtering: 
Hybrid filtering technique combines different recommendation techniques in order to gain better 

system optimization to avoid some limitations and problems of pure recommendation systems. 

The idea behind hybrid techniques is that a combination of algorithms will provide more 

accurate and effective recommendations than a single algorithm as the disadvantages of one 

algorithm can be overcome by another algorithm .Using multiple recommendation techniques 

can suppress the weaknesses of an individual technique in a combined model. The combination 

of approaches can be done in any of the following ways: separate implementation of algorithms 

and combining the result, utilizing some content-based filtering in collaborative approach, 

utilizing some collaborative filtering in content-based approach, creating a unified 

recommendation system that brings together both approaches.  

 

                                                    Fig3: Hybrid system  



 

                   CHAPTER 5 

 DESIGN AND IMPLENTATION OF A 

RECOMMENDER SYSTEM FOR MOVIE: 

5.1DATA SET: 

We will be using the MovieLensdataset forrecommendation. It has been collected by the Group 

Lens research project at the University of Minnesota/. The characteristics of the MovieLens ml-

100K datasetare as follows: 

 100,000 ratings (1-5) from 943 users on 1682 movies. 

 Each user has rated at least 20 movies. 

 Simple demographic info for the uses(age, gender, occupation.zip) 

 Genre information of movies. 

This data is loaded into python. There are many files in ml-100k.zip file which we used. We 

loaded three important files. There is also a recommendation to read the readme document which 

gives a lot of information about difference files. 

    5.1.1.USERS : 

There are 943 rows as there are 943 users and 5 columns for 5 featured for each namely their 

unique user_id, age, sex, occupation, zip_code. 

<class 'pandas.core.frame.DataFrame'> 

RangeIndex: 943 entries, 0 to 942 

Data columns (total 5 columns): 

user id       943 non-null int64 

age           943 non-null int64 

gender        943 non-null object 



occupation    943 non-null object 

zip code      943 non-null object 

dtypes: int64(2), object(3) 

memory usage: 25.8+ KB 

None 

 

We can print the head of the user dataset as follows: 

   user id  age gender   occupation zip code 

0        1   24      M     technician    85711 

1        2   53      F          other   94043 

2        3   23      M         writer    32067 

3        4   24      M     technician    43537 

4        5   33      F          other    15213 

5        6   42      M      executive    98101 

6        7   57      M  administrator   91344 

7        8   36      M  administrator    05201 

9        9   29      M        student    01002 

9       10   53      M         lawyer    90703 

 

5.1.2.RATINGS : 

There are 100000 ratings as there are 100K ratings for different users and movie combinations. 

Also each ratings has a timestamp associated with it. 

<class 'pandas.core.frame.DataFrame'> 

RangeIndex: 100000 entries, 0 to 99999 



Data columns (total 4 columns): 

user id      100000 non-null int64 

movie id     100000 non-null int64 

rating       100000 non-null int64 

timestamp    100000 non-null int64 

dtypes: int64(4) 

memory usage: 3.1 MB 

None 

 

We can print the head of the data dataset as follows: 

   user id  movie id  rating  timestamp 

0      196       242       3  881250949 

1      186       302       3  891717742 

2       22       377       1  878887116 

3      244        51       2  880606923 

4      166       346       1  886397596 

5      298       474       4  884182806 

6      115       265       2  881171488 

7      253       465       5  891628467 

8      305       451       3  886324817 

9        6        86       3  883603013 

 

5.1.3.ITEMS : 



This dataset contains attributes of 1682 movies. There are 24 columns out of which 19 specify 

the genre of a particular movie. The last 19 columns are for each genre and a value of 1 denotes 

that movie belongs to that genre and 0 otherwise. 

<class 'pandas.core.frame.DataFrame'> 

Int64Index: 1682 entries, 1 to 1682 

Data columns (total 24 columns): 

movie id              1682 non-null object 

movie title           1681 non-null object 

release date          0 non-null float64 

video release date    1679 non-null object 

IMDb URL              1682 non-null int64 

unknown               1682 non-null int64 

Action                1682 non-null int64 

Adventure             1682 non-null int64 

Animation             1682 non-null int64 

Childrens             1682 non-null int64 

Comedy                1682 non-null int64 

Crime                 1682 non-null int64 

Documentary           1682 non-null int64 

Drama                 1682 non-null int64 

Fantasy               1682 non-null int64 

Film-Noir             1682 non-null int64 

Horror                1682 non-null int64 

Musical               1682 non-null int64 

Mystery               1682 non-null int64 

Romance               1682 non-null int64 

Sci-Fi                1682 non-null int64 

Thriller              1682 non-null int64 

War                   1682 non-null int64 



Western               1682 non-null object 

dtypes: float64(1), int64(20), object(3) 

memory usage: 295.7+ KB 

None 

 

We can print the head of the item dataset as follows: 

   movie id   ...   Western 

0         1   ...         0 

1         2   ...         0 

2         3   ...         0 

3         4   ...         0 

4         5   ...         0 

5         6   ...         0 

6         7   ...         0 

7         8   ...         0 

8         9   ...         0 

9        10   ...         0 

 

[10 rows x 24 columns] 

 

5.2.IMPLEMENTATION: 

We have implemented movie recommendation system in python .we have used various library 

functions. We have used panda  We used the scikit-learn library to split the dataset into testing 

and training.  

http://scikit-learn.org/stable/


 We have used panda which is an open source, BSD-licensed library providing high-

performance, easy-to-use data structures and data analysis tools for the Python programming 

language. 

 

 We have used NumPy is the fundamental package for scientific computing with Python. 

 

 Also we have used codecs which defines a set of base classes which define the interface and can 

also be used to easily write your own codecs for use in Python. 

 

 We have used standard operators as functions. For example, operator.add(x, y) is equivalent to 

the expression x+y. Many function names are those used for special methods, without the double 

underscores. For backward compatibility, many of these have a variant with the double 

underscores kept. The variants without the double underscores are preferred for clarity. 

 

 We have also used importlib thepurpose this package is two-fold. One is to provide the 

implementation of the import statement (and thus, by extension, the __import__() function) 

in Python source code. This provides an implementation of import which is portable to any 

Python interpreter. This also provides an implementation which is easier to comprehend than one 

implemented in a programming language other than Python. Two, the components to 

implement import are exposed in this package, making it easier for users to create their own 

custom objects (known generically as an importer) to participate in the import process. 

 

 We have also imported Scripy.parse which is SciPy 2-D sparse matrix package for numeric 

data. 

 

5.3WORK FLOW AND RESULTS: 

 

5.3.1.SIMPLE RECOMMENDATION:  It’s a  generalized  recommendation for every 

user , based on movie popularity. More popular and critically acclaimed will have a higher 

probability of being liked by the average audience. IMDB Top 250 is an example of this system. 

       The dataset has 3 comma separated files namely u.data, u.item, u.user. 

 25 MOST RATED MOVIES: 

WORKFLOW: 

I. Merge  the  3 dataset user, data  and item. 

https://www.python.org/
https://docs.python.org/3/reference/simple_stmts.html#import
https://docs.python.org/3/reference/simple_stmts.html#import
https://docs.python.org/3/glossary.html#term-importer


II. Name the merged data set as “dataset”. 

III. Count the number of times a movie is rated by user which is group by “movie title” . 

IV. Make the total ratings into a dataframe and sort them into the descending order and print the 

25top rated movies. 

OUTPUT: 

movie id                 movie title    ...    occupation  zip code 

0         1            Toy Story (1995)    ...       retired     95076 

1         4           Get Shorty (1995)    ...       retired     95076 

2         5              Copycat (1995)    ...       retired     95076 

3         7       Twelve Monkeys (1995)    ...       retired     95076 

4         8                 Babe (1995)    ...       retired     95076 

5         9     Dead Man Walking (1995)    ...       retired     95076 

6        11        Seven (Se7en) (1995)    ...       retired     95076 

7        12  Usual Suspects, The (1995)    ...       retired     95076 

 

[8 rows x 31 columns] 

 

 

 

15 random order rated movies: 

 

0                     'Til There Was You (1997)              9 

1                                  1-900 (1994)              5 

2                         101 Dalmatians (1996)            109 

3                           12 Angry Men (1957)            125 

4                                    187 (1997)             41 

5                   2 Days in the Valley (1996)             93 

6           20,000 Leagues Under the Sea (1954)             72 

7                  2001: A Space Odyssey (1968)            259 

8   3 Ninjas: High Noon At Mega Mountain (1998)              5 



9                          39 Steps, The (1935)             59 

10                                 8 1/2 (1963)             38 

11               8 Heads in a Duffel Bag (1997)              4 

12                             8 Seconds (1994)              4 

13                        A Chef in Love (1996)              8 

14                         Above the Rim (1994)              5 

 

 

25 Top rated movies: 

                           movie title                         total ratings 

1398                           Star Wars (1977)            583 

333                              Contact (1997)            509 

498                                Fargo (1996)            508 

1234                  Return of the Jedi (1983)            507 

860                            Liar Liar (1997)            485 

460                 English Patient, The (1996)            481 

1284                              Scream (1996)            478 

1523                           Toy Story (1995)            452 

32                         Air Force One (1997)            431 

744               Independence Day (ID4) (1996)            429 

1205             Raiders of the Lost Ark (1981)            420 

612                       Godfather, The (1972)            413 

1190                        Pulp Fiction (1994)            394 

1543                      Twelve Monkeys (1995)            392 

1329           Silence of the Lambs, The (1991)            390 

780                        Jerry Maguire (1996)            384 

293                          Chasing Amy (1997)            379 

1251                           Rock, The (1996)            378 

456             Empire Strikes Back, The (1980)            367 

1394            Star Trek: First Contact (1996)            365 

1500                             Titanic (1997)            350 

113                   Back to the Future (1985)            350 

987                  Mission: Impossible (1996)            344 

570                        Fugitive, The (1993)            336 

747   Indiana Jones and the Last Crusade (1989)            331 

 

 Highly rated movies: 

I. Group the movies by movie title from the dataset “dataset”. 

II. Evaluating the Mean[mean is the average of list of values] of each movies. 

III. Store   the mean rated movies into dataframes “ ratings_mean” 

IV. Sort them by descending order  and print the 25 highly rated  movies,  

 



Mean rating of movies in random order: 

 

mean ratings                                  movie title 

0       2.333333                    'Til There Was You (1997) 

1       2.600000                                 1-900 (1994) 

2       2.908257                        101 Dalmatians (1996) 

3       4.344000                          12 Angry Men (1957) 

4       3.024390                                   187 (1997) 

5       3.225806                  2 Days in the Valley (1996) 

6       3.500000          20,000 Leagues Under the Sea (1954) 

7       3.969112                 2001: A Space Odyssey (1968) 

8       1.000000  3 Ninjas: High Noon At Mega Mountain (1998) 

9       4.050847                         39 Steps, The (1935) 

10      3.815789                                 8 1/2 (1963) 

11      3.250000               8 Heads in a Duffel Bag (1997) 

12      3.750000                             8 Seconds (1994) 

13      4.125000                        A Chef in Love (1996) 

14      3.000000                         Above the Rim (1994) 

 

25 highly rated movies: 

 

            mean ratings                                        movie title 

1472      5.000000                     They Made Me a Criminal (1939) 

944       5.000000         Marlene Dietrich: Shadow and Light (1996)  

1273      5.000000               Saint of Fort Washington, The (1993) 

1359      5.000000                      Someone Else's America (1995) 

1387      5.000000                                    Star Kid (1997) 

633       5.000000                      Great Day in Harlem, A (1994) 

30        5.000000                               Aiqingwansui (1994) 

1277      5.000000                          Santa with Muscles (1996) 

1172      5.000000                                 Prefontaine (1997) 

462       5.000000  Entertaining Angels: The Dorothy Day Story (1996) 

1130      4.625000                             PatherPanchali (1955) 

1357      4.500000                           Some Mother's Son (1996) 

956       4.500000             Maya Lin: A Strong Clear Vision (1994) 

79        4.500000                                        Anna (1996) 

472       4.500000                                     Everest (1998) 

318       4.491071                              Close Shave, A (1995) 

1281      4.466443                            Schindler's List (1993) 

1652      4.466102                         Wrong Trousers, The (1993) 

273       4.456790                                  Casablanca (1942) 

1597      4.447761  Wallace &Gromit: The Best of AardmanAnimatio... 

1317      4.445230                   Shawshank Redemption, The (1994) 

1215      4.387560                                 Rear Window (1954) 



1572      4.385768                         Usual Suspects, The (1995) 

1398      4.358491                                   Star Wars (1977) 

3         4.344000                                12 Angry Men (1957) 

 

 Mean rating of movie along with no of ratings of user : 

I. Evaluate the mean rating of each movie then count the number of user who gives rating and 

group  meand ratings and total ratings  by “movie title” 

II. Print 25 mivies in random order. 

III. Sort the movies on the basic of total rating and print the top 24 movies along with mean rating 

and total rating(descending order). 

IV. print the top 10 movies along with mean rating and total rating(descending order) where total 

ratings less than 300. 

 

  

 

Random order: 
                                                                   Rating                        no of ratings 

movie title                                                                 

'Til There Was You (1997)                           2.333333              9 

1-900 (1994)                                        2.600000              5 

101 Dalmatians (1996)                               2.908257            109 

12 Angry Men (1957)                                 4.344000            125 

187 (1997)                                          3.024390             41 

2 Days in the Valley (1996)                         3.225806             93 

20,000 Leagues Under the Sea (1954)          3.500000             72 

2001: A Space Odyssey (1968)                        3.969112            259 

3 Ninjas: High Noon At Mega Mountain (1998) 1.000000              5 

39 Steps, The (1935)                                4.050847             59 

8 1/2 (1963)                                        3.815789 38 

8 Heads in a Duffel Bag (1997)           3.250000    4 

8 Seconds (1994)                                    3.750000              4 

A Chef in Love (1996)                               4.125000              8 

Above the Rim (1994)                                3.000000              5 

Absolute Power (1997)                               3.370079            127 

Abyss, The (1989)                                   3.589404            151 

Ace Ventura: Pet Detective (1994)            3.048544            103 

Ace Ventura: When Nature Calls (1995)       2.675676             37 

Across the Sea of Time (1995)                       2.750000              4 

Addams Family Values (1993)                         2.816092             87 

Addicted to Love (1997)                             3.166667             54 

Addiction, The (1995)                               2.181818             11 

Adventures of Pinocchio, The (1996)                 3.051282             39 

Adventures of Priscilla, Queen of the Desert, T...  3.594595            111 



 

25movies in sorted order:  

 
rating                       movie title  total ratings 

1398  4.358491                  Star Wars (1977)            583 

333   3.803536                    Contact (1997)            509 

498   4.155512                      Fargo (1996)            508 

1234  4.007890         Return of the Jedi (1983)            507 

860   3.156701                  Liar Liar (1997)            485 

460   3.656965       English Patient, The (1996)            481 

1284  3.441423                     Scream (1996)            478 

1523  3.878319                  Toy Story (1995)            452 

32    3.631090              Air Force One (1997)            431 

744   3.438228     Independence Day (ID4) (1996)            429 

1205  4.252381    Raiders of the Lost Ark (1981)            420 

612   4.283293             Godfather, The (1972)            413 

1190  4.060914               Pulp Fiction (1994)            394 

1543  3.798469             Twelve Monkeys (1995)            392 

1329  4.289744  Silence of the Lambs, The (1991)            390 

780   3.710938              Jerry Maguire (1996)            384 

293   3.839050                Chasing Amy (1997)            379 

1251  3.693122                  Rock, The (1996)            378 

456   4.204360   Empire Strikes Back, The (1980)            367 

1394  3.660274   Star Trek: First Contact (1996)            365 

1500  4.245714                    Titanic (1997)            350 

113   3.834286         Back to the Future (1985)            350 

987   3.313953        Mission: Impossible (1996)            344 

570   4.044643              Fugitive, The (1993)            336 

 

 

 Top 10 highly rated under total ratings 300: 

 

                  rating           movie title                    total ratings 

1281  4.466443           Schindler's List (1993)            298 

1652  4.466102        Wrong Trousers, The (1993)            118 

273   4.456790                 Casablanca (1942)            243 

1317  4.445230Shawshank Redemption, The (1994)            283 

1215  4.387560                Rear Window (1954)            209 

1572  4.385768        Usual Suspects, The (1995)            267 

1398  4.358491                  Star Wars (1977)            583 

3     4.344000               12 Angry Men (1957)            125 

303   4.292929               Citizen Kane (1941)            198 

1507  4.292237      To Kill a Mockingbird (1962)            219 



 

 

 

 Mean rating of movies on genderwise: 

I. From the dataset, we find the mean rating  of movies according to the given rating 

of male and female. Then print the 25 movies in random order. 

II. We find the movies whose total ratings are greater than or equal to300. Then 

among these movies, we  find the mean rating  of movies according to the given 

rating of male and female. Then print the  15movies in random order. 

III. Then we find the highly rated movies based on female rating and then print 15 

highly rated movies on female rating. 

IV. We find the difference between mean ratings given by male and female.Print 15 

movies. 

V. Sort the movies in descending order  based on the difference and then print the 15 

movies which are most disagree on male and female. (Here all the movies whose 

total ratings are greater than or equal to 300). 

 

 

 Mean rating of movies based on male and female: 

                                                                              gender 

                                                                  F                    M 

movie title                                                            

'Til There Was You (1997)                       2.200000    2.500000 

1-900 (1994)                                        1.000000        3.000000 

101 Dalmatians (1996)                        3.116279         2.772727 

12 Angry Men (1957)                         4.269231         4.363636 

187 (1997)                                          3.500000          2.870968 

2 Days in the Valley (1996)               3.235294          3.223684 



20,000 Leagues Under the Sea (1954)     3.214286    3.568966 

2001: A Space Odyssey (1968)               3.491228     4.103960 

3 Ninjas: High Noon At Mega Mountain (1998      1.00000   1.000000 

39 Steps, The (1935)                                4.000000         4.060000 

8 1/2 (1963)                                        2.800000           3.969697 

8 Heads in a Duffel Bag (1997)         2.500000            4.000000 

8 Seconds (1994)                                 4.000000           3.666667 

A Chef in Love (1996)                               3.750000     4.500000 

Above the Rim (1994)                                     NaN        3.000000 

Absolute Power (1997)                               3.451613         3.343750 

Abyss, The (1989)                                   3.814815           3.540323 

Ace Ventura: Pet Detective (1994)                   3.105263    3.035714 

Ace Ventura: When Nature Calls (1995)               2.300000     2.814815 

Across the Sea of Time (1995)                       2.666667       3.000000 

Addams Family Values (1993)                         3.000000     2.757576 

Addicted to Love (1997)                             3.074074            3.259259 

Addiction, The (1995)                               2.000000             2.222222 

Adventures of Pinocchio, The (1996)                 2.909091   3.107143 

Adventures of Priscilla, Queen of the Desert, T...  3.659091    3.552239 

 

 Movies whose rating are greater than or equal to 300: 

Index([u'Air Force One (1997)', u'Back to the Future (1985)', 

u'Chasing Amy (1997)', u'Contact (1997)', 

u'E.T. the Extra-Terrestrial (1982)', 



u'Empire Strikes Back, The (1980)', u'English Patient, The (1996)', 

u'Fargo (1996)', u'Forrest Gump (1994)', u'Fugitive, The (1993)', 

u'Full Monty, The (1997)', u'Godfather, The (1972)', 

u'Independence Day (ID4) (1996)', 

u'Indiana Jones and the Last Crusade (1989)', u'Jerry Maguire (1996)', 

u'Liar Liar (1997)', u'Men in Black (1997)', 

u'Mission: Impossible (1996)', 

u'Monty Python and the Holy Grail (1974)', 

u'Princess Bride, The (1987)', u'Pulp Fiction (1994)', 

u'Raiders of the Lost Ark (1981)', u'Return of the Jedi (1983)', 

u'Rock, The (1996)', u'Saint, The (1997)', u'Scream (1996)', 

u'Silence of the Lambs, The (1991)', u'Star Trek: First Contact (1996)', 

u'Star Wars (1977)', u'Terminator, The (1984)', u'Titanic (1997)', 

u'Toy Story (1995)', u'Twelve Monkeys (1995)', 

u'WillyWonka and the Chocolate Factory (1971)'], 

dtype='object', name=u'movie title') 

 

 15 highly rated movies based on female rating: 

gender                                            F               M 

movie title                                                   

Silence of the Lambs, The (1991)           4.320000  4.279310 

Titanic (1997)                             4.278846  4.231707 

Star Wars (1977)                           4.245033  4.398148 

Fugitive, The (1993)                       4.166667  4.011364 



Godfather, The (1972)                      4.133333  4.334416 

Raiders of the Lost Ark (1981)             4.084211  4.301538 

Princess Bride, The (1987)                 4.044944  4.221277 

Full Monty, The (1997)                     4.020408  3.884793 

Fargo (1996)                               4.016000  4.201044 

Return of the Jedi (1983)                  4.008065  4.007833 

Empire Strikes Back, The (1980)            3.978022  4.278986 

Indiana Jones and the Last Crusade (1989)  3.923077  3.932806 

Pulp Fiction (1994)                        3.916667  4.100000 

Rock, The (1996)                           3.879121  3.634146 

Monty Python and the Holy Grail (1974)     3.863636  4.120000 

 

 Difference of mean ratings  of movies based on male and female ratings: 

gender                                            F    ...         diff 

movie title                                            ...              

Air Force One (1997)                       3.690476    ...    -0.083919 

Back to the Future (1985)                  3.766667    ...     0.091026 

Chasing Amy (1997)                         3.819149    ...     0.026465 

Contact (1997)                             3.686131    ...     0.160643 

E.T. the Extra-Terrestrial (1982)          3.839080    ...    -0.008095 

Empire Strikes Back, The (1980)            3.978022    ...     0.300964 

English Patient, The (1996)                3.809211    ...    -0.222584 

Fargo (1996)                               4.016000    ...     0.185044 

Forrest Gump (1994)                        3.772152    ...     0.108013 



Fugitive, The (1993)                       4.166667    ...    -0.155303 

Full Monty, The (1997)                     4.020408    ...    -0.135616 

Godfather, The (1972)                      4.133333    ...     0.201082 

Independence Day (ID4) (1996)              3.688679    ...    -0.332642 

Indiana Jones and the Last Crusade (1989)  3.923077    ...     0.009729 

Jerry Maguire (1996)                       3.724138    ...    -0.018914 

[15 rows x 3 columns] 

 

 Male and female are most deagree on movies: 

gender                                               F    ...         diff 

movie title                                               ...              

Independence Day (ID4) (1996)                 3.688679    ...    -0.332642 

Rock, The (1996)                              3.879121    ...    -0.244975 

Mission: Impossible (1996)                    3.487179    ...    -0.224022 

English Patient, The (1996)                   3.809211    ...    -0.222584 

Star Trek: First Contact (1996)               3.835616    ...    -0.219178 

Saint, The (1997)                             3.247059    ...    -0.169137 

Willy Wonka and the Chocolate Factory (1971)  3.752688    ...    -0.168997 

Fugitive, The (1993)                          4.166667    ...    -0.155303 

Full Monty, The (1997)                        4.020408    ...    -0.135616 

Air Force One (1997)                          3.690476    ...    -0.083919 

Titanic (1997)                                4.278846    ...    -0.047139 

Silence of the Lambs, The (1991)              4.320000    ...    -0.040690 

Jerry Maguire (1996)                          3.724138    ...    -0.018914 



E.T. the Extra-Terrestrial (1982)             3.839080    ...    -0.008095 

Return of the Jedi (1983)                     4.008065    ...    -0.000232 

 

[15 rows x 3 columns] 

 

5.3.2MEMORY BASED COLABORATIVE FILTERING : 

 

WORK FLOW 

 

i. Read u.data file  

ii. Convert it into dataframe named df 

iii. Split the dataset into training and test dataset where percentage of test example (test_size) 

is 0.25 

iv. Create two user-item matrices one for training another for testing 

v. Calculate the cosine similarity of the train data (user_similarity, item_similarity) 

vi. Make prediction for item-based CF using formulae(user_prediction, item_prediction) 

vii. Evaluate accuracy of user-based CF and item-based CF using MSE function  

 

OUTPUT 

 
User-based CF RMSE: 3.1278912151704135 
Item-based CF RMSE: 3.4562654942596227 
 
 

5.3.3MODEL BASED COLABORATIVE FILTERING: 

 

WORK FLOW of finding root meansquare error 

 

i. Read in the file which contains the full dataset 

ii. Split the dataset into training(train_data_matrix) and test(test_data_matrix) dataset where 

percentage of test example (test_size) is 0.25 

iii. Find sparsity level of movie lens dataset 

iv. Choose k=20 

v. Find SVD components (s,u,vt) from test matrix 

vi. Make a prediction (X_predict) by taking dot product of s,u,vt 
vii. Calculate root mean square value between X_predict and test_data_matrix 

 

OUTPUT 



 
The sparsity level of MovieLens100K is 93.7% 
User-based CF MSE: 2.710957747278451 

 

WORK FLOW of Matrix Factorization 
 

i. Build movie dicitionary(movies_dict) with line no as numpy movie id,its actual movie id 

as the key 

ii. Read data from ratings file where each line of i/p file represents one tag applied to one 

movie by one user, which has the following format: userId,movieId,tag,timestamp 

iii. Return a numpy array named numpy_arr 

iv. Create P an initial matrix of dimension N x K, where is n is no of users and k is hidden 

latent features 

v. Create Q an initial matrix of dimension M x K, where M is no of movies and K is hidden 

latent features 

vi. Initialize steps variable which is the maximum number of steps to perform the 

optimisation, hardcoding the values 

vii. Initialize alpha variable the learning rate, hardcoding the values 

viii. Initialize beta variable the regularization parameter, hardcoding the values 

ix. For each user, each item calculate the error of the element, second norm of P and Q for 

regularization, sum of norms 

x. Compute the gradient from the error of each user, each item 

xi. Compute total error 

xii. Predictnumpy array of users and movie ratings 

 

WORK FLOW of Recommendation 
 

i. Read the rating file for the missing 

ii. Get the mapping between movie names, actual movie id and numpy movie id 

iii. Build predicted numpy movie id from the saved predicted matrix of user and movie 

ratings 

iv. Create a dictionary of unrated movies for each user 

v. Recommend top 25 unrated movies based on their the predicted score 

 

 

 

OUTPUT 
 

Top 25 movies recommendation for the user 1 

 
Letters from Iwo Jima (2006) with Movie rating value 9.360346877845387 
Eddie Murphy Raw (1987) with Movie rating value 9.236018165660075 
Dear Wendy (2005) with Movie rating value 9.203698523462286 
Talking About Sex (1994) with Movie rating value 8.956160676896394 
Love! Valour! Compassion! (1997) with Movie rating value 8.947410581308626 
Brave (2012) with Movie rating value 8.934428106940143 
Wild at Heart (1990) with Movie rating value 8.929597840739088 



Taking Chance (2009) with Movie rating value 8.865345347150067 
Wonderland (1999) with Movie rating value 8.858284085776976 
Goldfinger (1964) with Movie rating value 8.85507043606452 
Advantageous (2015) with Movie rating value 8.841811638780884 
Hurt Locker  The (2008) with Movie rating value 8.827438714746878 
Character (Karakter) (1997) with Movie rating value 8.814686428454374 
Man from Elysian Fields  The (2001) with Movie rating value 8.804616845028592 
Elite Squad (Tropa de Elite) (2007) with Movie rating value 8.800233480476749 
Andalusian Dog  An (Chien andalou  Un) (1929) with Movie rating value 8.782505251474689 
All About the Benjamins (2002) with Movie rating value 8.773890359394672 
Tortilla Soup (2001) with Movie rating value 8.758542219008639 
Irma la Douce (1963) with Movie rating value 8.745150922721505 
Lion in Winter  The (1968) with Movie rating value 8.73719699262219 
Mystery Science Theater 3000: The Movie (1996) with Movie rating value 8.730271624625018 
Buried (2010) with Movie rating value 8.710702189343554 
Ride the High Country (1962) with Movie rating value 8.709931728714334 
Ice Harvest  The (2005) with Movie rating value 8.700350486013615 
Musketeer  The (2001) with Movie rating value 8.666684616297236 
 
 

Top 25 movies recommendation for the user 2 
 
Star Maker  The (Uomo delle stelle  L') (1995) with Movie rating value 10.13880104020052 
Haunting  The (1999) with Movie rating value 10.09639976129478 
Dersu Uzala (1975) with Movie rating value 9.986568480207652 
Gran Torino (2008) with Movie rating value 9.633308061739772 
Dot the I (2003) with Movie rating value 9.593458722493194 
Love! Valour! Compassion! (1997) with Movie rating value 9.578484363839507 
Repulsion (1965) with Movie rating value 9.525752185140883 
No Country for Old Men (2007) with Movie rating value 9.489700718703212 
Steam: The Turkish Bath (Hamam) (1997) with Movie rating value 9.464359147721858 
Insurgent (2015) with Movie rating value 9.455806020643394 
Great Santini  The (1979) with Movie rating value 9.431101171056332 
Bloodsport 2 (a.k.a. Bloodsport II: The Next Kumite) (1996) with Movie rating value 
9.427678213008964 
Dear Wendy (2005) with Movie rating value 9.322087684615997 
Factotum (2005) with Movie rating value 9.312970454745962 
To Catch a Thief (1955) with Movie rating value 9.25597696293851 
Collapse (2009) with Movie rating value 9.20992322565514 
Darkness (2002) with Movie rating value 9.177683020889742 
Sword in the Stone  The (1963) with Movie rating value 9.16489314214196 
Upstream Color (2013) with Movie rating value 9.136938290335344 
Taking Chance (2009) with Movie rating value 9.113214062168026 
Green Hornet  The (2011) with Movie rating value 9.107034466975747 
Herbie Rides Again (1974) with Movie rating value 9.100971983950002 
Dog Day Afternoon (1975) with Movie rating value 9.094729114359401 
Midnight Cowboy (1969) with Movie rating value 9.088105650764051 
Shower (Xizao) (1999) with Movie rating value 9.081735532919996  
 

 

Top 25 movies recommendation for the user 3 



 
Talking About Sex (1994) with Movie rating value 10.204998351509273 
Suriyothai (a.k.a. Legend of Suriyothai  The) (2001) with Movie rating value 9.947882319852024 
Everyone Says I Love You (1996) with Movie rating value 9.865275533587132 
Can't Buy Me Love (1987) with Movie rating value 9.856880582067522 
Safe Conduct (Laissez-Passer) (2002) with Movie rating value 9.784257297830154 
Death in Brunswick (1991) with Movie rating value 9.784003891609235 
Poison Ivy II (1996) with Movie rating value 9.72720674424106 
Low Life (1994) with Movie rating value 9.721290686061655 
Jules and Jim (Jules et Jim) (1961) with Movie rating value 9.67255094340262 
Making Plans for Lena (Non ma fille  tu n'iras pas danser) (2009) with Movie rating value 
9.617833833089582 
Forbidden Planet (1956) with Movie rating value 9.59833795485311 
Lion in Winter  The (1968) with Movie rating value 9.490113114953642 
Vertigo (1958) with Movie rating value 9.489959791757553 
Eddie Murphy Raw (1987) with Movie rating value 9.478330514789848 
Wild at Heart (1990) with Movie rating value 9.462678235822004 
Trip to the Moon  A (Voyage dans la lune  Le) (1902) with Movie rating value 
9.413287809691331 
Sentinel  The (2006) with Movie rating value 9.39122760646115 
Great Santini  The (1979) with Movie rating value 9.357351563700892 
Evita (1996) with Movie rating value 9.332073442188022 
Letters from Iwo Jima (2006) with Movie rating value 9.326944306809107 
Alice in Wonderland (1951) with Movie rating value 9.321912754319111 
No Country for Old Men (2007) with Movie rating value 9.318230556471313 
Joe Kidd (1972) with Movie rating value 9.311247251165236 
Wonderland (1999) with Movie rating value 9.288325162517323 
Buried (2010) with Movie rating value 9.280888142401098 

 

 

 

 

Memory-based techniques use the data (likes, ratings, etc) that we  have to establish correlations 

(similarities?) between either users (Collaborative Filtering) or items (Content-Based 

Recommendation) to recommend an item i to a user u who’s never seen it before. In the case of 

collaborative filtering, we get the recommendations from items seen by the user’s who are 

closest to u, hence the term collaborative. In contrast, content-based recommendation tries to 

compare items using their characteristics (movie genre, actors, book’s publisher or author… etc) 

to recommend similar new items. 

In a nutshell, memory-based techniques rely heavily on simple similarity measures (Cosine 

similarity, Pearson correlation, Jaccard coefficient… etc) to match similar people or items 

together. If we have a huge matrix with users on one dimension and items on the other, with the 

http://inside.mines.edu/~ckarlsso/mining_portfolio/similarity.html


cells containing votes or likes, then memory-based techniques use similarity measures on two 

vectors (rows or columns) of such a matrix to generate a number representing similarity. 

Model-based techniques on the other hand try to further fill out this matrix. They tackle the task 

of “guessing” how much a user will like an item that they did not encounter before. For that they 

utilize several machine learning algorithms to train on the vector of items for a specific user, then 

they can build a model that can predict the user’s rating for a new item that has just been added 

to the system.. 

Popular model-based techniques are Bayesian Networks, Singular Value Decomposition, and 

Probabilistic Latent Semantic Analysis (or Probabilistic Latent Semantic Indexing). For some 

reason, all model-based techniques do not enjoy particularly happy-sounding names. 

 

 

 

  



               CHAPTER 6  
 

CONCLUDING REMARKS: 
 Here we traversed through the process of making a basic recommendation engine in 

python. We stated by understanding the fundamentals of recommendations. Then we went on to 

load the Movie lens data set for the purpose of experimentation. 

 Subsequently we made a first model as a simple popularity model in which the most 

popular model in which the most popular movies are recommended for users. They can also find 

mean rating of a particular movie or search for top rated movies of particular genre or search for 

the movies by director name. But this lacked personalization. So we made another model based 

collaborative filtering and content based collaborative filtering. 

 We found that the the root means square error is less in model based filtering  than both 

user based collaborative filtering  and item based collaborative filtering  . The important aspect is 

that the Collaborative Filtering model uses data (user_id, movie_id, rating) to learn the latent 

features. If there is little amount of data available model-based CF model will predict poorly, 

since it will be more difficult to learn the latent features. 

 Models that use both ratings and content features are called Hybrid Recommender 

Systems where both Collaborative Filtering and Content-based Models are combined. Hybrid 

recommender systems usually show higher accuracy than Collaborative Filtering or Content-

based Models on their own: they are capable to address the cold-start problem better since if 

there is no ratings for a user or an item,one could use the metadata from the user or item to make 

a prediction. 

 We would like to propose another type of recommendation algorithm where factors like 

ratings, type of movie watched, age, occupation can be used to group users into "clusters" with 

similar viewing habits. A customer can belong to multiple clusters. Based on the cluster, we can 

then identify the movie characteristics that would be most appealing to the user. And we can 

recommend the user the top rated movie within that cluster. 
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