
Knowledge Extraction
from Unstructured Text

by
Madhusudan Ghosh

Exam Roll No.-M4CSE19004

Registration NO.-140757 0f 2017-2018

Class Roll No.-001710502018

Session:2017-2019

This dissertation is submitted for the degree
of Master of Engineering

Under the Guidance and Supervision of
Dr. Sudip Kumar Naskar

Jadavpur University

Kolkata-700032

2

Declaration Of Authorship
I, hereby declare that this thesis contains literature survey and original re-
search work by the undersigned candidate, as part of Master in Computer
Science and Engineering studies.
All information in this document have been obtained and presented in ac-
cordance with academic rules and ethical conduct.
I also declare that, as required by these rules and conduct, I have fully cited
and referenced all materials that are not original to this work.

Sign: Date:
Name: Madhusudan Ghosh
Examination Roll No. M4CSE19004
Registration No. 140757 0f 2017-2018
Thesis Title: Knowledge Extraction from Unstructured Text.

3

Certificate of Recommendation
This is to certify that the dissertation entitled “Knowledge Extraction from
Unstructured Text” has been carried out by Madhusudan Ghosh (University
Registration No.: 140757 of 2017-18, Examination Roll No.: M4CSE18012)
under my guidance and supervision and be accepted in partial fulfillment
of the requirement for the Degree of Master in Computer Science and Engi-
neering. The research results presented in the thesis have not been included
in any other thesis submitted for the award of any degree in any other Uni-
versity or Institute.

Dr. Sudip Kumar Naskar
Dept. Of Computer Science Engineering

Jadavpur University, Kolkata-700032

Signature:

Prof. Mahantapas Kundu
Head Of Department

Dept. Of Computer Science and Engineering
Jadavpur University, Kolkata-700032

Signature:

Prof. Chiranjib Bhattacharjee
Dean

Faculty of Engineering and Technology
Jadavpur University, Kolkata-700032

Signature:

4

Certificate Of Approval
This is to certify that the thesis entitled “Knowledge Extraction from Un-
structured Text” is a bonafide record of work carried out by Madhusudan
Ghosh (University Registration No: 140757 of 2017-18, Examina-
tion Roll No:M4CSE19004) in partial fulfillment of the requirements
for the award of the degree of Master in Computer Science and Engineering
in the Department of Computer Science and Engineering, Jadavpur Univer-
sity, during the period of June 2018 to May 2019. It is understood that
by this approval the undersigned do not necessarily endorse or approve any
statement made, the opinion expressed or conclusion drawn therein but ap-
prove the thesis only for the purpose for which it has been submitted.

Examiner:

Signature: Date:

Dr. Sudip Kr. Naskar
Dept. Of Computer Science and Engineering
Jadavpur University, Kolkata-700032

Signature: Date:

5

Acknowledgement
I would like to express my sincere gratitude to my advisor, Dr. Sudip Ku-
mar Naskar, for his continuous motivation, guidance and patience through-
out my thesis work. I have been very lucky to have an advisor who cared so
much about my work. More importantly, the scientific and personal support
along with his valuable suggestions softened the journey.
I am very much grateful to Subhabrata Dutta for his continuous help and
valuable suggestions. I am also thankful to all other NLP lab members for
their continuous support.

Madhusudan Ghosh
Signature:

6

Abstract
Knowledge Graph plays a important role in many tasks in Natural lan-

guage processing (Question Answering system, Summarization, etc.). Ex-
tracting Knowledge from unstructured text is a very challenging research
problem. This problem becomes particularly acute due to ambiguities and
lexical variations in Natural Language. Most of the knowledge available to
the humankind are in the form of unstructured text. However, these knowl-
edge is not directly accessible to machines unless they are converted into
structured format. The purpose of this research is to extract useful pieces
of information (or knowledge) in the form of RDF (S-O-P triplet) from un-
structured textual contents which will be useful for populating Knowledge
Bases. In this thesis, we explored different deep learning based architec-
tures (LSTM, Bi-LSTM, GCN) for the task of knowledge extraction from
unstructured text.

Contents

1 Introduction 9
1.1 Background . 9
1.2 Motivation . 9
1.3 Different Types of Approaches for Knowledge Extraction Sys-

tem . 10
1.3.1 Supervised approaches 10
1.3.2 Semi supervised approaches 10
1.3.3 Distant supervision . 11

2 Overview of different Knowledge Bases 13
2.1 Wikidata . 13

2.1.1 Data Model . 13
2.1.2 Working Process of Wikidata 16

2.2 ConceptNet . 18
2.3 WordNet . 19
2.4 BabelNet . 19
2.5 DBpedia . 19

3 Related Work 21
3.1 Knowledge Extraction using Rule Based Approach 21

3.1.1 Entity Mapping . 21
3.1.2 Coreference Resolution 21
3.1.3 Triple Extraction . 21
3.1.4 Triple Integration . 22
3.1.5 Predicate Mapping . 22

3.2 Feature Based Methods . 23
3.2.1 Lexical Features . 23
3.2.2 Syntax Tree Features: 23
3.2.3 Entity Features . 24

3.3 Distant Supervision Approach 24
3.3.1 Features . 24
3.3.2 Lexical Feature: . 24
3.3.3 Syntactic features . 25

7

CONTENTS 8

3.3.4 Named entity tag features 25
3.4 Neural Network Model Based Approach 25
3.5 Convolutional Neural Network Based Approach 25

3.5.1 PCNNs Module . 26
3.5.2 Sentence-level Attention Module: 27

3.6 LSTM Based Approach for Relation Extraction 27
3.6.1 Embedding Layer . 29
3.6.2 Sequence Layer . 29
3.6.3 Entity Detection . 29
3.6.4 Dependency Layer . 30

4 Breif Overview on LSTM and GCN 31
4.1 LSTM . 31

4.1.1 The Problem of Long-Term Dependencies 32
4.1.2 Idea Behind LSTMs: 34

4.2 Graph Convolution Network 37
4.2.1 Definitions . 37
4.2.2 Adding Self Loops . 38
4.2.3 Feature Normalization: 39

5 Methodology 40
5.1 Dataset Description . 40
5.2 LSTM Attention based Approach 41
5.3 Architecture . 41

5.3.1 Attention Mechanism 42
5.3.2 Classifying Output Relation 43

5.4 Graph Convolution Based Approach 45
5.4.1 GCN based Architecture for Relation Extraction . . . 46
5.4.2 Graph Convolution Network with Latent Adjacency . 48

6 System Description 51
6.1 LSTM based System Description 51

6.1.1 Baseline Implementation for LSTM 52
6.1.2 LSTM and Bi-LSTM Attentionbased 52

6.2 GCN based approach . 53
6.3 Latent GCN based approach 54

7 Results 56
7.1 LSTM approach based Result 56
7.2 GCN approach Based Result 57

8 Conclusion and Future Work 58

Chapter 1

Introduction

1.1 Background

With the arrival of the information age, world knowledge is accumulating
at an astronomical rate. Since on-line information is stored in the form of
unstructured documents that are hard to classify and search on, without
making the information efficiently accessible, the ratio of attainable knowl-
edge over existing information will be extremely low. One example of on-
line information growing unmanageable is electronic paper. If one spends
30 minutes to read a paper, it will take a huge amount of time. If one only
reads the abstracts which takes five minutes each, it still requires quite some
time to complete. But if information is available in the form of summary
for such papers, it will be much more beneficial to the readers.

However, after reading huge amount of sentences, can a human being
remember how many times a knowledge has been repeated or if there is any
knowledge conflict either directly or indirectly with the knowledge already
encountered? Not only retrieving knowledge from the vast source of infor-
mation is needed for efficient knowledge management, but also the ability
to validate the knowledge extracted against the current knowledge base has
become crucial in achieving a consistent and reliable knowledge base. This
situation motivates the research of this thesis. The goal of this thesis work
is to develop a methodology that can take any unstructured text corpus,
extract the knowledge present in it and turn them into a format of RDF
(Subject-Object-Predicate) which will be useful to populate the Knowledge
Base.

1.2 Motivation

The world wide web is a vast repository of knowledge, with data present
in multiple modalities such as text, videos, images, structured tables, etc.
However, most of the data is present in unstructured format and extracting

9

CHAPTER 1. INTRODUCTION 10

information(i.e. Knowledge) in structured machine-readable format is still a
very difficult task. Knowledge graphs aim at constructing large repositories
of structured knowledge which can be easily processed by machines. Such
knowledge graphs are being used to improve the relevance and the quality
of search in case of search engines like Google and Bing. Knowledge graphs
are also being used by applications like Google now, Microsoft Cortana and
Apple Siri which are capable of understanding natural language queries and
answer questions, making recommendations, etc. to the user. The construc-
tion of knowledge graphs is thus a major step towards making intelligent
personalized machines.

1.3 Different Types of Approaches for Knowledge
Extraction System

There are three types of Knowledge Extraction System. All these approaches
are discussed in the following subsections.

1.3.1 Supervised approaches

Supervised models used in the field of information extraction involves formu-
lation of the problem as a classification problem and they generally learn a
discriminative classifier given a set of positive and negative examples. Such
approaches extract a set of features from the sentence, which generally in-
clude context words, part of speech (POS) tags, dependency path between
entity pairs, edit distance, etc. and the corresponding labels are obtained
from a large labelled training corpus.
Although such methods obtain good accuracies and take into account neg-
ative examples explicitly for relation extraction, they are neither general
nor scalable. Such methods are very expensive due to requirement of large
amount of training data. Moreover, the relations learned from these meth-
ods are largely dependent on the domain and thus cannot be generalized.

1.3.2 Semi supervised approaches

Semi supervised approaches have been used for a long time in the field of
relation extraction from unstructured text. Bootstrapping methods for re-
lation extraction fall in this category. Such methods start with some known
relation triples and then iterate through the text to extract patterns that
match the seed triples. These patterns are used to extract more relations
from the data set and the learned relations are then added to the seed ex-
amples. This method is repeated till no more relations can be learned from
the data set. Some of the most popular approaches such as Dual Iterative
Pattern Snowball, Text Runner are examples of semi supervised methods.
These projects, however, rely heavily on the correctness of NLP tools (e.g.,

CHAPTER 1. INTRODUCTION 11

Figure 1.1: Semi-supervised Approach

Named Entity Recognition (NER)) and thus they may be prone to errors.
For example, TextRunner extracts relations automatically from the text cor-
pus using NLP tools like dependency parser and Noun Phrase chunker. Semi
supervised approaches can be used to learn relations of a particular type ac-
curately. However, seed examples are needed for that particular relation
type and thus may require larger supervision for learning general knowl-
edge graphs from different domains. Semi supervised relation extraction
approach is depicted in Figure 1.1.

1.3.3 Distant supervision

In case of distant supervision methods for relation extraction, existing knowl-
edge bases are used with large text corpus to generate a large number of
relation triples. Such relations are located in the text and hypotheses are
learnt corresponding to these examples. These hypotheses can be combined
to learn a generalized model for relation extraction.
Projects, e.g. NELL, use distant supervision methods for learning relations.
They use predefined ontology and then bootstrap relations from the web
and text using positive and negative seed examples of ontology constraints.
Later, they use multi-view learning paradigm to extract entity relations from
unstructured text and the web. Use of multiple hypotheses and an objective
function based on agreement and disagreement of these hypotheses ensures
less noise while expansion. Often these hypotheses are hand-crafted and
coming up with them require domain expertise.

CHAPTER 1. INTRODUCTION 12

Figure 1.2: An example of Distant Supervision Approach

These methods have distinct advantages over other methods since they are
scalable and require almost no supervision. These models can also be used
to learn relations from general domains. However, such methods are com-
putationally expensive and may learn wrong relation-expression hypotheses
which can generate a large number of false relations. An example of Distant
Supervision approach is mentioned in 1.2.
Most of the above stated methods for relation extraction utilizes syntactic
information either in the training phase or in the evaluation. Hence, these
methods can only be used to learn relations from English corpus and fails
for other languages like Hindi, for which there are no efficient and reliable
syntactic NLP tools. This motivated us to explore distributed word vector
representations for learning relations which does not rely on syntactic in-
formation and extract semantic meaning of words based on their context.
Thus, there is a scope to extend these methods to extract relations from
corpus in any language.

Chapter 2

Overview of different
Knowledge Bases

In this chapter, we will discuss about different knowledge bases, with a
specfic focus on Wikidata, and their architectures.

2.1 Wikidata

Wikidata is a collaboratively edited knowledge base hosted by the Wiki-
media Foundation. It is a common source of open data under Wikimedia
which can be used by Wikipedia and anyone else, under a public domain
license. In a similar way, Wikimedia Commons provides storage for media
files and access to those files for all Wikimedia projects, which are also freely
available for reuse. Wikidata is powered by the software Wikibase.
Wikibase is a set of MediaWiki extensions for working with versioned data in
a central repository. Its primary components are the Wikibase Repository,
an extension for storing and managing data, and the Wikibase Client which
allows for the retrieval and embedding of structured data from a wikibase
repository.

2.1.1 Data Model

The data model of WikibaseLexeme describes the structure of the data
that is handled as “Lexeme” in Wikibase.
A Lexeme is a lexical element of a language, such as a word, a phrase, or
a prefix. Lexemes are Entities in the sense of the Wikibase data model. A
Lexeme is described using the following information:

• Lexemes have IDs starting with a “L” followed by a natural number
in decimal notation, e.g. L3746552. These IDs are unique within the
repository that manages the Lexeme. The ID can be combined with a
repository’s concept base URI to form a unique URI for the Lexeme.

13

CHAPTER 2. OVERVIEW OF DIFFERENT KNOWLEDGE BASES 14

• A Lemma is a readable representation of the lexeme, e.g. ”run”.

• The Language to which the lexeme belongs to. This is a reference to
a concrete Item, e.g. English (Q1860).

• A Lexeme Statement is described by the properties of the lexeme that
are not specific to a Form or Sense (e.g. derived from or grammatical
gender or syntactic function).

• A list of Forms, typically one for each relevant combination of gram-
matical features, such as 2nd person or singular or past tense. A Form
is described using the following information:

– Forms have IDs starting with the ID of the Lexeme they belong
to, followed by a hyphen (”-”) and an ”F”, followed by a natural
number in decimal notation: e.g. L3746552-F7.

– A representation, spelling out the Form as a string.

– A list of grammatical features for which syntactic roles are ap-
plied. These are given as references to a concrete Items.

– A list of Form Statements further describing the Form or its re-
lations to other Forms or Items (e.g. IPA transcription (P898),
pronunciation audio, rhymes with, used until, used in region)

• A list of Senses, describing the different meanings of the lexeme (e.g.
”financial institution” and ”edge of a body of water” for the English
noun bank). A sense is described using the following information:

– Senses have IDs starting with the ID of the Lexeme they belong
to, followed by a hyphen (”-”) and an ”S”, followed by a natural
number in decimal notation: e.g. L3746552-S4. These IDs are
unique within the repository that manages the Lexeme. The ID
can be combined with a repository’s concept base URI to form a
unique URI for the Sense.

– A Gloss, defining the meaning of the Sense using natural lan-
guage.

– A list of Sense Statements further describing the Sense and its re-
lations to Senses and Items (e.g. translation, synonym, antonym,
connotation, register, denotes, evokes).

The above one is the concrete structure for Wikidata model if we can see it
in pictorial referred to diagram 2.1.

CHAPTER 2. OVERVIEW OF DIFFERENT KNOWLEDGE BASES 15

Figure 2.1: Architecture of Wikidata

CHAPTER 2. OVERVIEW OF DIFFERENT KNOWLEDGE BASES 16

Figure 2.2: Wikidata Representation for a particular Person

2.1.2 Working Process of Wikidata

Wikidata is a central storage repository that can be accessed by others,
such as by the Wikimedia Foundation. Content loaded dynamically from
Wikidata does not need to be maintained in each individual wiki project.
For example, statistics, dates, locations and other common data can be
centralized in Wikidata.

Wikidata Repository

The Wikidata repository consists mainly of items, each one having a label,
a description and any number of aliases. Items are uniquely identified by a
Q followed by a number, such as Douglas Adams (Q42).

Statements describe detailed characteristics of an Item and consist of a
property and a value. Properties in Wikidata have a P followed by a num-
ber, such as with educated at (P69).
For a person, we can add a property to specify where they were educated,
by specifying a value for a school. For buildings, we can assign geographic
coordinates properties by specifying longitude and latitude values. Prop-
erties can also link to external databases. A property that links an item
to an external database, such as an authority control database used by li-

CHAPTER 2. OVERVIEW OF DIFFERENT KNOWLEDGE BASES 17

Figure 2.3: Graphical Representation of any Wikidata Entity

braries and archives, is called an identifier. Special Sitelinks connect an
item to corresponding content on client wikis, such as Wikipedia, Wikibooks
or Wikiquote.We can see the above concept in a diagram 2.2.

The knowledge graph can be depicted by the following way and it can
be represented in the diagram2.3. All this information can be displayed in
any language, even if the data originated in a different language. When
accessing these values, client wikis will show the most up-to-date data.

Wikidata is an ongoing project that is under active development. More data
types as well as extensions will be available in the future. We can find more
information about Wikidata and its ongoing development on the Wikidata
page on Meta.

Like Wikidata there are many more existing knowledge bases we am just
going to give some basic overview about some of them.

CHAPTER 2. OVERVIEW OF DIFFERENT KNOWLEDGE BASES 18

2.2 ConceptNet

ConceptNet is a semantic network based on the information in the OMCS(Open
Mind Common Sense)database. ConceptNet is expressed as a directed graph
whose nodes are concepts, and whose edges are assertions of common sense
about these concepts.

Concepts represent sets of closely related natural language phrases, which
could be noun phrases, verb phrases, adjective phrases, or clauses.

ConceptNet is created from the natural-language assertions in OMCS
by matching them against patterns using a shallow parser. Assertions are
expressed as relations between two concepts, selected from a limited set
of possible relations. The various relations represent common sentence pat-
terns found in the OMCS corpus, and in particular, every ”fill-in-the-blanks”
template used on the knowledge-collection Web site is associated with a par-
ticular relation.
ConceptNet is a knowledge representation project, providing a large seman-
tic graph that describes general human knowledge and how it is expressed
in natural language. The scope of ConceptNet includes words and com-
mon phrases in any written human language. It provides a large set of
background knowledge that a computer application working with natural
language text should know. These words and phrases are related through
an open domain of predicates, describing not just how words are related
by their lexical definitions, but also how they are related through common
knowledge. A cluster of related concepts and the ConceptNet assertions
that connect them is visualized in Figure 2.4.

Figure 2.4: ConceptNet Representation

The new goals of ConceptNet 5 is to include knowledge from other crowd-
sourced knowledge with their own communities and editing processes, par-
ticularly data mined from Wiktionary and Wikipedia; to add links to other
resources such as DBPedia, Freebase, and WordNet to support machine-
reading tools such as ReVerb , which extracts relational knowledge from

CHAPTER 2. OVERVIEW OF DIFFERENT KNOWLEDGE BASES 19

Web pages and to find translations between concepts represented in differ-
ent natural languages.

2.3 WordNet

WordNet is a lexical database for the English language. It groups English
words into sets of synonyms called synsets, provides short definitions and
usage examples, and records a number of relations among these synonym
sets or their members. WordNet can thus be seen as a combination of dic-
tionary and thesaurus. While it is accessible to human users via a web
browser, its primary use is in automatic text analysis and artificial intel-
ligence applications. The database and software tools have been released
under a BSD style license and are freely available for download from the
WordNet website. Both the lexicographic data (lexicographer files) and the
compiler (called grind) for producing the distributed database are available.

2.4 BabelNet

BabelNet is a multilingual lexicalized semantic network and ontology devel-
oped at the Sapienza University of Rome, at the Department of Computer
Science Linguistic Computing Laboratory, BabelNet was automatically cre-
ated by linking Wikipedia to the most popular computational lexicon of the
English language, WordNet . The integration is done using an automatic
mapping and by filling in lexical gaps in resource-poor languages by using
statistical machine translation. The result is an ”encyclopedic dictionary”
that provides concepts and named entities lexicalized in many languages
and connected with large amounts of semantic relations. Additional lex-
icalizations and definitions are added by linking to free-license wordnets,
OmegaWiki, the English Wiktionary, Wikidata, FrameNet, VerbNet and
others. Similarly to WordNet, BabelNet groups words in different languages
into sets of synonyms, called Babel synsets. For each Babel synset, Babel-
Net provides short definitions (called glosses) in many languages harvested
from both WordNet and Wikipedia.

2.5 DBpedia

From the paper [11] we can get a thorough overview about this Knowl-
edgeBase.The DBpedia community project extracts structured, multilingual
knowledge from Wikipedia and makes it freely available using Semantic Web
and Linked Data standards. The extracted knowledge, comprising more
than 1.8 billion facts, is structured according to an ontology maintained
by the community. The knowledge is obtained from different Wikipedia
language editions, thus covering more than 100 languages, and mapped to

CHAPTER 2. OVERVIEW OF DIFFERENT KNOWLEDGE BASES 20

the community ontology. The resulting data sets are linked to more than
30 other data sets in the Linked Open Data (LOD) cloud. The DBpedia
project was started in 2006 and has meanwhile attracted large interest in
research and practice. Being a central part of the LOD cloud, it serves as a
connection hub for other data sets. For the research community, DBpedia
provides a tested serving real world data spanning many domains and lan-
guages. Due to the continuous growth of Wikipedia, DBpedia also provides
an increasing added value for data acquisition, re-use and integration tasks
within organisations. Here, we give an overview over the DBpedia com-
munity project, including its architecture, technical implementation, main-
tenance, internationalisation, usage statistics and showcase some popular
DBpedia applications.

Chapter 3

Related Work

In this chapter we will discuss all the related works which were already done
on Knowledge Extraction research field.

3.1 Knowledge Extraction using Rule Based Ap-
proach

From this paper[7] We come to know that the authors used novel approach
combination of Rule Based approach and also the Similarity based ap-
proach.The architecture that was proposed by the authors is depicted in
diagram 3.1.

In the above diagram the Unstructured text was given as input then the
authors did some preprocessing tasks which were essential for the Knowledge
Extraction task in the following way.

3.1.1 Entity Mapping

Extracted entities from the text was mapped to Knowledge Base entities
by giving KB’s URI (i.e.Uniform Resource Identifier) if any entity was not
found in the Knowledge Base then a random Uniform Resource Identifier
was given to that particular entity or entities.

3.1.2 Coreference Resolution

Then the text was pushed to the Coreference Resolver(Stanford Corenlp
Resolver) to get the Co-referring entities.

3.1.3 Triple Extraction

This is the main part of extracting knowledge from the unstructured text.
To extract a entity-relation triple an open information technique was used
which is template based approach.

21

CHAPTER 3. RELATED WORK 22

Figure 3.1: Architecture of Relation Extraction using Rule-based Approach

3.1.4 Triple Integration

In the Triple Extraction component, anyone can extract relation triples
from unstructured text; however, entity mapping and coreference resolution
among the entities of such triples were not performed.As a result, ambiguity
in the triple occurred and interlinking to entities in the KB was not estab-
lished. Consequently, transformation of a relation triple that conformed to
the standard of KB was required. Therefore, to deal with such problems,
the authors integrated and transformed three components by the following
process.

First, identical entities were grouped by using coreferring chains from
the Coreference Resolution component. Second, a representative for the
group of coreferring entities was selected using the voting algorithm. Third,
all entities belonging to the group in the relation triples were replaced by
the representative of its group. Then, the relation of a relation triple was
straightforwardly transformed into a predicate by assigning a new URI. Fi-
nally, if an object of a relation triple was not an entity, it was left as literal.
After performing these processes, text triples were extracted from unstruc-
tured text.

3.1.5 Predicate Mapping

The main aim of this portion is to map a predicate of a triple to its corre-
sponding predicate in KB. For the above task the authors used rule based

CHAPTER 3. RELATED WORK 23

approach by using the enriched triples which were generated using the ex-
tracted text triples and also the KB base triples. The output of the above
task was used for generating bootstrapping triples which will be useful for
the next module. Then the authors applied one approach as follows :

Rule-Based Candidate Generation

The rules for generating candidates were as follows:
If the subject and object of the text triple was same as the subject and

the object of the KB triple then it was assumed that the predicate of the
text triple was same as the predicate of KB triple.

The class of the subject and the class of the object were used as a con-
straint for mapping. For example, a finding rule can be (Person, ex: born
in, Location) mapped to dbpedia : birthPlace (using DBpedia as
the KB).

Candidate Generation

The Candidate Selection module selected the mapping for the predicate of
the text triple. Here, priority was given to the predicate candidate pair,
which was generated by the Rule-based Candidate Generation module. The
output of candidate selection was the generated KB, in which both the
entities and the predicates were linked to other KBs.

3.2 Feature Based Methods

From the [6] we came to know that a set of relevant features were designed
by domain experts for a classification problem. Later this set of features
were given to classifier for training and classification purpose. For relation
extraction task, sentences with predefined entities were used to construct
feature vector through feature extraction process. Commonly used feature
for relation extraction task are described below.

3.2.1 Lexical Features

In this feature set, lexical features such as position of mentioned pair of
entities, number of words between mentioned pair, etc. were used to capture
context of the text and bag of word model also helped to represent sentence
and words as a feature in our feature vector[20].

3.2.2 Syntax Tree Features:

In this feature set, grammatical structure of the sentence and mentioned
pair were used for feature creation. For example, part of speech tags for

CHAPTER 3. RELATED WORK 24

each mentioned pair, chunk head, etc., were used as a feature for relation
extraction.

3.2.3 Entity Features

A relation could exist between certain type of entities, for example Treat-
ment. Medical Problem could exist between a treatment entity and problem
entity.So, type of mentioned pair of entities were also important feature val-
ues for classification purpose.

3.3 Distant Supervision Approach

This approach was proposed by the paper[17]. It is semi-supervised approach
for generating relation triples from the large text corpus using small amount
of labelled data.Throughout the experiment Freebase was used as Knowledge
Base.

Authors proposed a very much novel approach which is being used in a
large scale recent times for data generation. The idea was that if a sentence
contained two entities and those two entities were an instance of one of any
Freebase relation, then features were extracted and added to the feature
vector.In training time, the features for identical tuples (relation, entity1,
entity2) from different sentences were combined and a richer feature vector
was created. During the testing time entities were again identified using the
named entity tagger. This time, every pair of entities appearing together in
a sentence was considered a potential relation instance, and whenever those
entities appear together, features were extracted on the sentence and added
to a feature vector for that entity pair. Authors used logistic regression as
a relation classifier for that they used the following features.

3.3.1 Features

Each features described how two entities were related to the system using
syntactic or non-syntactic information.

3.3.2 Lexical Feature:

The lexical features were as follows:

• The sequence of words between the two entities.

• The part-of-speech tags of those words.

• A window of k words to the left of Entity 1 and their part-of-speech
tags.

• A window of k words to the right of Entity 2 and their part-of-speech
tags

CHAPTER 3. RELATED WORK 25

3.3.3 Syntactic features

In addition to lexical features authors extracted a number of features based
on syntax. In order to generate those features they parsed each sentence with
the broad-coverage dependency parser MINIPAR[12]. Syntactic features
were mainly consisted of dependency path between two entities and also
a ’window node’ that was not part of the dependency path. A window
node was a node connected to one of the two entities and not part of the
dependency path.

3.3.4 Named entity tag features

Most important task of Relation Extraction was finding the entities from
the text sentence. So, it would be easy to find relation between those two
entities. The authors used the Stanford Name Entity Recognizer of four
classes (Person,Location ,Organization and Others)

Authors used a multi-class logistic classifier optimized using L-BFGS
with Gaussian regularization. Their classifier took an entity pair and a
feature vector as input, and returned a relation name and a confidence score
based on the probability of the entity pair belonging to that relation. Once
all of the entity pairs discovered during testing were classified, all of them
were ranked by confidence score and used to generate a list of the n most
likely new relation instances.

3.4 Neural Network Model Based Approach

As the no. labelled data can be generated easily using the above ap-
proach(i.e. Distant supervision) now most of the work on this field is done by
the neural network model. We will go through some of the approaches which
are being researched regorously nowadays on Natural Language Processing
and as well as Relation Extraction.

3.5 Convolutional Neural Network Based Approach

This paper [5] proposed a novel approach for Relation Extraction using Dis-
tant Supervision and sentence level attention and also Entity description.
The authors proposed the idea of Multi Instance Learning approach(proposed
by [15]) where all sentences containing same entities were placed inside one
bag where label of any bag would be those entities connected by the relation
in freebase. But the assumption was always not true because entities pre-
sented in different sentences might not be always connected by the same re-
lation. To recover from this problem the authors had taken the idea of entity
description to get the type of entity. This description improved the model
accuracy and also presented a better representation for attention module.

CHAPTER 3. RELATED WORK 26

Thus authors proposed the idea of predicting relation class for the unseen
bags by extracting features from the bags. The proposed architecture of the
aforementioned model is depicted in figure 3.2.

The proposed architecture for the the above model had two sections
i.e. Piecewise Convolutional Neural Network (PCNN) Module and also the
Sentence level Attention Module.

Figure 3.2: PCNNs Module with Sentence Level Attention

3.5.1 PCNNs Module

This module was used to extract feature vector of an instance (sentence)
in a bag. For feeding the input into the Neural network model authors
used the word embedding methodology([16]) on each sentence to get a lower
dimensional vector. Next to detect the entity in the sentence they used
the Position Embeddings then output of both the Word Embeddings and
Position Embeddings were concatenated to feed into the Neural Network
Model.

Then they followed the methodology of Convolutional Neural Network
[10]. The input sentence was denoted by S=s1,s2,...,s|S| where si was the

ith token of size si ∈ IRk. Then a filter of size w was used for doing the
linear transformation operation. For this the weight matrix of the filter
was W∈ IRW×k. Then the output of the above model was generated by
computing the equation 3.1.

cj = (W · Sj−w+1:j) (3.1)

Authors used such type of n convolution operation for this they got n no.
of convolutional vectors C=c1,c2....cn.

Then authors did the piecewise maxpooling operation on the output of
the Convolution Neural Network. Result vector was divided into three parts
ci =(ci,1,ci,2,ci,3). From the three vectors authors pool the maximum one by

CHAPTER 3. RELATED WORK 27

computing the equation 3.2.

pi,j = max(ci,j) (3.2)

3.5.2 Sentence-level Attention Module:

Then author followed the methodology of the paper [16] by computing the
eqution 3.3.

vrelation = (e1 − e2) (3.3)

In the above figure(3.2) the vector (b1,b2,b3....bn) were the feature vectors
computed by the PCNN module to feed into the attention. They followed
the equation proposed by the paper [13].

αi =
exp(wi)∑q
j=1 exp(wi)

(3.4)

wi = WT
a (tanh[bi; vrelation]) + ba (3.5)

Where ba is the bias vector. W T
a is an intermediate matrix α=[α1,α2,....,αn]

are the attention weights. Then the bag features were computed using the
following equation:

b′ =

q∑
i=1

αiḃi (3.6)

Then the b′ vector was fed into the softmax classifier to get the feature with
highest probablity.

Thus authors got the relation vector corresponding to the two entities.

3.6 LSTM Based Approach for Relation Extrac-
tion

As we know that LSTM is very much useful for the text data where CNN
is very much useful for the image data. The paper [18] presented a novel
architecture for End to End Relation Extraction using LSTM on Sequences
and Tree Structures.

Authors presented a novel end-to-end model to extract relations between
entities on both word sequence and dependency tree structures. Their model
allowed jointly modeling of entities and relations in a single model by us-
ing both bidirectional sequential (left-to-right and right-to-left) and bidirec-
tional tree-structured (bottom-up and top-down) LSTM RNNs. This model
first detected entities and then extracted relations between the detected
entities using a single incrementally-decoded NN structure, and the NN pa-
rameters were jointly updated using both entity and relation labels. Unlike
traditional incremental end-to-end relation extraction models, this model

CHAPTER 3. RELATED WORK 28

further incorporated two enhancements into training: entity pretraining,
which pretrains the entity model, and scheduled sampling [1], which re-
placed (unreliable) predicted labels with gold labels in a certain probability.
These enhancements alleviated the problem of low-performance entity de-
tection in early stages of training, as well as allowed entity information to
relation classification. The architecture proposed by the authors is depicted
in figure 3.3.

Figure 3.3: Incrementally-decoded end-to-end relation extraction model,
with bidirectional sequential and bidirectional tree-structured LSTM-RNNs.

Authors designed model with LSTM-RNNs that represented both word
sequences and dependency tree structures, and performed end-to-end extrac-
tion of relations between entities on top of these RNNs. The model mainly
consisted of three representation layers: a word embeddings layer (embed-
ding layer), a word sequence based LSTM-RNN layer (sequence layer), and
finally a dependency subtree based LSTM-RNN layer (dependency layer).
During decoding, they built greedy, left-to-right entity detection on the se-
quence layer and realized relation classification on the dependency layers,
where each subtree based LSTM-RNN corresponded to a relation candidate
between two detected entities. After decoding the entire model structure, au-
thors updated the parameters simultaneously via back-propagation through
time [23]. Then the dependency layers were stacked on the sequence layer,
so that embedding and sequence layers were shared by both entity detection
and relation classification, and the shared parameters were affected by both
entity and relation labels.

CHAPTER 3. RELATED WORK 29

3.6.1 Embedding Layer

Authors first made the words,postags,dependency types and also the en-
tity labels into the fixed dimensional vector using one hot representation.
Then they fed it into the embedding layer to get the embedded vectors of
dimensions respectively vw, vp,vd and ve.

3.6.2 Sequence Layer

In this layer they followed the methodology of Bi-direction lstm[2]. The
LSTM unit at tth took the input vectors as previous hidden state h(t−1), n
dimensional input vector x(t−1), input gate input c(t−1) and also the forgate
gate followed by the computation of LSTM [2].

it = σ(W(i) · xt + U(i) · h(t−1) + bi) (3.7)

ft = σ(W(f) · xt + U(f) · h(t−1) + bf) (3.8)

ot = σ(W(o) · xt + U(o) · h(t−1) + bo) (3.9)

ut = tanh(W(u) · xt + U(u) · h(t−1) + bu) (3.10)

ct = (it � ut + ft � c(t−1)) (3.11)

ht = ot � tanh(ct) (3.12)

Where � is a element-wise multiplication, W and U is the weight matrices
and b is the bias vector and σ is an non-linear activation function 3.13.

φ(x) =
1

1 + exp−x
(3.13)

Similarly tanh is a non-linear activation function 3.14.

tanh(x) =
exp x + exp−x

exp x + exp−x
(3.14)

.
The LSTM took the input of concatenation of word and it’s correspond-

ing pos tags. It gave the hidden matrices as outputs(st) which were con-
catenated to pass it to the subsequent layers.

3.6.3 Entity Detection

Entity detection was done on the top of the sequence layer. For this two
layered NN was employed and a softmax output layer was also applied. The
equations for the entity detection computation are as follows:

h
(e)
t = tanh(W(eh) · [st; v(e)(t−1)] + beh) (3.15)

This hidden entity vector was sent to the the softmax classifier to detect
the entity with highest probabality.

CHAPTER 3. RELATED WORK 30

3.6.4 Dependency Layer

In this section a Bi-directional tree LSTM was applied on the detected enti-
ties to find the relation between the detected two entities as the diagram was
shown on the above figure3.3 of right side part. To represent the relation
between the two entities they followed the two methods:

• Authors primarily employed the shortest path structure SPTree, which
captured the core dependency path between a target word pair.

• Secondly they also tried with SubTree which was nothing but subtree
under the lowest common ancestor.

• FullTree which was nothing but whole dependency tree of the sen-
tence. It helped to capture context information for the whole sentence.

Then by stacking both the dependency and the sequence layer authors
tried to classify relation from the dependency layer’s output and detected
entities from the entity layer output using the softmax classifier.

Chapter 4

Breif Overview on LSTM
and GCN

Before going to the architecture that we propose using LSTM and GCN. We
will try to give the overview about LSTM and GCN.

4.1 LSTM

Humans don’t start their thinking from scratch every second. As we read
any text, we understand each word based on our understanding of previous
words. We don’t throw everything away and start thinking from scratch
again.

Traditional neural networks can’t do this, and it seems like a major
shortcoming. For example, imagine we want to classify what kind of event
is happening at every point in a movie. It is impossible how a traditional
neural network could use its reasoning about previous events in the film to
inform later ones.

Recurrent neural networks address this issue. They are networks with
loops in them, allowing information to persist.

31

CHAPTER 4. BREIF OVERVIEW ON LSTM AND GCN 32

In the above diagram, a chunk of neural network, A, looks at some input
xt and outputs a value ht. A loop allows information to be passed from one
step of the network to the next.

However, if we think a bit more, it turns out that they are not all different
than a normal neural network. A recurrent neural network can be thought
of as multiple copies of the same network, each passing a message to a
successors. What happens if we unroll the loop:

This chain-like nature reveals that recurrent neural networks are inti-
mately related to sequences and lists. They are the natural architecture of
neural network to use for sequential data.

In the last few years, there have been incredible success applying RNNs
to a variety of problems: speech recognition, language modeling, translation,
image captioning. . . The list goes on.

“LSTMs,” is a very special kind of recurrent neural network which works,
for many tasks, much much better than the standard RNN. Almost all ex-
citing results based on recurrent neural networks are achieved with them.

4.1.1 The Problem of Long-Term Dependencies

One of the appeals of RNNs is the idea that they might be able to connect
previous information to the present task, such as using previous video frames

CHAPTER 4. BREIF OVERVIEW ON LSTM AND GCN 33

might inform the understanding of the present frame. If RNNs could do this,
that will be extremely useful.

Sometimes, we only need to look at recent information to perform the
present task. For example, consider a language model trying to predict the
next word based on the previous ones. If we are trying to predict the last
word in “the clouds are in the sky,” we don’t need any further context –
it’s pretty obvious the next word is going to be sky. In such cases, where
the gap between the relevant information and the place that it’s needed is
small, RNNs can learn to use the past information.

But there are also cases where we need more context. Consider trying
to predict the last word in the text “I grew up in France. . . I speak fluent
French.” Recent information suggests that the next word is probably the
name of a language, but if we want to narrow down which language, we
need the context of France, from further back. It’s entirely possible for the
gap between the relevant information and the point where it is needed to
become very large.

Unfortunately, as that gap grows, RNNs become unable to learn to con-
nect the information.

Long Short Term Memory networks – usually just called “LSTMs” – are
a special kind of RNN, capable of learning long-term dependencies. They
were introduced by the paper [3].

CHAPTER 4. BREIF OVERVIEW ON LSTM AND GCN 34

LSTMs are explicitly designed to avoid the long-term dependency prob-
lem. Remembering information for long periods of time is practically their
default behavior.

All recurrent neural networks have the form of a chain of repeating mod-
ules of neural network. In standard RNNs, this repeating module will have
a very simple structure, such as a single tanh layer.

In the above diagram, each line carries an entire vector, from the output
of one node to the inputs of others. The pink circles represent pointwise
operations, like vector addition, while the yellow boxes are learned neural
network layers. Lines merging denote concatenation, while a line forking
denote its content being copied and the copies going to different locations.

4.1.2 Idea Behind LSTMs:

The key to LSTMs is the cell state, the horizontal line running through the
top of the diagram.

The cell state is kind of like a conveyor belt. It runs straight down the
entire chain, with only some minor linear interactions. It’s very easy for
information to just flow along it unchanged.

CHAPTER 4. BREIF OVERVIEW ON LSTM AND GCN 35

The LSTM does have the ability to remove or add information to the
cell state, carefully regulated by structures called gates.

Gates are a way to optionally let information through. They are com-
posed out of a sigmoid neural net layer and a pointwise multiplication op-
eration.

The sigmoid layer outputs numbers between zero and one, describing
how much of each component should be let through. A value of zero means
“let nothing through,” while a value of one means “let everything through”.
An LSTM has three of these gates, to protect and control the cell state.

The first step in LSTM is to decide what information we’re going to throw
away from the cell state. This decision is made by a sigmoid layer called the
“forget gate layer.” It looks at h(t−1) and xt, and outputs a number between
0 and 1 for each number in the cell state C(t−1). 1 represents “completely
keep this” while a 0 represents “completely forget this.”

CHAPTER 4. BREIF OVERVIEW ON LSTM AND GCN 36

Let’s go back to example of a language model trying to predict the next
word based on all the previous ones. In such a problem, the cell state might
include the gender of the present subject, so that the correct pronouns can
be used. When we see a new subject, we want to forget the gender of the
old subject.

The next step is to decide what new information it is going to store in
the cell state. This has two parts. First, a sigmoid layer called the “input
gate layer” decides which values we’ll update. Next, a tanh layer creates a
vector of new candidate values, Ct, that could be added to the state. In the
next step, we’ll combine these two to create an update to the state.

In the example of our language model, we’d want to add the gender of
the new subject to the cell state, to replace the old one we’re forgetting.

It’s now time to update the old cell state, C(t−1), into the new cell state

C̃t. The previous steps already decided what to do, we just need to actually
do it.

We multiply the old state by ft, forgetting the things we decided to
forget earlier. Then we add it Ct. This is the new candidate values, scaled
by how much we decided to update each state value.

In the case of the language model, this is where we’d actually drop the
information about the old subject’s gender and add the new information, as
we decided in the previous steps.

CHAPTER 4. BREIF OVERVIEW ON LSTM AND GCN 37

Finally, we need to decide what we’re going to output. This output will
be based on our cell state, but will be a filtered version. First, we run a
layer which decides what parts of the cell state we’re going to output. Then,
we put the cell state through tanh (to push the values to be between -1 and
1) and multiply it by the output of the gate, so that we only output the
parts we decided to.

For the language model example, since it just saw a subject, it might
want to output information relevant to a verb, in case that’s what is coming
next. For example, it might output whether the subject is singular or plural,
so that we know what form a verb should be conjugated into it if that’s what
follows next.

4.2 Graph Convolution Network

As we know that it is difficult to apply Neural Network on graph structure
data. This paper[9] gives nice approach for applying the neural network
model on the graph structure data.

4.2.1 Definitions

GCNs are a very powerful neural network architecture for machine learning
on graphs. In fact, they are so powerful that even a randomly initiated 2-
layer GCN can produce useful feature representations of nodes in networks.
The figure below illustrates a 2-dimensional representation of each node in
a network produced by such a GCN. The relative nearness of nodes in the

CHAPTER 4. BREIF OVERVIEW ON LSTM AND GCN 38

network is preserved in the 2-dimensional representation even without any
training.

Given a graph G = (V, E), a GCN takes as input (N×F0) feature matrix
(X) where N is the number of nodes and F 0 is the input features of the
input matrix (X). As we know that we can represent a graph structure into
the adjacency matrix. So, for N nodes graph we will get a adjacency matrix
of (N). GCN also takes as input along with the above feature matrix.

A hidden layer in the GCN can thus be written as H i = f(H(i−1), A))
where H0 = X and f is a propagation rule. Each layer H i corresponds
to an (N × F i) feature matrix where each row is a feature representation
of a node. At each layer, these features are aggregated to form the next
layer’s features using the propagation rule f . In this way, features become
increasingly more abstract at each consecutive layer.

So the simplest propagation rule will be as follows:

f(H i, A) = σ(A ·H(i−1) ·W(i−1)) (4.1)

Where W i is the weight matrix at ith GCN layer. σ is a non-linear activation
function like ReLU defined as follows:

f(x) = max(0,x) (4.2)

But the problem with the above approach is if we see the output of the
GCN layer. The aggregated representation of the nodes does not include
its own features. They only contain the neighbourhood nodes. Only those
nodes have self-loop only contain its own features.

Another problem is nodes with large degrees will have large values in
their feature representation while nodes with small degrees will have small
values. This can cause vanishing or exploding gradients but is also prob-
lematic for stochastic gradient descent algorithms which are typically used
to train such networks and are sensitive to the scale (or range of values) of
each of the input features.

4.2.2 Adding Self Loops

To overcome from the fist problem authors add self-loops with each node by
computing the following equation:

A′ = A+ I (4.3)

CHAPTER 4. BREIF OVERVIEW ON LSTM AND GCN 39

Where A is the adjacency matrix and I is identity matrix.

4.2.3 Feature Normalization:

To overcome from the second approach the author follow the feature nor-
malization by multiplying the inverse degree matrix(D−1) with adjacency
matrix(A′). The computation of the above technique is as follows:

f(X,A′) = D−1 ·A′ ·X (4.4)

Thus author gets final representation of all the nodes with added self-
loops and the normalized representation of all the nodes.

Chapter 5

Methodology

This chapter presents our methodology for the task. Before going through
the methodology part, we first present the Dataset that we use in our system
throughout the experiment.

5.1 Dataset Description

We worked with the dataset described in [21]. The dataset is distantly
supervised by the Wikidata KnowledgeBase. The dataset was prepared
using the Wikipedia data corpus as it is tightly integrated with the Wikidata
KB.

First, from each sentence for the complete wikipedia articles the links
were extracted; then the corresponding Wikidata entityIDs were retrieved
for the linked article. Thus, wikipedia articles were mapped one to one to
its corresponding WikidataID. Let us consider the following sentence.

Sachin Tendulkar was born in Mumbai.

The above sentence contains two entities: Sachin Tendulkar and Mum-
bai . The corresponding Wikidata entityIDs are extracted as Sachin Ten-
dulkar → Q9488 and Mumbai → Q1156.

Then the noun chunks and entities are extracted using chunking and the
Standford CoreNLP [14] toolkit which were not covered by the wikipedia
annotation. Then for those chunks and entities, the authors manually ex-
tracted the Wikidata entity IDs. For entities like DATE, authors used the
HiedelTime [22] annotation. For the given entities in the input sentences,
they queried the Wikidata Knowledge Base. If the entities are found in the
KB (Wikidata) then the relation that connects the entities in KB was re-
placed in the input sentence using the concept of Distant Supervision. Then
they filtered out those sentences which have less than 3 entities.

Finally 353 relations were extracted. Total 8.5 lakh sentences were
dumped into the json file. Each sentence was tokenized and there was an

40

CHAPTER 5. METHODOLOGY 41

”edgeSet” which contains the entity pairs and the corresponding relations.
EdgeSet contains multiple entity pairs and one relation from the given re-
lationset. The training dataset was prepared using 3.5 lakhs sentence, the
validation data was prepared using 1.5 lakhs sentences and the test data was
prepared using 3.5 lakhs sentences.

Thus the dataset was prepared using distant-supervision methodology.

5.2 LSTM Attention based Approach

The main aim of the relation extraction task is to extract relation between
the two target entities from the given sentence. We apply the methodology
of the paper [21] where the process of extracting relations is as follows. In
the above paper [18] we have discussed that LSTM can be applied on the
relation extraction task from the given sentence. Here using the attention
mechanism we try to capture the relation between the target entities using
the context information. Where previous approaches neglect the context
information. The following example illustrated the idea.

Shonar Kella is a 1971 mystery novel by Bengali writer and filmmaker
Satyajit Ray.

In the above sentence, the words in bold fonts are the entities extracted
during the data preparation step. To identify the relation (DIRECTED BY)
between the entities Shonar Kella and Satyajit Ray, it is important to
classify the relation (INSTANCE OF) between the entities Shonar kella
and the mystery novel.

To argue the above proposal, we have proposed a Bi-LSTM mechanism
with attention which outperforms the the methodology of extracting relation
using only LSTM encoder and the methodology of LSTM attention.

5.3 Architecture

We know that in text the length of the sentences varies widely. To overcome
this problem we take fixed size of sentence length (n) to get fixed size vector
for each sentence.

We map each token in a sentence to d dimensional word embedding vec-
tor using a word embedding matrix W∈ IR|V |×d, where V is the vocabulary
size.

Then we use position embedding to make the model understand about
the entities. The process is described below. Each token in the sentence
either belongs to entity e1 or entity e2 or neither of these two. A marker em-
bedding is randomly initialized with the dimension of P ∈ IR(3×d). Then we
concatenate both the word-embeddings (Wn) and position embeddings(Pn).
The concatenated vector is [Wn, Pn].

CHAPTER 5. METHODOLOGY 42

Then, we at first fit the concatenated vector into the LSTM [3] relation
encoder to make our baseline model. We get the output(os∈ IRo). Then we
classify the output of the LSTM output vector (os) by the softmax classifier
using the following equation.

P (r| < e1, e2 >) =
exp(fr)∑nr

i=1 exp(fi)
(5.1)

fi = yi · os + bi (5.2)

Where yi is the weight vector and the bi is the bias vector. Thus we get
a classified relation between the target entities.

Next, we follow the methodology of attention mechanism proposed by
[21]. To detect the relation between the target entities, we take other entity-
pair relations which is known as context relation of the sentence. Similarly,
we make concatenation of the word and position marker. Then we jointly
feed the target entities corresponding to its position marker and the context
entities corresponding to its the position markers individually into the LSTM
encoder. We get the individual output vector (os) for target entities and
output vectors corresponding to its context entities (oc). All the required
hidden matrices for both the target relation and context relations are jointly
learned during the training of LSTM encoder. So, we get output vector (oi)
for each individual context relation.

We sum up all the relation outputs (oi) using the following equation5.3
where m is the number of context relations.

oc =
m∑
i=0

oi (5.3)

5.3.1 Attention Mechanism

Then we apply the attention mechanism i.e. the weighted context-sum dur-
ing summing up all the context relations (??). We use the following equation
for doing the above computation to apply the attention mechanism where
ai is the attention weight at the ith layer.

oc =

m∑
i=0

ai · oi (5.4)

The attention mechanism follows the probability distribution i.e. which
should be useful or not. The attention mechanism computes the following
equation to update the weights properly where f(oi, os) = oiwos, w is the
attention weight matrix that is learned during training operation.

ai =
exp(f(oi, os))∑m
j=0 exp(f(oj , os))

(5.5)

CHAPTER 5. METHODOLOGY 43

5.3.2 Classifying Output Relation

We get a final output of the context relation (oc) using the attention mech-
anism. Then we concatenate both the targeted output (os) and the context
output (oc). Finally we feed the o = [os, oc] into the softmax classifier (5.1)
to predict the final relation between the two target entities. Our modified
proposed architecture of the same proposal using the Bi-LSTM encoder is
depicted in Figure 5.2.

CHAPTER 5. METHODOLOGY 44

Figure 5.1: Relation Encoder using Bi-LSTM

CHAPTER 5. METHODOLOGY 45

Figure 5.2: Relation Encoder using Bi-LSTM attention Mechanism

We also try the same mechanism of attention based encoder as repre-
sented in the Figure 5.2 for classifying the relation between the two targated
entities in the given sentence using the Bi-LSTM. We follow the methodol-
ogy that is described above; instead of LSTM encoder, we just use Bi-LSTM
encoder. The results of Bi-LSTM attention based approach outperforms the
results of both LSTM and LSTM with attention. Bi-LSTM results beat all
the previous results that can be found in the literature for Relation Extrac-
tion.

5.4 Graph Convolution Based Approach

Besides experimenting with the above mentioned three approaches, we also
propose a novel architecture using Graph Convolution Network.

CHAPTER 5. METHODOLOGY 46

5.4.1 GCN based Architecture for Relation Extraction

We first implement the relation extraction task using GCN following the
methodology of [9]. Our proposed architecture diagram is presented in Fig-
ure 5.3.

Figure 5.3: Relation Extraction using GCN Mechanism

For each sentence, we prepare a typed adjacency tensor (A) using depen-
dency graph (i.e. considering dependency graph as an undirected graph).
Let R be the set of all the dependency relations and n be the maximum
length of any sentence. So, for each relation in set R, we can represent any
sentence with (n×n) dimensional adjacency matrix where Aij=1 if there is
an edge between the ith node and the jth node. We add a self loop to each

CHAPTER 5. METHODOLOGY 47

of the node so that it can contain its own features. We get an adjacency
tensor (A) of shape A ∈ IRR×n×n.

We map each token in a sentence to d dimensional word embedding vec-
tor using a word embedding matrix W∈ IR|V |×d ,where V is the vocabulary
size.

Then we apply a feature normalization of the adjacency matrix using
the inverse degree matrix (D−1∈ IRn×n) of each sentence by computing the
following equation 5.6.

A′ = (D−1 ·A) (5.6)

Then we follow the methodology of Graph Convolution Network [9] as
we discussed earlier by computing the following propagation rule followed
by max pooling operation 5.7.

O(i) = maxpool(f(A′(i) ·W (i) ·H(i))) (5.7)

Here H i is the hidden matrix at ith layer, W (i) is the linear transforma-
tion at ith layer, the A′(i) is the normalized adjacency input tensor at ith

layer and f is a nonlinear activation function (4.4). Oi is the output tensor
at the ith layer.

We also represent a set of entity tokens (created during the time data
generation steps) for each sentence to a fixed length (n) one-hot representa-
tion. We get two entity vectors for each sentence i.e. left entity vector (el
∈ II1×n) and also right entity vector (er ∈ II1×n).

Using the output tensor (O(i) ∈ IRn×d), we compute the following equa-
tion 5.8 for both the right and left entity vector. We get left entity vector
(e′l ∈ IRd×1) and right entity vector (e′r ∈ IRd×1).

e′ = e ·O (5.8)

Thus we convert the simple entity representation to an aggregated fea-
ture representation. We concatenate both the left and right entity repre-
sentation. We pass the final entity node representation (e′′) through a fully
connected layer with non-linear activation function softmax to map it to its
corresponding relation vector with the highest probability. Thus we get our
final output relation vector (Or) by computing the following equation where
yi is the weight matrix and bi is the bias vector.

P (Or|e′′) =
exp(fr)∑nr

i=1 exp(fi)
(5.9)

fi = yi · e′′ + bi (5.10)

Thus by applying the aforementioned model, we set up a baseline ar-
chitecture. Next we discuss another method of GCN to improve over the
baseline model.

CHAPTER 5. METHODOLOGY 48

5.4.2 Graph Convolution Network with Latent Adjacency

The above approach remains same with just one extra latent adjacency
tensor with original adjacency input tensor. To build the adjacency tensor
of any sentence we take the dependency graph using the spacy [4] toolkit.
We know that no toolkit is always perfect. For this reason we randomly
initialize another latent adjacency tensor (AL∈ IRR×n×n) with the same
shape of adjacency tensor (A). So, both the hidden matrix and the latent
adjacency tensor will be learned during the training of GCN. Our model
architecture is depicted in figure 5.4.

We follow the above computation with slight modification. First, we
add both the adjacency tensor and the latent adjacency tensor. So, here we
are following one type of smoothing technique. Nodes that do not get any
feature value will get some random weight which will be tuned during the
training. We do the above computation by computing the following equation
5.11.

Au = A+AL (5.11)

From here we get a latent adjacency matrix with shape (Au ∈ IRR×n×n).
Then we follow the above methodology in the following way. For nor-

malizing the feature we follow the equation (5.6) with the new adjacency
matrix.

A′u = D−1 ·Au (5.12)

Similarly we follow the methodology of GCN [9] following max-pooling

operation by computing the equation below where O
(i)
u is the output vector

at ith layer, A′u
(i) is the normalized tensor at ith layer,f is the non-linear

activation function ReLU activation.

O(i)
u = maxpool(f(A′u

(i) ·W (i)
u ·H(i)

u)) (5.13)

Then, we also represent a set of entity tokens (created during the time
of data generation steps) for each sentence to a fixed length (n) one-hot
representation. We get two entity vectors for each sentence i.e. left entity
vector (el ∈ II1×n) and also right entity vector (er ∈ II1×n).

Using the output tensor (O
(i)
u ∈ IRn×d) we compute the following equa-

tion 5.14 for both the right and left entity vector. We get left entity vector
(e′l ∈ IRd×1) and right entity vector (e′r ∈ IRd×1).

e′u = eu ·Ou (5.14)

CHAPTER 5. METHODOLOGY 49

Figure 5.4: Relation Extraction using GCN with Latent Adjacency Repre-
sentation

CHAPTER 5. METHODOLOGY 50

where e′u is the output vector of entity representation. Thus, we convert
the one-hot representation into the normalized feature representation. We
concatenate both left and right entity matrix.

Then we push those entity matrix representation into the fully-connected
layer with non-linear activation function (5.9) to map each entity matrix to
its corresponding relation output vector.

Chapter 6

System Description

We will discuss about our system description about the above models.

6.1 LSTM based System Description

In the above section we said that we mapped each token to a fixed di-
mensional word-embedding vector. To embed the word token we use 50
dimensional Glove [19].

Throughout the experiment we use position embedding markers of di-
mension 3.

Finally we concatenate both the output of the word-embeddings and
also the output of the postition embedding to push them into the LSTM or
Bi-LSTM.

After going through the dataset(i.e. training data and validation data)
we observe most of the sentence length lies below 37. For this we set the
length(l) 36. We ignore other sentences of length more than 36. We apply
post padding operation with zeros for those sentences which have length less
than 36.

Throughout the experiment we use dropout. We apply dropout of .5
on the embedding layer. We also apply it on the fully-connected layer(i.e.
Dense layer) for extracting relation from the given two entities in the given
text.

We apply regularization in the position marker embedding layer to solve
the problem of overfitting by penalizing the weights as per requirement dur-
ing training. We use (l2) regularization throughout the experiment.

As we care about the context relation to predict the target relation
between the target entities as mentioed above in the methodology chapter.
We at a time take 7 entity-relation pairs per sentence. According to the
above condition we split our dataset i.e. if there are more than 7 entity-
relation pairs per sentence we split it accordingly.

We use Keras to implement the system using python.

51

CHAPTER 6. SYSTEM DESCRIPTION 52

Throughout the experiment we use ’Categorical Crossentropy’ as a loss
function and Adam [8] as an optimizer function.

6.1.1 Baseline Implementation for LSTM

First we represent each sentence into the one-hot representation using the
index number of glove word-embeddings. Then we feed the that represen-
tation into the input layer. As we need to repeat each sentence 7 times we
apply repeatvector(7) on the input layer output.

Then we take the above output of the input layer into the embedding
layer. The output from the embedding will be 50 dimension.

Then we represent the entity input into one-hot representation using the
following methodology. We mark entity tokens ’1’ if it present left side of the
relation in the given triplet. Similarly, for other entity tokens which present
in the right side of the triplets we mark those tokens with ’3’. Otherwise all
the tokens other than the above two genres we mark them as ’3’.

Thus we represent the entity input representation using the above method-
ology. We feed them into another embedding layer with output dimension
3.

We concatenate both the word-embeddings layer output and the entity-
marker embedding layer output to get a ’53’ dimensional vector.

We apply both the dropout and regularization using the aforementioned
technique.

Next we feed the concatenated input representation of dimension 53 into
the LSTM cell. From the above cell we get hidden entity-token represen-
tation. Finally, we try to map them to their corresponding relation vector
(which is represented by binary one-hot representation of size 353 dimen-
sion). Mapping was done using the fully-connected layer of dimension 353
with an non-linear activation function of softmax.

6.1.2 LSTM and Bi-LSTM Attentionbased

We apply the same methodology of the above one with slightly some mod-
ification. In the case of the Bi-LSTM we put the concatenated representa-
tion (53 dimension) into Bi-LSTM cell of keras. Bi-LSTM works similary as
LSTM disscussed in the chapter 4 with one modification. Bi-LSTM not only
remember the previous sequence information to predict the next sequence
information it also cares about the future sequence information.

After putting the concatenated representation into LSTM and also on
Bi-LSTM we apply the attention mechanism for both the above architectures
respectively. Finally we successfully connect the hidden representation into
a fully-connected layer using Adam optimizer and softmax as an activation
function. Thus we get the output of relation vector among 353 relation
instances between two target entities using the contextual information. We

CHAPTER 6. SYSTEM DESCRIPTION 53

train the above systems using training data (as discussed previously) and
validation data. We test the system using the test dataset.

We train our above three system in google colaboratory environment
with 50 epochs and batch size of 256.

6.2 GCN based approach

As previously discussed in chapter 4. We build the typed adjacency tensor
using the adjacency relation set of spacy dependency relations. In spacy
toolkit the number of dependency relations for English language is 48. We
set the sentence length to 36. So, we make one adjacency matrix for each
relation from the relation set R. Thus we get an adjacency tensor of size
(48 × 36 × 36) for each sentence. We make each adjacency matrix added
with self-loop.

We build a degree layer to get the degree representation of all the nodes
in each sentence.

We put the output of the degree layer to the Multiplication layer to
compute the above computation (5.6). Thus we get a normalized adjacency
tensor representation where all the nodes of that tensor is normalized by
multiplying with its corresponding inverse degree matrix.

First we make one-hot representation of each sentence using the word
index of Glove word-embedding of 50 dimension. We feed this one-hot rep-
resentation into a Embedding layer to get the the embedded output vector
for each sentence.

Next we build a graph layer which will take input of both Embedding
layer output and the normalized representation of adjacency tensor. In the
graph layer we randomly initialize a weight matrix which will be trained
during the training time of this whole model.

Graph layer internally do the computation of (5.7) to get the Dense rep-
resentation of each node (i.e. this layer will return each node representation
which contains it’s corresponding neighbor nodes and also itself).

We apply another Graph layer which will take input adjacency tensor
(A′) and the output of the first Graph Layer. So this layer will return
another more dense hidden representation of each node.

We take each entity relation pair and we represent entity tokens into
one-hot representation. We take left entity words and we make map them
into a vector representation of length 36. If the entity tokens present in its
corresponding sentence then we make value 1 for that particular position
in the vector. otherwise we make 0 for rest of all the positions. We apply
similar approach for the right entity tokens. We create similarly right entity
vector using the same concept.

Then we build entity layer to do the computation mentioned in (5.8). So
from the entity layer we get a left entity matrix and right entity matrix rep-

CHAPTER 6. SYSTEM DESCRIPTION 54

resentation with it’s corresponding nodes for each sentence. We concatenate
both the entity representation.

Now we feed both the left entity and right entity to fully-connected layer
of 353 dimension with softmax (5.1) activation function. Thus we predict
the target relation corresponding to its target entities.

We train this model with batch size 64 with 30 epochs.

6.3 Latent GCN based approach

As the architecture is almost same as the above GCN with one modification.
We have already discussed about it. Now we will give system description of
our proposed approach.

For latent adjacency tensor we make a Noise layer. It will give us a
latent adjacency tensor representation with randomly initialized weights. In
this layer we push adjacency tensor(A) and it returns output latent adja-
cency tensor representation by computing the equation 5.11. The output
shape(Au) will be of dimension (48 × 36 × 36). Here 48 is the number of
dependency relation of Spacy for English and 36 is the maximum length of
sentence as discussed in the above section. This layer computes the compu-
tation of equation (??) using sigmoid as an activation.

Then we push this updated adjacency tensor representation to a Degree
Layer to get corresponding inverse degree matrix representation (D−1) of
each sentence. Then we feed both the latent adjacency tensor(Au) and the
Degree matrix representation(D−1) into the Multiplication layer to normal-
ize the feature representation.

So we get a normalized latent adjacency tensor representation (A′u).
Then we take both the normalized adjacency tensor(A′u) and word embed-
ding tensor representation as inputs into one Graph Layer.The computation
for this layer follows the equation (5.13) using relu (4.4) as an activation
function. We get A1 as output which is a dense representation of all the
nodes (i.e. here each node covers its all the neighbor nodes with degree 1).

Then we repeat the same procedure one times in the same way. We push
the output of the graph layer to the same noise layer to smooth all the nodes
properly. This layer will give us latent adjacency tensor representation using
the (??) and sigmoid activation function.

Similarly we get its corresponding inverse degree matrix (D−1) and nor-
malized latent adjacency feature representation(A′u) using both the Degree
Layer and Multiplication Layer. The Multiplication Layer compute equation
(5.6).

Then we take A1 and A′u to feed into the another graph layer with same
computation (5.13) and relu(4.4) as an activation. Similarly we get A2 more
dense representation of all the nodes.

Now we take one-hot representation of left and right entity vector. We

CHAPTER 6. SYSTEM DESCRIPTION 55

take left-entity vector to the Entity Layer and right-entity vector to the
same Entity Layer. So, we represent both the left and right entity vector
to its corresponding node representation using the computation of equation
(5.14).

We concatenate both left and right entity representation. We feed it
into the fully-connected layer to map with its corresponding relation vector
using the softmax(5.1).

We train this model with batch size 64 with 30 epochs.

Chapter 7

Results

The experimental results that we have obtained from the aforementioned
models are presented in this chapter. Earlier we mentioned that among
the aforementioned 5 approaches, Bi-LSTM performs very well. This model
provides an accuracy of about 82%. Our proposed approach (GCN with
Latent Adjacency Tensor) results in accuracy near about 70% on the same
dataset. We use four metrics to evaluate our models - accuracy, precision,
recall and f1-score. The metrics as defined as given below.

Accuracy =
Total no. of correct answers returned by the System

Total No. of Answers
(7.1)

Precision =
No. of correct answers returned by the system

No. of answers returned by the system
(7.2)

Recall =
No. of correct answers returned by the system

No. of answers in gold standard answer
(7.3)

F1− score =
2× Precision×Recall

Precision + Recall
(7.4)

7.1 LSTM approach based Result

The results of the LSTM based models are presented in Table 7.1. From the
results obtained acrorss the four evaluation metrics, it can be observed that
the Bi-LSTM model performs remarkably well.

56

CHAPTER 7. RESULTS 57

Model Acc. Precision Recall F1-Score

Bi-LSTM + Att. 0.819 0.817 0.796 0.807
LSTM + Att. 0.805 0.799 0.776 0.787
LSTM 0.721 0.792 0.695 0.740

Table 7.1: Results of LSTM based models

7.2 GCN approach Based Result

This section presents the results of our proposed GCN based approach. The
results of 2 separate experiments, with and without Latent Adjacency tensor,
are reported in Table 7.2. It can be observed from the table that the pro-
posed GCN model provides 64.3% accuracy and .630 F1-score, while adding
the latent adjacency tensor to the GCN model, provides some improvements
and it results in 68.8% accuracy and .690 F1-score.

Model Acc. Precision Recall F1-Score

GCN 0.643 0.650 0.640 0.630
GCN +
Latent Adj. 0.688 0.700 0.690 0.690

Table 7.2: Results of GCN based models

Chapter 8

Conclusion and Future Work

This thesis presents a work on extracting knowledge from unstructured text.
Initially we tried with some rule-based approach for the knowledge extrac-
tion task. However, it was too much tedious to write down all the rules for
the task of Relation Extraction. For this reason we shifted to the neural
network based approaches. We explored a total of 5 approaches - LSTM,
LSTM with attention, Bi-LSTM with attention, our novel GCN and GCN
with latent adjacency tensor.

Bi-LSTM with attention mechanism performs well on the aforementioned
data-set. Among the 5 approaches, accuracy of our novel architecture (GCN
with Latent Adjacency Tensor representation) does not outperform the Bi-
LSTM model. So, we will try to modify this architecture as future work
so that we can combine the strengths of Bi-LSTM and GCN in a combined
framework. These above approaches can also be applied on any other type
of relation extraction task.

In future, instead of generating adjacency matrix from the dependency
graph, we will try to learn it automatically through neural network. We
will feed each sentece vector and its corresponding word-embedding matrix
into the LSTM. The output that the LSTM will generate will be nothing
but a hidden representation of the adjacency matrix and we will put that
output into the GCN to classify the relation class. As we have not applied
our approaches on other available data-sets, we will try our approaches on
other datasets so that we can conclude more concretely. In future we will
also try to increase the number of relation classes which will help to infer
new relations between entities in a given text more accurately. This will
help to populate Knowledge Bases.

58

Bibliography

[1] Samy Bengio et al. “Scheduled sampling for sequence prediction with
recurrent neural networks”. In: Advances in Neural Information Pro-
cessing Systems. 2015, pp. 1171–1179.

[2] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. “Speech
recognition with deep recurrent neural networks”. In: 2013 IEEE inter-
national conference on acoustics, speech and signal processing. IEEE.
2013, pp. 6645–6649.

[3] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term mem-
ory”. In: Neural computation 9.8 (1997), pp. 1735–1780.

[4] Matthew Honnibal and Ines Montani. “spaCy 2: Natural language
understanding with Bloom embeddings, convolutional neural networks
and incremental parsing”. In: To appear (2017).

[5] Guoliang Ji et al. “Distant supervision for relation extraction with
sentence-level attention and entity descriptions”. In: Thirty-First AAAI
Conference on Artificial Intelligence. 2017.

[6] Nanda Kambhatla. “Combining Lexical, Syntactic, and Semantic Fea-
tures with Maximum Entropy Models for Extracting Relations”. In:
Proceedings of the ACL 2004 on Interactive Poster and Demonstration
Sessions. ACLdemo ’04. Barcelona, Spain: Association for Computa-
tional Linguistics, 2004. doi: 10.3115/1219044.1219066. url: http:
//dx.doi.org/10.3115/1219044.1219066.

[7] Natthawut Kertkeidkachorn and Ryutaro Ichise. “An automatic knowl-
edge graph creation framework from natural language text”. In: IEICE
TRANSACTIONS on Information and Systems 101.1 (2018), pp. 90–
98.

[8] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980 (2014).

[9] Thomas N Kipf and Max Welling. “Semi-supervised classification with
graph convolutional networks”. In: arXiv preprint arXiv:1609.02907
(2016).

59

BIBLIOGRAPHY 60

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet
classification with deep convolutional neural networks”. In: Advances
in neural information processing systems. 2012, pp. 1097–1105.

[11] Jens Lehmann et al. “DBpedia–a large-scale, multilingual knowledge
base extracted from Wikipedia”. In: Semantic Web 6.2 (2015), pp. 167–
195.

[12] Dekang Lin. “Dependency-based evaluation of MINIPAR”. In: Tree-
banks. Springer, 2003, pp. 317–329.

[13] Thang Luong, Hieu Pham, and Christopher D. Manning. “Effective
Approaches to Attention-based Neural Machine Translation”. In: Pro-
ceedings of the 2015 Conference on Empirical Methods in Natural Lan-
guage Processing. Lisbon, Portugal: Association for Computational
Linguistics, Sept. 2015, pp. 1412–1421. doi: 10.18653/v1/D15-1166.
url: https://www.aclweb.org/anthology/D15-1166.

[14] Christopher Manning et al. “The Stanford CoreNLP natural language
processing toolkit”. In: Proceedings of 52nd annual meeting of the as-
sociation for computational linguistics: system demonstrations. 2014,
pp. 55–60.

[15] Oded Maron and Tomás Lozano-Pérez. “A framework for multiple-
instance learning”. In: Advances in neural information processing sys-
tems. 1998, pp. 570–576.

[16] Tomas Mikolov et al. “Distributed representations of words and phrases
and their compositionality”. In: Advances in neural information pro-
cessing systems. 2013, pp. 3111–3119.

[17] Mike Mintz et al. “Distant supervision for relation extraction without
labeled data”. In: Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP: Volume 2-Volume 2.
Association for Computational Linguistics. 2009, pp. 1003–1011.

[18] Makoto Miwa and Mohit Bansal. “End-to-end relation extraction us-
ing lstms on sequences and tree structures”. In: arXiv preprint arXiv:1601.00770
(2016).

[19] Jeffrey Pennington, Richard Socher, and Christopher Manning. “Glove:
Global vectors for word representation”. In: Proceedings of the 2014
conference on empirical methods in natural language processing (EMNLP).
2014, pp. 1532–1543.

[20] Rion Snow, Daniel Jurafsky, and Andrew Y Ng. “Learning syntactic
patterns for automatic hypernym discovery”. In: Advances in neural
information processing systems. 2005, pp. 1297–1304.

BIBLIOGRAPHY 61

[21] Daniil Sorokin and Iryna Gurevych. “Context-Aware Representations
for Knowledge Base Relation Extraction”. In: Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing (EMNLP).
Copenhagen, Denmark: Association for Computational Linguistics,
2017, pp. 1784–1789. doi: 10.18653/v1/D17-1188.

[22] Jannik Strötgen and Michael Gertz. “Multilingual and cross-domain
temporal tagging”. In: Language Resources and Evaluation 47.2 (2013),
pp. 269–298.

[23] Paul J Werbos et al. “Backpropagation through time: what it does and
how to do it”. In: Proceedings of the IEEE 78.10 (1990), pp. 1550–1560.

