(1st Year, 2nd Semester)
Mathematics - II

Time : Three hours

Use a separate Answer Script for each part.

PART - I (50 marks)

Answer any five questions.

1. (a) Find the matrix A if adj $A=\left(\begin{array}{lll}2 & 2 & 0 \\ 2 & 5 & 1 \\ 0 & 1 & 1\end{array}\right)$ and $\operatorname{det} \mathrm{A}=2$.
(b) (i) Suppose that A and B be two third order matrices such that they differ only in their second column. Show that $\operatorname{det}(A+B)=4[\operatorname{det} A+\operatorname{det} B]$.
(ii) Show that the determinant
$\left|\begin{array}{llll}2 & 6 & 9 & 7 \\ 2 & 7 & 5 & 9 \\ 2 & 8 & 2 & 1 \\ 2 & 8 & 8 & 3\end{array}\right|$ is divisible by 31 .
2. (a) (i) Show that the determinant value of a real orthogonal matrix is ± 1.
(ii) Let A be a square matrix of order n such that $\operatorname{det} A=2$. Find $\operatorname{det}\left(A^{-1}+\operatorname{adj} A\right) . \quad 2+3$
(b) Let A and B be two real orthogonal matrices of the same order n, where n is odd, such that $\operatorname{det} A=\operatorname{det} B$. Show that (A-B) is a singular matrix.

5
3. (a) Find the rank of the matrix

$$
A=\left(\begin{array}{ccccc}
1 & 3 & 2 & 4 & 1 \\
0 & 0 & 2 & 2 & 0 \\
2 & 6 & 2 & 6 & 2 \\
3 & 9 & 1 & 10 & 6
\end{array}\right)
$$

(b) Show that

$$
\left|\begin{array}{ccc}
(b+c)^{2} & a^{2} & a^{2} \\
b^{2} & (c+a)^{2} & b^{2} \\
c^{2} & c^{2} & (a+b)^{2}
\end{array}\right|=2 a b c(a+b+c)^{3}
$$

4. (a) (i) If for given A and B , the matrix equation $\mathrm{AX}=\mathrm{B}$ has more than one solution then show that it has infinitely many solutions.

PART - II (50 marks)

Answer any five questions.
8. (a) Find the angle between the lines whose direction cosines are proportional to $1,2,1$ and $2,-3,6$.
(b) Show that the straight lines whose direction cosines are given by $2 \ell+2 \mathrm{~m}-\mathrm{n}=0, \mathrm{mn}+\mathrm{nl}+\mathrm{lm}=0$ are at right angles.
9. (a) A, B, C are three points on the axis of x, y and z respectively at distances a, b, c from the origin 0 . Find the coordinates of the point which is equidistant from $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and O .
(b) Find the equation of the plane passing through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y-z+4=0$ and perpendicular to the plane $2 y-3 x=4$.
$4+6$
10. (a) Find the equation of the plane through $(1,2,3)$ and parallel to the plane $4 x+5 y-3 z=7$.
(b) A plane meets the coordinate axes at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ such that the centroid of the traingle ABC is the point (a, b, c). Show that the equation of the plane is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=3$.

$$
\begin{align*}
& \text { Maximize } \mathrm{Z}=5 \mathrm{x}_{1}+7 \mathrm{x}_{2} \\
& \text { Subject to } \\
& 3 \mathrm{x}_{1}+8 \mathrm{x}_{2} \leq 12 \\
& \\
& \qquad \begin{array}{c}
\mathrm{x}_{1}+\mathrm{x}_{2} \leq 2 \\
2 \mathrm{x}_{1} \leq 3 \\
\\
\\
\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
\end{array} \tag{5}
\end{align*}
$$

6. (a) If $\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha=\mathrm{p}$ touches the curve $\frac{x^{m}}{a^{m}}+\frac{y^{m}}{b^{m}}=1$ then show that
$(a \cos \alpha)^{\frac{m}{m-1}}+(b \sin \alpha)^{\frac{m}{m-1}}=P^{\frac{m}{m-1}}$
(b) If two curves $a x^{2}+b y^{2}=1$ and $a_{1} x^{2}+b_{1} y^{2}=1$ cut orthogonally then prove that
$\frac{1}{b_{1}}-\frac{1}{b}=\frac{1}{a_{1}}-\frac{1}{a}$.
7. (a) Find the radius of curvature at the origin for the curve $x^{3}+y^{3}-2 x+6 y=0$.

5
(b) Determine the asymptotes of $x^{3}+x^{2} y-x y^{2}-y^{3}+$ $2 x y+2 y^{2}-3 x+y=0$. 5
(ii)If the system of equations $a x+b y+c z=0$, $b x+c y+a z=0, c x+a y+b z=0$ have a non zero solution then show that either $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ or $\mathrm{a}=\mathrm{b}=\mathrm{c}$.

3+2
(b) If $A=\left(\begin{array}{ccc}1 & 2 & 1 \\ 1 & -4 & 1 \\ 3 & 0 & -3\end{array}\right)$ and $B=\left(\begin{array}{ccc}2 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & -1\end{array}\right)$ then show that $\mathrm{AB}=6 \mathrm{I}_{3}$. Utilize this result to solve the following system of equations

$$
\begin{gather*}
2 x+y+z=5 \\
x-y \quad=0 \\
2 x+y-z=1
\end{gather*}
$$

5. (a) A manufacturer makes red and blue pen. A red pen takes twice as much time as to make a blue pen. If the manufacturer makes only blue pens, 500 can be made in a day. A red pen sells for Rs. 8 and atmost 150 can be sold in a day. A blue pen sells for Rs. 5 and atmost 250 can be sold in a day. The manufacturer desires to maximize his revenue. Formulate the above problem as a linear programming problem.
(b) Solve graphically the following linear programming problem :
6. (a) Find the equation of the plane which contains the line $\frac{x-1}{2}=\frac{y-3}{1}=\frac{x-13}{2}$ and is perpendicular to the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=3$.
(b) Find the equation of the line through $(1,2,-1)$ and perpendicular to each of the lines
$\frac{x}{1}=\frac{y}{0}=\frac{z}{-1}$ and $\frac{x}{3}=\frac{y}{4}=\frac{z}{5}$
7. (a) Find the equation of the line $x+y+z-1=0$, $2 x-y-3 z+1=0$ in symmetrical form.
(b) Find the condition that the two lines $\frac{x-x_{1}}{\ell_{1}}=\frac{y-y_{1}}{m_{1}}=\frac{z-z_{1}}{n_{1}}$ and $\frac{x-x_{2}}{\ell_{2}}=\frac{y-y_{2}}{m_{2}}=\frac{z-z_{2}}{n_{2}}$ are coplanar. $6+4$
8. (a) Find the equation of the line of shortest distance between the lines
$\frac{x-8}{3}=\frac{y+9}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$
(b) Find the equation of a sphere which panes through $(0,0,0),(a, 0,0),(0, b, 0)$ and $(0,0, c)$.
$5+5$
9. (a) Show that the general equation of the cone of second degree which panes through the coordinate axes is of the form

$$
\mathrm{fyz}+\mathrm{gzx}+\mathrm{hxy}=0
$$

(b) Prove that the circles
$x^{2}+y^{2}+z^{2}-2 x+3 y+4 z-5=0,5 y+6 z+1=0$ and $x^{2}+y^{2}+z^{2}-3 x-4 y+5 z-6=0, \quad x+2 y-7 z=0$ lie on the same sphere and find its equation. $4+6$

