BACHELOR OF ARCHITECTURE EXAMINATION, 2019 (1st Year, 1st Semester)

Mathematics - I

Time: Three hours Full Marks: 100

Use a separate Answer-Script for each part.

PART - I

Answer any five questions.

1. (a) Find y_n , where y = log(x+a)

(b) If
$$y = \frac{x^2 + x - 1}{x^3 + x^2 - 6x}$$
, find y_n 5+5

2. (a) If
$$u = \frac{y}{z} + \frac{z}{x} + \frac{x}{y}$$
, prove that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial y}$$

(b) Show that

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \text{ if } u = \log(x^2 + y^2)$$
 5+5

3. If $y = sin(m sin^{-1} x)$, then show that

(a)
$$(1-x^2)y^2 - xy_1 + m^2y = 0$$

(b)
$$(i-x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2 - n^2)y_n = 0.$$

Also find $y_n(0)$.

- 4. State and prove Mean Value Theorem. Give its geomerical interpretation with appropriate figure. 10
- 5. State the necessary and sufficient conditions for maxima and minima. Find the maximum and minimum values of $u = \frac{4}{x} + \frac{36}{y}$ and x + y = 2. 10
- 6. (a) If $f(h) = f(0) + hf'(0) + \frac{h^2}{2!}f''(\theta h), 0 < \theta < 1$, find θ , when h = 7 and $f(x) = \frac{1}{1+x}$
 - (b) Expand the following functions in powers of x in infinite series stating in each case the conditions under which the expansion is valid.

(i)
$$\cos x$$
 (ii) e^x . 5+5

11. Using Beta Gamma functions, evaluate the following integrals:

$$\int_0^{\pi/2} \sin x^p dx \times \int_0^{\pi/2} \sin x^{p+1} dx, \int_0^{\infty} e^{-x^4} dx \times \int_0^{\pi/2} e^{-x^4} x^2 dx$$
5+5

12. Solve the following integrals by the method of integration by partial fractions:

$$\int \frac{x^2 - x + 1}{x + 1^3} dx \, \int \frac{x^4 + x^3 + x^2 + 1}{x^3 + x - 2} dx$$
 5+5

- 13. Calculate the following integrals by using Simpons 1/3 rule by taking n=4:
 - (a) $\int_0^1 2x dx$

(b)
$$\int_{1}^{5} (x^2 + 1) dx$$

- 14. (a) Determine the surface area of the solid obtain by rotating $y = \sqrt{9 x^2}$, $-2 \le x \le 2$ about x-axis.
 - (b) Determine the surface area of the solid obtain by rotating $y = x^{1/3}$, $-1 \le x \le 1$ about y-axis. 5+5

- (b) A function $f: [-1,3] \to R$ is defined by f(x) = [x], $x \in [-1,3]$. Show that f is integrable on [-1,3] and calculate $\int_{-1}^{3} f(x) dx$.
- 10. (a) Define antiderivative of a function f on an interval I.
 - (b) A function $f: [-3,3] \rightarrow R$ is defined by

$$f(x) = \begin{cases} 2x\sin(\pi/x) + \pi\cos\pi/x, & when x \neq 0, \\ 0, & when x = 0. \end{cases}$$

Show that f is Riemann integrable on [-3,3]. Using Fundamental Theorem of Integral Calculus evaluate $\int_{-3}^{3} f(x)dx$.

(c) A function $f: [-2,2] \rightarrow R$ is defined by

$$f(x) = \begin{cases} 3x^2 \cos \pi / x^2 + 2\pi \sin \pi / x^2, & when x \neq 0, \\ 0, & when x = 0. \end{cases}$$

Show that f is Riemann integrable on [-2,2]. Using Fundamental Theorem of Integral Calculus, evaluate $\int_{-2}^{2} f(x)dx$.

7. Evaluate

(i)
$$\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$$

(ii)
$$\lim_{x \to 0} (\cos x)^{\cot^2 x}$$
 10

PART - II

Answer any *five* questions.

8. (a) A function $f:[0,1] \to R$ is defined by

$$f(x) = \begin{cases} 1, & \text{when } x \text{ is rational,} \\ 0, & \text{when } x \text{ is irrational.} \end{cases}$$

Check whether f is Riemann integrable or not. 4

- (b) A function $f:[0,1] \to R$ is defined by f(0)=0, $f(x)=1/2^{(n-1)}$, $1/2^n < x \le 1/2^{(n-1)}$, $n \in N$. Show that f is Riemann integrable on [0,1] and find the value of $\int_0^1 f(x) dx$.
- 9. (a) State and prove Fundamental Theorem of Integral Calculas. 1+5

(Turn over)