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CHAPTER 1

INTRODUCTION

It is very much known to us that human beings are subject to various alterations both
mentally and physically right from birth to adulthood. Plethora of perceptual, cognitive
and motor functions mature over the course of 2 decades following birth. To have a good
understanding of such developmental processes, merely studying behavioral changes is not
enough; simultaneous investigation of the evolution of the brain is surely going to make way
for a more comprehensive understanding. Here, it is of utmost significance to consider the
development of the brain specifically from the perspectives of “structure” and “function”
because both of them mature slowly. Neuroimaging or brain imaging is the usage
involving various methodologies to model the structure, function or pharmacology of the

nervous system.

A dendritic spine that protrudes from a neuron's dendrite is a small membranous
protrusion that usually receives input from a single axon at the synapse. Dendritic spines
act as the storage site for synaptic strength and helps in the transmission of electrical signals
to the neuron's cell body. Dendritic spines are by nature “plastic”, which means spines
change significantly in shape, number and volume in very short time courses. Spines reveal
remarkable morphological plasticity not only during the course of development but also in
the adult brain. Theoretically speaking morphological plasticity of dendritic spines is
extremely significant for learning and memory and spine morphological abnormalities relate
to neurological disorders such as mental retardation and schizophrenia. The monitoring of
dendritic spines morphological changes poses a major challenge in neuroscience studies.
The variations of spine density and/or morphology are indicators of the cellular processes
involved in neural plasticity underlying learning and memory and are symptomatic in
neuropsychiatric disorders. Quantitative spine plasticity analysis can be done when
images at different timestamps are available and it can help us to closely monitor the
morphological plasticity of spines. Visualization and analysis of dendritic spines in time
series images is the major focus of this report and state of the art technologies and

algorithms have been used for the same.
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1.1 HISTORY OF NEUROIMAGING

Neuroimaging or brain imaging involves incorporating different approaches to model
the structure of the brain, its function and pharmacology of the nervous system. It is
a brand new discipline within medicine, neuroscience and psychology M where extensive
research is going on. Neuroimaging can be classified into two categories: (1) Structural
Imaging dealing with structure of the nervous system and the diagnosis of gross (large
scale) intracranial disease (such as a tumor) and injury. (2) Functional Imaging used for
the diagnosis of metabolic diseases and injuries (or lesions) in a more sophisticated way
(such as Alzheimer's disease) and also for neurological and cognitive psychology research
and building brain-computer interfaces. Functional Imaging enables to visualize the
information processing centers in the brain to be visualized directly which causes the area
of the brain in concern to increase metabolism and “light up” during the scan. A major
contentious application of neuroimaging has been researching “thought recognition” or

mind-reading.

The first landmark in the history of neuroimaging finds its way back to the great
neuroscientist Angelo Mosso who was the inventor of the 'human circulation balance', which
was able to non-invasively measure the redistribution of blood during psychological and
intellectual activity 2. However, Mosso’s experiments and the working details of this
balance remained largely out of sight as stated by William Jones in 1980 until the recent
discovery of the original instrument as well as Mosso’s reports by Stefano Sandrone and

colleagues. Pl

Walter Dandy an American neurosurgeon in the year 1918 introduced the technique of
ventriculography. The acquisition of X-ray images involving the ventricular
system inside the brain was done by injection of filtered air directly into one or both lateral
ventricles of the brain. It was also observed by Dandy that air introduced into the
subarachnoid space via lumbar spinal puncture could enter the cerebral ventricles and also
demonstrate the cerebrospinal fluid compartments around the base of the brain and over
its surface. The method was called pneumoencephalography. In the year 1927 Egas
Moniz brought into use the concept of cerebral angiography, whereby blood vessels
(normal and abnormal) in and around the brain could be visualized with utmost precision.
In the early 1970s, computerized axial tomography (CAT or CT scanning) was introduced
by Allan McLeod Cormack and Godfrey Newbold Hounsfield and greatly detailed anatomic

images of the brain became available for diagnostic and research purposes. Cormack and
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Hounsfield won the 1979 Nobel Prize for Physiology or Medicine for their work. After the
inauguration of CAT in the early 1980s, the development of radioligands allowed single
photon emission computed tomography (SPECT) and positron emission
tomography (PET) of the brain. Very much at the same time, magnetic resonance
imaging (MRI or MR scanning) was developed by researchers including Peter
Mansfield and Paul Lauterbur, who were the Nobel Prize winners for Physiology or
Medicine in 2003.

There are several brain imaging techniques few of which are discussed as follows:

* Computed Axial Tomography (CAT) scanning typically uses a series of x-
rays of the head taken from many separate directions and is used for rapidly
visualizing brain lesions. Finally an X-ray image is produced after processing of data
using a form of tomography in which a computer controls the motion of the X-ray
source and detectors.

* Diffuse Optical Tomography (DOT) is a medical imaging modality that
incorporates the usage of infrared light to produce images of the body. The method
measures the optical absorption of haemoglobin, and relies on the absorption
spectrum of haemoglobin varying with its oxygenation status.

= Magnetic Resonance Imaging (MRI) being a medical imaging technique uses
magnetic fields and radio waves and produces great quality 2D or 3D images of brain
structures not using ionizing radiation (X-rays) or radioactive tracers.

* Event-related Optical Signal (EROS) making usage infrared light through
optical fibers to measure changes in optical properties of active areas of the cerebral
cortex. EROS being a brain-scanning technique takes advantage of the scattering
properties of the neurons themselves and thus provides a much more direct measure
of cellular activity.

» Positron Emission Tomography (PET) can measure emissions from
radioactively labeled metabolically active chemicals that have been injected into the
bloodstream. The emission data are computer-processed to produce 2D or 3D images
of the distribution of the chemicals throughout the brain.

» Confocal Laser Scanning Microscopy (CLSM) is used for enhancing optical
resolution and contrast of a micrograph by means of using a spatial pinhole to
block out-of-focus light in image formation.® Capturing multiple two-dimensional
images at different depths in a sample enables the reconstruction of three-

dimensional structures (a process known as optical sectioning) within an object.
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1.2 DENDRITIC SPINE “PLASTICITY” AND RELATION
WITH NEURODEGENERATIVE DISEASES

Dendritic spines are actin rich small protrusions that emerge from the dendrites of neurons.
Most excitatory synapses in the brain are found on spine heads. Typically, a spine consists
of a bulbous head, volume 0.001-1 pm?, at the end of a thin spine neck, diameter around
0.1 pm. A 100 pm length dendrite can contain several hundred spines. The human cerebral
cortex is thought to contain in the order of 10™ spines! Dendritic spines serve as a storage

site for synaptic strength and help transmit electrical signals to the neuron's cell body.

Dendrite

\ Spine neck
\

Spine head

Figure 1.1 Spiny dendrite of a striatal medium spiny neuron.

All spines contain a postsynaptic density, an electron-dense thickening where the
presynaptic axon contacts the spine. The postsynaptic density is made up of
neurotransmitter receptors, ion channels, scaffolding proteins and signaling molecules.
Polyribosomes are frequently present in the spines, and are hypothesized to be sites of local
protein synthesis. An actin-based cytoskeleton provides the means for structural
organization as spines mostly lack microtubules and intermediate filaments. If we probe
deeper into the development of dendritic spines in neurons (spinogenesis) we’ll see that
initially a long thin thread like form called a filopodium which are thought to be spine
precursors is built having long neck and no head. As time progresses Filopodia is replaced
by thin spines which is characterized by long head and small neck, stubby spines with no
neck or short neck and relatively mature mushroom shaped spines having long neck and

large bulbous head. Synaptic activity very much influences spine morphology and
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stabilization the most mature spines being the mushroom spines containing

neurotransmitter receptors and a post synaptic density (PSD).

If we consider the mammalian brain co-ordination of neurons takes place via exchange of
electro-chemical impulses which has many functions like cognitive perception, memory
creation and retention. Spine morphology is considered to have a significant role in the
cognitive process, such as learning through acquiring information and memory formation
i.e. long term information retention. Dendritic spines are very “plastic” which means that
there is alteration in shape, volume and number with time. Dendritic spines mainly have
an actin skeleton, they are dynamic by nature and the majority of spines change their shape
within seconds to minutes because of the dynamicity of actin remodeling. Motivation,
learning and memory is implicated by Spine plasticity. The functional interaction between
neuronal activity and different signaling pathways can produce new spines and affect spine
maturation and stabilization/pruning, the processes which are essential for memory and
learning. In general long-term memory is mediated in part by the growth of new dendritic
spines (or the enlargement of pre-existing spines) to reinforce a particular neural pathway.
Dendritic spines being plastic structures whose lifespan is influenced by input activity
[ spine dynamics may play a major role in the maintenance of memory over a lifetime.
During high stress or pathological condition spine dynamics put forward some anomalies
like increase or decrease in spine numbers, puerile structure of spine, mitigation of size,
highly variable spine density and abnormal spine formation. While conducting research on
neurological diseases and lesions further light is shed on the nature and importance of spine
turnover. After the occurrence of a stroke, an increase in structural plasticity occurs near
the trauma site and a considerable enhancement from control rates in spine turnover has
been observed Pl. Major Cognitive disorders such autism, intellectual disability, and fragile
X syndrome, may be a result from abnormalities in dendritic spines, especially the count of
spines and their maturity. The ratio of matured to immature spines is important in their
signaling, as immature spines have impaired synaptic signaling. Fragile X syndrome is
characterized by an overabundance of immature spines that have multiple filopodia in
cortical dendrites. Therefore, it is of utmost importance to have a deep understanding of
the dynamics and morphology of dendritic spines which are hampered in several

neurodegenerative diseases.
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1.3 IMAGING MODALITIES

There has been immense advancement in biomedical imaging technologies. This has allowed
visualization of multi-dimensional and multi-parameter data which has made a
revolutionary impact on biomedical researchers and diagnostic radiology. Medical
Imaging is in essence the method and process of forming visual representations of the
interior of a body for clinical analysis and medical intervention, as well as the function of
some organs or tissues. Medical imaging attempts to disclose internal structures hidden by
the skin and bones, as well as for the diagnosis and treatment of diseases. Highly improved
detectors, instrumentation and computing methods have transformed the various medical
imaging modalities to be able to create an information warehouse for greater understanding
of physiological processes and clinical management of critical diseases. Medical Imaging as
a discipline in its widest sense is a part of biological imaging and incorporates radiology
which uses the imaging technologies of X-ray radiography, computed technology (CT),
Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). The data
for our proposed method has been collected using confocal microscope so we’ll focus on
different microscopic imaging tools. Data acquired with various microscopic techniques
provide a variable magnification and depth of field which established a comprehensive
understanding of different biological function and pathological condition at cellular level.
Microscopic imaging modalities includes fluorescence microscopy, confocal microscopy,

multiphoton microscopy, atomic force microscopy and electron microscopy.

Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM)
or laser confocal scanning microscopy(LCSM), is an optical imaging technique for
increasing optical resolution and contrast of a micrograph by means of using a spatial
pinhole to block out-of-focus light in image formation. This technique is used appreciably
in the scientific and industrial communities and the crucial typical applications are in life
sciences, semiconductor inspection and materials science. In confocal microscopy, optical
or fluorescent properties of a specimen is measured by blocking all out of focus light using
a small pinhole i.e. only considering the light which is reflected from object in the focal
plane i.e. a slim optical section of 3D plane. A confocal laser scanning microscopy (CLSM)
incorporate a laser to scan over an object one pixel and one slice. CLSM is widely used in
numerous science disciplines from cell biology to genetics and developmental biology. ! Tt
is also used in Quantum optics nano-crystal imaging and spectroscopy. CSLM can be useful
to digitalize a comprehensive 3D image volume. Confocal microscopy can obtain high

resolution slice by slice of ex-vivo or in-vivo cell. Confocal microscopy is used to investigate
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structural and morphological properties of cells and differentiate between normal and odd
cells for diagnosis. Two-Photon Microscopy is a slight alteration of confocal microscopy
that greatly enhances imaging in thick living tissue, such as brain slices or in-vivo brains.
In two-photon microscopy procedure a fluorophore can be excited by effectively absorbing
two photons simultaneously and when this happens each contributes half the needed
excitation energy to interact with the fluorophore. The main advantage of this method is
that the near-simultaneous arrival of two photons is an extremely rare event, so fluorescence
excitation is restricted to a narrow plane of focus within the specimen. This provides clearer
images than traditional confocal microscopy, even in cases where relatively few fluorophores
are present, because photons are only emitted from the excited fluorophores located at the

focal plane.

Major advancements in fluorescence microscopy has been a major step towards the enhanced
study of living cells. It can be used to have a proper understanding of cell structure and
function. Multiphoton method has been developed following the tradition fluorescence
microscopy, where fluorophores such as fluorescent proteins are exited using two or more
photons. Multiphoton microscopy (MPM) is regarded as the method of choice for imaging
of living, intact biological tissues on length scales from the molecular level through the
whole organism. Additionally, multiphoton microscopy is uniquely suited to perform
experimental measurements with minimal invasion over long periods of time, thereby
providing exquisite detail of inherently dynamic biological processes having time scales
from microseconds to days or weeks. As a result, vast quantities of data are becoming
available to further enhance our understanding of complex biological interactions.
Compared to similar optical imaging techniques, MPM holds inherent advantages for
imaging living tissues by improving depth penetration and reducing photo damage. This
is a direct result of employing near infrared (NIR) femtosecond lasers to generate
observable nonlinear signals in the visible range. Stimulated Emission
Depletion (STED) microscopy is one of the techniques that make up super-resolution
microscopy. It creates super-resolution images by the selective deactivation
of fluorophores, minimizing the area of illumination at the focal point and enhancing the
achievable resolution of given system . Electron microscopy allows to reconstruct the

structure of biological objects in their native states in 3D with resolution of ~5nm.!"
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1.4 QUANTITATIVE ANALYSIS OF DENDRITIC SPINES
AND ITS SIGNIFICANCE

Quantitative analysis of changes in dendritic spine morphology has become an interesting
issue in contemporary neuroscience. Many physiological and pathological phenomena rely
on brain plasticity, including learning and memory, epileptogenesis, drug addiction and post
injury recovery. The quantitative analysis of spine morphology is therefore the essential
problem. The morphology of spines is known to reflect their structure and function.
Therefore, the morphology of spines is of relevance to many researchers who study the
plasticity processes. In this work we have focused to quantitatively analyze morphological
changes in individual spines in time series 2D images before and after chemically
induced long-term potentiation. 3D microscopy helps us to acquire images and then
processing the image is commonly used to study different biological objects at a different
scale such as cells, neuron and tissue. Let’s focus on what information gives us. It is very
much possible to reconstruct a focused 2D image which can adequately represent all the
information present in the 3D stack. To generate a 2D image from 3D stack a projection
in the z direction is our principal need because it is possible to quantify the information
retained which turns out to be maximum. Above 80 percent of the biologist community use
MIP, to reduce a 3D stack into a single 2D image. MIP retrieves the level of maximum
intensity along the z axis for each x, y position. The image of 3D stack is called the index
map while the image made of intensity values corresponding to that index map is called the
projection. MIP is widely adopted as it is the simplest method of z-projection, parameter
free, fast and straightforward to use as it is implemented in NIH Fiji/ImageJ7 and in many
other programs. Our dataset is generated by imaging different neuron from rat dissociated
hippocampal cultures using a confocal light microscope, before and after chemically induced
long-term potentiation (cLTP). Images have been captured for multiple time instants to
identify the structural and morphological changes in the chemical solution over time. There
are certain features in these time series 2D MIP images of dendritic spines analyzing which
can help us to understand the spine morphology during neurodegenerative diseases like
Alzheimer, Schizophrenia and Fragile X-syndrome (FXS) better. Different experiment
shows during highly stress or pathological condition spine dynamics unveil some anomalies
like loss or decrease in spine numbers, immature structure of spine, reduction of size, highly
variable spine density, ectopic spine formation, sometimes highly increased spine number.
Therefore, quantitative analysis of features like number of spines, total dendrite length,

spine density, individual spine length, head width, neck length, etc. can help us to closely
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monitor the morphological changes in dendritic spines during highly stress or pathological
conditions. As these features vary a lot within a short span of time spine morphology and
distribution is a critically important factor that still needs to be worked on properly as
numerous neurological disorders such as mental retardation and schizophrenia are associated
with spine morphological abnormalities. Therefore, the visualization and analysis of

dendritic spines over time is critically important tool for researches on synaptic plasticity.
1.5 SIGNIFICANCE OF TIME SERIES IMAGES

The collection of images of a particular object that are acquired over a period of time is
called time series images. Such a kind of procedure allows medical researchers the ability
to monitor several different situations which may arise during a patient’s life. For our work
we have images of different neuron at different time instants from rat dissociated
hippocampal cultures using a confocal light microscope, before and after chemically induced
long-term potentiation (cL'TP). Therefore, in these time series images it is our objective
to track the morphological changes occurring in the dendritic spines over a period of time.
This observable morphological changes in the spines is called spine plasticity which
involves changes in shape and density of dendritic spines. Neuronal activity is responsible
for the modification of spine morphology and how these modifications affect synaptic
transmission and plasticity are intriguing issues. Indeed, the induction of long-term
potentiation (LTP) or depression (LTD) is associated with the enlargement or shrinkage of
the spine, respectively. This structural plasticity is mainly controlled by actin filaments, the
principal cytoskeletal component of the spine. The figure 1.2 shows images of dendritic

spines on 3 different timestamps T0, T1 and T2.
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Fig 1.2 2D MIP images of dendritic spines at different time instants (a) MIP of cell at T0
(b) MIP of cell at T1 (c) MIP of cell at T2

1.6 SIGNIFICANCE OF IMAGE REGISTRATION

Image Registration is a defined as a process that overlays two or more images from
various imaging equipment or sensors taken at different times and angles, or from the same
scene to geometrically align the images for analysis. In medical imaging, registration enables
to combine data from multiple modalities such as CT, MR, SPECT, or PET to obtain
complete information about the patient. It can help to monitor tumor growth, to facilitate
treatment verification, to improve interventions, or to compare patient’s data to anatomical
atlases. There are many registration methods and to be able to decide which method is the

most appropriate for a given task and a dataset it is important to take into account issues
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inherent to medical imaging, related to data types, to an acquisition process as well as to
required accuracy and sensitivity to errors. In our approach Rigid Body Registration using
Mutual Information has been done because it can spatially align time series images of
different time instants. The main motive of our work is to track spine behavior in time
series images which would be impossible if the spatial location of the spines is not properly
aligned which is what we see in case of the data that we have before applying our image

registration algorithm. Image registration helps in rectifying this misalignment.
1.7 MOTIVATION

Although much research work has been done so far in the field of dendritic spine analysis
in case of 2D Maximum Intensity Projection (MIP) images but still there is a scope of
improvement in Image Binarization, Skeletonization, Plasticity Analysis, etc. But almost
no major work has been done in tracking spine behavior in 2D MIP images of dendritic
spines at different time instants. The analysis of spine “plasticity” in 2D MIP images of
different time stamps is of prime significance since spine dynamics during highly stress or
pathological condition spine show some anomalies like loss or decrease in spine numbers,
immature structure of spine, reduction of size, highly variable spine density, ectopic spine
formation, and sometimes highly increased spine number. Spine plasticity is important for
memory and learning. In the 2D MIP images taken at different timestamps there is little
bit of misalignment which can be due to two or more images being clicked from various
imaging equipment or sensors taken at different times and angles. Image Registration helps
in rectifying this misalignment. After rectifying this alignment the segmentation procedure
of dendrites and spines becomes possible in 2D MIP images of different time stamps.
Therefore, quantitative features can be extracted like spine area, spine length, etc. which

are utilized in plasticity analysis.
1.8 SCOPE OF THE WORK

The major focus of this thesis report is to provide fast two-dimensional (2D) analysis of
dendritic spine plasticity in images of different time stamps using confocal light microscopy
and two-photon microscopy images of dendritic spines of rat dissociated hippocampal
cultures. Three-dimensional (3D) microscopy is used for image acquisition since a 3D stack
contains all pieces of information needed to reconstruct a focused 2D image. Maximum
Intensity Projection (MIP) used to create a 2D image from a 3D stack is often preferred as
it retrieves the level of maximum intensity along the z axis for each x, y position. During

image processing MIP of the confocal z-stack is used to convert the 3D stack image into a
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2D image. Gaussian de-noising is performed on 2D MIP image for quality enhancement.
Image Registration helps rectifying the misalignment between two images which might be
due to the image acquisition scheme. Then segmentation of dendrite and spines has been

done and spine features are calculated which are relevant to plasticity analysis.

1.9 ORGANIZATION OF THESIS

In Chapter 1, we discussed the basic introduction of dendritic spines and its importance in
our memory generation and different pathological conditions. We have also discussed about
dendritic spine plasticity and its relevance during neurodegenerative diseases. Some of the
imaging modalities have also been discussed. A brief introduction to time varying (time
series) images has also been provided and also the role of Image Registration has been
explained.

In Chapter 2, a brief survey of different work that has been done so far to analyze the
dendritic spines shape and nature has been presented and from this how we get our

motivation of work.

In Chapter 3, a survey of different Image Registration techniques and explanation as to how
they are classified has been provided. Then 2 algorithms have been proposed one being
Skeletonization and the other one explains the Image Registration general procedure in
detail. After that the our principle objective which was to rectify the misalignment in the
images has been achieved through 2 state of the art algorithms which are Skeleton Based
Registration and Pixel Based Registration respectively. The general idea behind these

algorithms has been explained in detail and their performance has also been evaluated.

In Chapter 4, the various methodologies that have been adopted are explained. Firstly, the
preprocessing method has been discussed. The Image Registration technique and how it
helps to align the images has been explained along with the results obtained. The Dendrite
and Spine Segmentation along with the pseudo code of the algorithm and results have been
provided. Lastly how the features of individual spines like Spine Area, Spine Length, etc.

are calculated have been elucidated.

In Chapter 5, basic explanation of the process of developing the GUI for Plasticity Analysis
of Dendritic Spines using basic QT GUI module. The steps to use the GUI are also included

here in this chapter.

In Chapter 6, an overall discussion of the work related to its advantage, shortcomings,

future scopes are also discussed and concluded.
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CHAPTER 2
LITERATURE SURVEY

This particular survey is mainly focused on experimental work that has done the analysis

of the morphological consequences of hippocampal dendritic spines.

In the year 1973 it a discovery was made that brief tetanic stimulation produced a long
lasting form of synaptic plasticity, long-term potentiation (LTP) that can last for hours or
days in the mammalian hippocampus P!. Since then, many researches have been done on

LTP as a cellular model for information storage in the brain.

Hosokawa et al., %l made a statistical analysis of changes in the length of individual spines
using the confocal microscopy in conjunction with micro-drop application of Dil. They used
confocal microscopy of hippocampal slices in which individual CA1 pyramidal cells were
stained by a specially developed “Dil-microdrop technique.” Synaptic potentiation was
induced by “chemical LTP,” produced by the application of a super fusion solution
containing elevated Ca2+, reduced Mg2+, and tetraethyl ammonium. Using this
experimental approach, the authors observed that a subpopulation of (small) spines
extended, and they further reported that there was an increased range of angular
displacement of spines in the potentiated tissue. All other parameters showed no significant
changes. In particular, the appearance of completely new spines was a rare (and statistically

insignificant) event.

Michele Papa et al., " monitored development alternation in the dendritic spine in primary
culture of hippocampal neurons using Confocal Laser Scanning Microscopy (CLSM). They
observed the morphological changes of neurons over 4 weeks and increase in spine density
about 170% from 1 to 3 weeks of the culture and decrease in spine density and the number
of cell due to aging. Their studies lead to better understanding of the morphological changes

in neuron.

In 1996 a study by Michele Papa et al., "¥ shows that the dendritic spine is a dynamic
structure, highly responsive to the changes in the ambient condition. Their studies
monitored the effect of dendritic spine in regulation of rise of postsynaptic Ca2+. The

shorter spines have more impact on dendritic Ca2+-.

J. Radley et al., "3lexamined the effect of repeated restraint stress on dendritic spine number
in medial prefrontal cortex (PFC). They found that after exposure to repeated restraint

stress a significant reduction in apical dendritic spine density of the medial PFC. This effect

13| Page



was most pronounced at distances of 200lm from somata and on large diameter dendrites.
From their experiment they suggested the effect of repeated restraint stress in medial PFC

is highly selective.

In 2007 G. Kim et al., 0 proposed that a fixation with the lower percentage of
Paraformaldehyde (PFA) results in superior diffusion of lipophilic dye Dil along the
neuronal membranes with adequate preservation of structural integrity. With this method
a high quality of confocal images achieved which allowed distinctive synaptic morphology
that are implemented in the process of structural synaptic plasticity. This method seems to
be more suitable for structural analysis of spines rather than detailed measurement of
dendritic branches.

A. Alvarez et al., " reviews some of the spine detection and reconstruction methods and
conclude that dendritic spines undergo changes in shape and size and their turnover rates
decline with age.

U. Valentin Nagerl et al., 9 proposed a technique that substantially improves the
qualification of morphological parameters which play a critical role for the function and

plasticity of synaptic connections.

Jan Tgnnesen 7 used time lapse super-resolution STED imaging in combination with 2
photon glutamate uncaging, electrophysiology and simulations and FRAP measurements to
investigate the dynamic link between nanoscale anatomy and compartmentalization in live
spines of CA1l neurons in mouse brain slices. The STED images reveal structural details
and a diversity of spine shapes and sizes.

An automated serial transmission microscopy process has been proposed by Yuriy
Mishchenk et al., "8 to densely reconstruct ssTEM four volumes of neuropils from the
middle of the stratum radiatum in Rat hippocampus using automated registration and
segmentation algorithm. Their results provide a guidance for reconstructing circuits with
lower resolution methods but there is some uncertainty about the generalization beyond s.
radiatum of the hippocampal area of CA1.

Won Chan Oh et al., ™ proposed that low frequency glutamatergic activity at individual

dendritic spines leads to spine shrinkage on CA1 neurons in the hippocampus. Their
experiment shows that large spines have higher group I mGluR activity than small pieces.
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In 2014 Rafael Yuste ? viewed the dendritic spine behavior from the perspective of the
circuit function and shows how spine would endow these circuits to function as neural
networks.

Roberto Araya ! use two photon calcium imaging of neocortical pyramidal neurons of
mouse to analyze the correlation between the morphologies of spine activated under minimal
synaptic simulation and excitatory postsynaptic potential they generate. They show that
spike-timing simulation can induce synaptic potential and selectively shorten the length of

the spine neck.

W. Christopher Risher et al., ?2 build a software named RECONSTRUCT that successfully
conveyed the maturational shift in spine types during development in the mouse primary
visual cortex. They use Golgi-cox staining protocol and acquired the image and import the
z-stack into an image analysis program. There method confirmed both an increase in
protrusion density with developmental age and changes in spine shape. There algorithm
takes into account the length and width measurements of the analyzed spines. The major
drawback of their method is the time required to stain and image the Golgi-stained slides.
They have to manually sort the z-stack images to find dendritic segment for analysis.
Another significant drawback of this software is the differences in spine classification from
user to user as it is not user independent.

2016 Basu et al., »¥ proposed a semi-automated method named 2D-Span for quantitative
analysis of spine morphological changes with reduced manual intervention. This tool is
useful in a variety of applications involving large-scale annotation of dendritic spines for
quick and accurate assessment of spine plastic changes. They used confocal light microscopic
image of dendritic spines from disassociated hippocampal cultures. For analysis of spine
user need to select a dendritic segment by marking the two points and then automatically
segment the spines using the designed convolution kernels and finally mark the spines of
interest to extract relevant features like length and head width of spine with high accuracy
and minimal intervention. This method counts number of dendritic spike along with the
classification of four types of segmented dendritic spine (Stubby, Mushroom, Filopodia and
Spine-head Protrusion). This method allowed to record noticeable changes in area and
length of dendritic spines which are the two most important attributes for spine plasticity.
2dSpAn requires considerably less user involvement in comparison to the work by
Ruszczycki et al., P4, As a result, large number of spines can be annotated quickly and
effortlessly without compromising on the accuracy of the estimated spine features. This
work completely depends on the selection of the interested dendritic region by user. Then
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a global binarization is performed over the image which sometime causes to a noisy result
and improper segments of interested spines.

Dr. T. Worbs et al., # developed Imaris software for four dimensional (4D) image analysis
and automatic neuron tracing. Using Imaris for Neuroscientists users can manage and
organize full experiments including images and data analysis. Advantage of Imaris is high
performance IMS file format which guarantees smooth navigation even in very large 3D
datasets (TB range). The accuracy of the automated tracking was manually controlled, and
only tracks with durations of >60 s was included in the analysis. Although Imaris is good
for analysis overall spine analyzing but due to huge manual intervention it fails to model
the 3D morphology of individual spine.

Swanger et al., P9 also proposed an automated method for analysis of dendritic spine
morphology in 4D. They used Imaris suppress mode to find the region of interest. But user
need to assign dendrite starting point manually

Pheng Shi et al., 7 proposed a novel semi-supervised learning (SSL) approach to determine
morphological classification of dendritic spines online. In their approach dendritic spines are
detected and segmented from dendrite based on wavelet transform. Then spine features are
extracted and SSL is applied. But the overall performance of this method is dependent on
the features and segment selected by the neuro-biologist for training.

An algorithm for 3D reconstruction and identification of dendritic spine was proposed by
Janoos et al., 2. This is based on skeletonization approach. Firstly, the find the skeleton
of the whole dendritic spine and then the longest centre line is considered as dendrite and
the smaller ones are considered as spine. Although this approach robustly reconstructs
dendritic spines in 3D but the time required to get the centre lines (skeleton) from 3D

volume and complex image is very expensive.

Rodriguez et al., * proposed a 3D neuron analysis approach based on 3D reconstruction
using Ray burst diameter. The Rayburst diameter in each layer of a spine was calculated
and the head and neck of each spine was defined according to the distribution of the
diameters. This method detects and classify the spines in an efficient way but there are
certain probabilities to fail to segment correctly in case of very complex structure of spine
and the classification has been done based on the Head-Neck Ratio. But the global threshold
for the Head-Neck ratio is not adaptive so for analysis of different kind of image may
efficiency may vary.
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In 2018 Basu et al., B BY proposed a method for quantitative analysis of individual dendritic
spine in 3D. They use three-dimensional segmentation of spines using Multi Scale Opening
(MSO) BU approach to determine the 3D morphometric features of individual spines for
quantitative analysis of spine plasticity. They were using confocal light microscopy images
of dendritic spines from dissociated hippocampal cultures and brain slices. Although their
method did not calculate the spine density as it require more time but still produce a good
result.

Therefore, still there is a scope to improve the performance of this tool especially in the
context of a better user interface and some pre-processing steps.
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CHAPTER 3

SURVEY OF DIFFERENT IMAGE REGISTRATION
TECHNIQUES

Medical Imaging diagnostics undoubtedly has become a major area of research over the past
few decades and has consequently revolutionized the way in which modern medicine is
practiced. There has been a great enhancement in the design of algorithms at a very fast
pace and these algorithms are assisting medical physicians in diagnosing patients. In many
cases, it is of great significance to separate out key regions of the image to obtain data for
adequate analysis. The alignment of images spatially is the first step to obtain such
information. This process is known as image registration. Image registration is a process
which aligns two or more images of the same scene. Spatially mapping the coordinate system
of one image to the coordinate system of another image is the main idea behind image
registration. Images can be misaligned for a variety of reasons. Commonly, images are
captured under variable conditions that might the camera perspective or the scene’s
contents. Misalignment can also result from lens and sensor distortions or differences
between capture devices. Image registration techniques can be classified into two main
categories: rigid and non-rigid image registration techniques. Rigid registration takes into
consideration basically is a global transformation and the transformation will be based on
certain parameters tuning which can change the differences between two or more images.
Non-rigid registration on the other hand takes into consideration any local deformation that
might occur due to cases like tissue movement, for example. Image registration can
sometimes be a bit too computationally expensive but the general idea behind it is relatively
simple and intuitive. The algorithm can be stated as follows:

=  Suppose we are given 2 images to be registered we need to designate one of them
as the reference image and the other one should denote the mis-registered floating
image. The goal is to find appropriate transformation for the floating image until
it bears close resemblance with the reference image.

=  We need to choose a criterion that will quantify the match/mismatch between the
reference and the transformed floating image. Also a stopping criterion needs to be
chosen indicating that the images have been registered.

»  Optimize the transformation on the test image such that the stopping criterion is

met.

The choice of criterion function is the core of the registration process. Comparison methods

such as cross-correlation and mutual information are some of the more common techniques
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found in the literature *7. Since its introduction in 1995 by Viola and Wells *, mutual
information has been one of the most discussed and (usually) acclaimed registration
measures for multi-modal image registration *¥,

The field of image registration is an immensely ever expanding field. By the early stages of
1993 it has been estimated that over 120 papers existed on the registration problem, as
cited in a comprehensive survey article written by van dan Elsen et al. #? Since then the
number of papers published have grown exponentially. This technical report is focused on
presenting the user with a thorough literature review on general image registration
techniques especially how they are classified. Additionally 2 cutting edge image registration
algorithms that have been used in the method will be discussed and analyzed completely.

3.1 DIMENSIONALITY - 2D, 3D, 4Ds

It is quite evident we can classify the image registration techniques based on the number of
dimensions used. This can range from a simple 2D registration process right up to a complex
time series registration of 3D data, i.e. a 4D process. The issues regarding the dimensionality
of registration algorithms shall be grouped into those that do not deal with time series
registration and those that do. Algorithms not dealing with time series registration are the

ones.

3.1.1 REGISTRATION IN SPATIAL DIMENSIONS

From the algorithms dealing with spatial dimensions, a further classification may be made,
i.e. 2D, 3D. 3D registration is a trending area of research which is considerably complex
than 2D registration. 2D registration is also very important in the medical imaging domain.
The direct use being registering 2D images which is a relatively simpler task compared to
3D registration because of the reduced data size and also because of the reduced parameter
set which is used in the registration process. Another important application of 2D algorithms
is the process of reconstruction. This is the process of generating a 3D image from a series
of 2D slices. Before the stacking of 2D slices happen, it is important that each slice be
registered with its neighboring slices if the resulting 3D image is to maintain close
resemblance with the same anatomical region that it was originally scanned from. Another
definable area of the dimensionality criteria is in the registration of 2D to 3D images. An
example of this is the registration of 3D tomographic data to a 2D projection image such
as an X-ray. This process is often employed during surgical intervention, i.e. intra-operative
procedures. It is of paramount importance to note that any registration algorithm that is
involved in intra-operative procedures must be extremely efficient and fast in order to be
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carried out in real time during the period of intervention. However, most other applications
that involve registration can be done outside the surgical theatre allowing for less stringent
time constraints on the computation time required to complete the registration process.
Thus, it is the clinical relevance of the required registration algorithms that should set
constraints on speed issues.

3.1.2 REGISTRATION OF TIME SERIES

Another area where image registration algorithms are in application is to a set of images
acquired over time, i.e. time series registration. Such a procedure gives medical practitioners
the ability to monitor numerous different situations which may arise during a patient’s life.
Perhaps the most obvious application is in the study of the evolution of a tumor, during
which images are acquired over a period of time (days, weeks, months, and years) and are
inspected to determine factors such as the rate of growth. Other applications of time series
registration is in the monitoring of bone growth (usually in children). This process takes
quite a long time. Also, the monitoring of a patient’s healing after a surgical intervention
or some other form of medical procedure such as radiotherapy is another extremely
important application of time series registration. This usually occurs over a much shorter
interval. Other applications include the monitoring and evaluation of the effect of certain
drugs.

3.2 NATURE OF THE REGISTRATION ALGORITHM

The nature of the registration algorithm is an expression that is used to describe the method
of the registration algorithm in terms of what characteristics or features are matched
between images. This is an area in which registration algorithms are dissimilar. The main

distinction that can be made is between those that use extrinsic or intrinsic methods.

3.2.1 EXTRINSIC METHODS

The first variety of registration algorithms that were developed employed the use of extrinsic
methods. These techniques introduce alien objects into the imaging space by attaching them
in some way to the patient before imaging. These foreign objects are called fiducial markers,
are designed in such a way so that they appear visually in the resulting images acquired
after scanning. These fiducial markers should be such that they are easily distinguishable
from any other region in the image. The main motive behind using these extrinsic markers

is that these easily distinguishable features may be then used in the registration process.
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Perhaps the most well-known form of fiducial marker is the stereotactic frame. This is a
device which is screwed into the patient’s skull before imaging and until recently,
registration methods employing the use of a stereotactic frame were deemed as the ‘gold
standard’. 33l A stereotactic frame is also heavily used in neurosurgery for guidance purposes
and also in other stereotactic procedures — a blind surgical procedure whereby the target is
approached from a small twist-drill hole in the patient’s skull B4. There are also other
invasive markers that can be used including screw mounted markers.

As extrinsic methods have been designed with the registration process in mind, they are
quite accurate and also remarkably fast. This is due to the fact that it is known when the
images are registered as the corresponding fiducial markers will be appropriately aligned.
This is due to the fact that it is known when the images are registered as the corresponding
fiducial markers will be appropriately aligned. This eliminates the need for any elaborate
optimization algorithms that generally slow down the optimization procedure dramatically.
Also, extrinsic methods are often related to only rigid transformations since, by definition,
extrinsic methods cannot include any patient related information. However, the
disadvantages of extrinsic methods includes their perspective nature, i.e. steps must be made
prior to the imaging process, and their invasive nature with respect to patient comfort.

3.2.2 INTRINSIC METHODS

Intrinsic methods offer an enormous area of exploration for the solution of the registration
problem. These methods are based solely on the information which is contained in the
patient’s scan and does not rely on the introduction of any artificial objects into the imaging
process. Intrinsic methods range from simple points that correspond to an anatomical
landmark to complex 3D structures that are used in the matching process. More specifically,
intrinsic methods are subcategorized into the following:

» Anatomical Landmarks: The first form of intrinsic based registration used
anatomical landmarks as the matching feature between images. Anatomical
landmarks are points within the images that can be identified by a user and which
correspond to some distinguishable point within the morphology of the anatomical
image. Technically the identification of anatomical landmarks is a manual
segmentation process. However, the segmentation based methods are reserved to
those that use much more complicated means to segment higher order structures
and/or processes that are solely implemented by computational means.
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= Segmentation Based: Segmentation based methods offer an enormous and
comprehensive range of possibilities for solving the registration problem. They are
labelled with this name as a segmentation or other feature extraction procedure must
be executed in order to obtain required features for matching. This segmentation can
be a user guided or automatic computational procedure. The resulting features
utilized include geometrical points, curves and surfaces. Geometrical points like
anatomical landmarks are point features obtained from an image. These are the lower
order segmentation methods available and are usually extracted in automatic
fashion. These type of features are generally referred to as geometrical landmarks as
they can be considered stable points within the image, i.e. landmarks, which can be
reliably used in the matching process. Although these type of points can be
considered analogous to anatomical landmarks but they are different considering the
fact that computational processes must be undertaken in order to extract points.
These points are usually generated using some means of differential geometry and,
like anatomical landmarks are generally only used for rigid registration processes.

» Intensity Based: Intensity based registration methods also referred to as voxel
property based methods, are significantly different from segmentation based
registration methods. These methods operate directly on the intensity (or grey level)
values within the image and thus do not need to utilize complex segmentation
procedures or other feature extraction methods in order to obtain features required
for matching. These methods are generally the most flexible and robust of all
registration methods as they make no assumptions on the underlying information
contained within an image. There are also numerous ways in which the image data
may be utilized in the registration process . However they can be quite
computationally expensive as they operate on the full image content rather than a
respective structure such as a surface. The first form of intensity based methods were
known as principal axes or moment base methods. These methods operate by first
reducing the entire image data into a set of vectors. This is accomplished by the
extraction of the zeroth and first order moments (or sometimes higher) from within
the image. The registration process then lies in a transformation that will match the
image’s centers of gravities and overlay their respective principal directions. Another
significant group of intensity methods are those that are based on correlation. These
methods were introduced to help overcome the problem of the differing levels of
intensity between the images. This was accomplished by assuming that there existed
some linear correlation between the intensity values of two images. Perhaps the most
promising intensity-based approach for improvement of multi-modal registration
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techniques is mutual information B¢, This measure is based on the entropy of image
intensities and derives its origins from information theory. It can be used to compute
an optimal registration by adjusting the relative position and orientation of the
images until the mutual information between the two is maximized. This technique
provides a more flexible and robust approach compared to most other intensity-
based techniques and is rapidly finding itself being used in more and more clinical
applications.

3.3 NATURE & DOMAIN OF TRANSFORMATION

The criteria of the classification deals with the nature and domain of the transformation
that is employed by certain registration algorithms.

3.3.1 NATURE OF THE TRANSFORMATION

Registration techniques are often grouped into two very general categories namely rigid and
non-rigid registration. This is known as the nature of the transformation. This classification
is however not adequate to sufficiently describe the differences which may exist between
various registration algorithms. A more specific approach is to classify registration
algorithms into the following categories.

» Rigid

= Affine

* Projective

» Curved

A rigid transformation is the most fundamental of all registration techniques. Such a
transformation involves only rotation and translation in order to bring the images into
alignment. An affine transformation incorporates a shearing into the rigid registration
process. This effectively maps parallel lines onto parallel lines. A scaling factor is also often
incorporated into an affine transformation. A projective transformation is one in which any
straight line is mapped onto another straight line. These lines however, may not be
necessarily parallel. The final transformation is a curved transformation. This is one way in
which any straight line is mapped onto a curve. A curve transformation is also often referred

to as an elastic transformation.

As you descend the transformations listed above, the mathematical and thus the
computational complexity of the transformation increases dramatically. This concept can
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be seen in the implementation of certain registration algorithms in clinical applications.
Often registration algorithms are employed in real-time surgical interventions for instance
to register intra-operative images to pre-operative images acquired earlier. However, it is
often rare (yet becoming prevalent), to find an elastic based registration that is involved in
a real-time application.

3.3.2 DOMAIN OF THE TRANSFORMATION

The domain of the transformation deals with the concepts of local or global transformations.
Before explaining this any further the notion of a transformation must be first understood.
A transformation can be defined as a mapping of points in one image to a new set of points
in other image. However, this mapping can be applied to the image locally or globally. A
global transformation is the case when the entire image is mapped in the same way, i.e. a
single equation can be given which maps the entire image. A local transformation is the
case when the image is mapped in a different way depending on the spatial location. Thus,
local transformations are much more complex procedure and are much harder to express

concisely.
3.3.3 RELATED ISSUES OF TRANSFORMATION

Global rigid transformations are by far the most utilized registration techniques seen
throughout the literature and in clinical applications. This is due to the concept of rigid
body constraint that can be successfully applied to many situations in the registration field.
The rigid body constraint is a simple assumption made regarding the object being registered,
which assumes that the object is a rigid body i.e. nothing internal may move. This
assumption is valid for a large number of registrations involving the head.

Most multimodal registrations, for example, assume the rigid-body constraint. Intra-subject
registration also generally makes this assumption. Although the brain may move internally
between successive acquisitions of the same patient, this assumption is still usually valid as
a good approximation. However, for inter-subject registration, registration with an atlas,
and registration with other parts of the body (for example the abdomen), the rigid-body
constraint is no longer adequate.
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3.4 INTERACTION

This criteria of the classification deals with the amount of interaction that is required by
the user of the registration algorithm. Within this criteria, three subcategories can be
defined. These are listed below.

* Interactive

* Semi-Automatic

* Automatic

Traditional manual methods whereby a trained physician visually found a spatial mapping
between two images can be classified into the interactive category. With any interactive
methods the user generally does all the work manually with some help from a software
based platform that displays the current state of registration to the user. Interactive
methods may also often supply an initial guess for the registration required. It is then left
to the discretion of the user whether or not this guess is used. Fully interactive systems are
seldom used in the literature. This is due to the inherent subjectivity which is introduced
into the registration process by the interaction with the humans. Also, these methods rely
heavily on adequate (and often very expensive) visualization software to display and provide
controls to manually manipulate images.

Semi-automatic methods are quite popular especially in clinical applications as they will
allow some control inputs from the user. This is often a good idea in applications where the
result of the registration process can have profound effects on the end result. Thus, the
attending physician generally desires to oversee the registration process in order to make

sure it has aligned and converged properly 7.

Fully automatic methods are the most objective methods currently available as they require
no control inputs or initializations to be entered by the user. In a fully automatic system,
the user generally only supplies the images that need to be registered and maybe some other
parameters which define certain characteristics such as what imaging modalities the input
images were acquired from. It is these type of registration approaches that are currently
experiencing a rapid serge in research. As briefly mentioned above most of the current
research is directed towards the development of fully automated registration systems.
However, not all clinical systems necessarily benefit from this approach. There generally
exists form of trade-off relationship between the user interaction, the resulting speed of the
registration process and other design criteria such as the robustness.
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3.5 OPTIMIZATION PROCEDURES

There are certain optimization procedures that are employed by registration algorithms in

order to compute the required transformation procedures. The parameters that are obtained

are then used to drive the registration process. A global rigid transformation only requires

six parameters to describe the transformation. However, an elastic or fluid registration will

typically have hundreds, thousands or even millions of parameters. The two main

distinctions that can be made between registration optimization procedures are listed below.
= Direct methods

= Approximation or search-oriented methods

A direct method obtains the transformation parameters directly from the available
information. However, approximation methods search for the transformation parameters

based on some form of optimization of a function defined in the parameter space.

The computation method for the direct approach solely depends on the nature of the
registration algorithm. Generally, global transformations that compute the required
parameters directly only involve small amounts of information, i.e. only a small set of
features are used in the process such as sets of corresponding points. As the number of
points increases so too does the accuracy of the registration. Local transformations can often
be computed directly from the local information available in the image and does not require
a set of features to be pre-defined. Optimization procedures that search for the
transformation parameters generally accomplish this by formulating the registration model
in a mathematical equation that incorporates the transformation parameters. The
transformation parameters are then computed in order to optimize the defined function in
some sense. An example might be to find the transformation parameters that minimize a
certain distance metric which is computed between the two images. It may also involve the
maximization of a similarity criteria such as the correlation or mutual information between
the images. If the optimization procedure employed in the registration is well behaved, i.e.
optimization function forms a quasi-convex shape, then any of the numerous standard and
well researched optimization techniques can be employed. Some examples of optimization
methods are listed below.

= Powell’s method

* The renowned Newton-Raphson iteration method

* The downhill simplex method

» Gradient Descent methods

=  Genetic methods
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If the optimization function used by the registration process is not well behaved, then the
only technique that allows transformation to be computed is an exhaustive search of the
entire parameter space. Such a method involves extreme amount of computational time due
to the lengthy process of applying each value for each registration parameter in essentially

a trial and error basis. Thus, exhaustive searches are not very practical methods.

3.6 SKELETONIZATION

Skeletonization is a process in which the foreground regions from a binary image are reduced
to a skeletal remnant. It largely preserves the extent and connectivity of the original region
of interest while removing most of the foreground pixels. Skeletons are effective shape
abstractions used in segmentation, shape matching, reconstruction, virtual navigation, etc 3. The
skeletonization algorithm used requires a binary image as input and output is the thinned

skeleton which is also a binary image. The figure 3.1(a) shows the image input image of a

horse and figure 3.1(b) shows its skeleton.

Fig 3.1 Image representing shape of a horse (a) Original Image (b) Skeletal Shape of
the horse
Ideally the skeleton should be re-constructible which implies that it should be possible to
construct the original image from the skeleton. A skeleton should intuitively maintain the
topological properties, i.e. to retain the topology of the original object. The skeleton should
also preserve the geometrical properties, i.e. the skeleton should be constrained to be In the
middle of the object and invariant under translation, rotation and scaling. To see the
working mechanism, imagine that the foreground regions in the input binary image are

made of some uniform slow-burning material. Light fires simultaneously at all points along

27| Page



the boundary of this region and watch the fire move into the interior. At points where the
fire traveling from two different boundaries meets itself, the fire will extinguish itself and
the points at which this happens form the so called " quench line'. This line is the skeleton.
Analytically Skeletonization ®% can be defined as a grassfire transform where we think of
the object to be a field of dry grass that is simultaneously lit at all boundary points. The
fire burns the grass-field at a uniform speed and the set of quench points, where two
independent fire fronts actually collide, forms the skeleton of the object. The centers of

maximal balls (CMB) are used to define quench B9 1% points which form the skeleton. The

figure 3.2(a) shows the input image of a dendritic spine and figure 3.2(b) shows its skeleton.

Fig 3.2 Image of dendritic spine after chemically induced long term potentiation (cL'TP)

(a) Original Image (b) Skeleton of the image

Skeletonization has found its applications in many image processing and computer vision
applications  including object representation, retrieval, manipulation, matching,
registration, tracking, recognition, compression, etc. The compactness feature of skeletons
facilitates efficient assessment of local structural metrics including scale, orientation,
topology, geometry, etc. This specific feature of skeletons has been explored for
quantitative characterization object morphology in several imaging applications.
Skeletonization has been used in various medical imaging areas including pulmonary,

abdominal, retinal, bone imaging, cardiac, mammographic, etc.

In our method we apply Distance Transform (DT) based skeletonization followed by the
concept of center of maximal balls, collision impact (CI), simple point, etc. The major steps
used in our skeletonization method is as follows:
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Binarization

Distance Transform

Center of Maximal
Balls (CMB)

Collision Impact (Cl)

Computation

Filter non-significant
CMB

Simple Point
Detection

Fig 3.3 The major steps in to obtain the skeleton

The first step in Skeletonization is to binarize the input grayscale image. Binarization
converts the grayscale image which consists of values in the range (0-255) to a binary image
which can have only 2 possible values (0 or 1). Typically, the two colors used for a binary
image are black and white. Binary images are also called bi-level or two-level. This means
that each pixel is stored as a single bit—i.e., a 0 or 1. Binary images are used for
simplification of the image and are used to represent basic shapes and line drawings. In case
of medical images the binarized image obtained is not of great quality due to poor image
acquisition schemes. Varying regions of intensity are seen in images of objects like arteries,
veins, etc. which makes obtaining a high quality binary image very difficult. So, it becomes
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a very important step to choose a binarization method that inhibits non-feature pixels from
becoming a part of the subject for processing and potential cause of errors for post-
processing steps. The advantage of obtaining a binary image is that it reduces the
complexity of the data and simplifies the process of recognition and classification.

The most common way to convert a gray-level image into a binary image into a binary
image is to select a single threshold value (T). Then all the gray values below T will be
classified as black (0) i.e. background and those above T will be white (1) i.e. objects.

g(x,y)=0 iff(x,y)< T

=1 iff(x,y)>=T

(x, y) are the co-ordinates of the pixel under consideration. ‘T’ represents the threshold
value, f(x, y) gives the intensity of the input gray-level image at point (x, y) and g(x, y)
represents the pixel value at (x, y) after applying threshold ‘T".

In this work Otsu’s method of binarization has been used. In global thresholding generally
we use an arbitrary chosen value as a threshold. In contrast Otsu’s method avoids having
to choose a value and determines it automatically. Consider an image with only two distinct
intensity values (bimodal image) where the histogram would consist of only 2 peaks. A good
threshold will be in the middle of those two values. Similarly, Otsu’s method determines an
optimal global threshold value from the image histogram. In the proposed method the image
is first filtered with a 5x5 gaussian kernel to remove the noise then Otsu’s thresholding is
applied directly. The figure 3.4 shows histogram of a bimodal image. For that image, we
can approximately take a value in the middle of those peaks as threshold value.
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Fig 3.4 By Lucas(CA) - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=67144384
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Next we need to calculate distance transform (DT) of the image which is an operation that
converts a binary picture, consisting of feature and non-feature elements, to a picture where
each object pixel gets a value that is equal to the distance between itself and the nearest
point in the background i.e. Distance into a shape. Each background pixel gets a value that
is equal to the distance between itself and the nearest point in an object i.e. Distance from
a shape. Therefore, in the resultant image each element has a value that approximates the
distance to the nearest feature element. The figure 3.5(a) shows the concept of distance into

a shape and figure 3.5(b) distance from a shape.

Distance into a shape

Distance from a shape
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Each object pixel gets a value that is equal to the
distance between itself and the nearest point in the
background

Each background pixel gets a value that is equal to
the distance between itself and the nearest point in an
object

Fig 3.5 Distance Transform in a fish-shaped figure (a) Distance into a shape (b) Distance

from a shape
There are different DT methods proposed so far. The most popular one is the city

block /chessboard distance family, here called n-neighbor distance “U. City block distance
d, can be mathematically expressed as,

ds ((x1, Y1), (X2, ¥2)) = [x1—%2| + [y1—Y2|

Chess board distance ds can be mathematically expressed as,
ds ((x1, y1), (x2, y2)) = max (|xi—xf, [y1—y-|)

To compute the chess board distance two masks shown in figure 3.6(a) and 3.6(b) are passed
over the image one at once. The forward pass is started from left to right and from top to
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bottom and the backward pass is stared from right to left and from bottom to top. The new
value of the central pixel is the minimum of the sum of the local pixel values and distance
dl or d2. For figure 3.6(c) values of d1 and d2 are assumed to be 1 and 2 respectively.
Distance is propagated from a single centre point numbered as 0. If we connect the
equidistant points, it will take the diamond like shape (figure 3.6(e)) that is why city block
is also called diamond distance.

[a) (b]
6 |5 4 345 6
514|323 |4]5
4 | 3|2 |l 2] 3|4
IREK c 3BE
§ 1312 2|54
.5.4.3 2|3‘¢1_5_
6 |5 4 34156

(c] (d) (e)

Fig 3.6 Mask & computation related to chessboard distance (a) Forward mask (b)
Backward mask (c¢) Original image (d) Image after forward pass (e) Image after backward
pass

DT is widely applied in many applications including centre of maximal balls, Voronoi
neighborhood, DT-based interpolation, multi-scale opening of conjoined structures and
quantitative assessment of object morphology. In our method we apply DT as a pre-
processing step to skeletonization. Applications are digital image processing (e.g., blurring
effects, skeletonizing), motion planning in robotics, and even path finding. The distance

transform can also be used for font rendering using vectors instead of sampling from texture.
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Fig 3.7 Mathematically generated phantom of bifurcation (a) Original image (b) Image

after applying Distance Transform (DT)

The next step is centre of maximum ball (CMB) calculation. Centre of maximum ball (in
3D) or disk (in 2D) is maximal if it fills the object inside which it is placed fully and there
is no other point that can be placed inside the object that can cover it at that point. The
skeleton of an object is defined as the loci of the centres of maximal included disks.
Idea:

= To place all possible maximal disks inside the object and finding their centres.

=  The Skeleton of the object is a set of all such centres of possible maximal disks.

Let B is the structuring element that represents the maximal disks.
e Then 0B represents the origin of the maximal disk.

e Then B, 2B, 3B...nB represents all possible maximal disk.

— Let skel(S) be the set of all centres of the maximal disks.

Skel(S)= (A @ nB)— [(A @ nB) o B]

— So, the Skeleton(S) of the object is
(S) = USkel(S)
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Where, A © nB represents successive erosions of the image A by the B and

A HB:HEEBA!?-

The figure 3.7 shows the concept of centre of maximum ball.

object
boundary

center,

skeleton

included balls

maximal

non-included balls included balls

Fig 3.8 Centre of Maximum Ball/Disk

The next step is collision impact calculation. The quench points, defined as the locations of
colliding fire-fronts, have been well explored in the context of skeletonization in the form of
CMBs. In grassfire transformation two colliding fire-fronts stops at quench points but their
collision impact may vary depending on the angle between them. The natural speed of fire-
front propagation is interrupted by the colliding impulse of fire-front coming
from the opposite direction. Here, collision impact for pixel P for every Q€ Nx
(P) is defined as
dt —dt(P
CIP) = 1~ oty ot

Now, we need to filter the non-significant CMB points while retaining the
significant one. Thus, we delete the unwanted branches of skeleton.
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Next we need to delete the simple points. Simple points of an object are those points whose
deletion does not affect the topological and geometrical properties of the object. A point P
is a 2D simple points if it satisfies the following conditions:

= P has 4-background neighbor

= P has 8 object neighbor

= The set of 4 background-neighbor of P are connected.

= The set of 8 background-neighbor of P are connected.

The figure 3.8 shows the simple points in blue and critical points in green.

(a) (b)
Fig 3.9 Simple Points

3.7 IMAGE REGISTRATION TECHNIQUE

Registration is a general term that is used to describe the process of developing a spatial
mapping between sets of data. Such a procedure can find applications in many diverse fields
within the research community including engineering, science, medicine, computer vision,
robotics and image processing. Within these major fields, registration has specific
applications in areas such as stereo vision, remote sensing, image stabilization, reverse
engineering and automated manufacturing, satellite navigation, photogrammetry,
video/image compression and coding, pattern recognition, tracking, video microscopy and
of course medical imaging. More specifically the objective of registration is to match two or
more images maybe that are acquired at a different time from different sensors or from
different viewpoints “2. However, due to the immense complexity of the human anatomy,
medical image registration turned out to be a much more difficult process than originally
expected. Registration plays a crucial role in the medical imaging field where continuous
advances in imaging modalities including MRI, CTI and PET allow the generation of 3D
images that explicitly outline detailed in vivo information of not only human anatomy but
also human function. A common task within the medical imaging field is the fusion of
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complimentary and synergistic information provided by the various imaging modalities.
This process is known as multi-modal registration. Another common task is the registration
of images of the same patient taken at different times and/or in different positions. This
process is referred to as mono-modal registration and can be used to track any pathological
evolution. Other applications include inter-patient registration and patient atlas matching.
The first two applications are generally solved with rigid registrations, i.e. only rotations
and translations are used in the transformation. However, last two examples are generally
performed with a non-rigid registration. This allows one image to be deformed to match
another in order to account for the non-linear local anatomic variations that exist between

the images.

3.7.1 MUTUAL INFORMATION SIGNIFICANCE IN RIGID
BODY REGISTRATION

Mutual information is a technique that has been successfully used as a comparison function
for registering images. It is a measure of how much information one image contains about
another. In this work, mutual information has been used as an objective function for finding
the best transformation that will align the misregistered image with the original image. This
work is restricted to rigid affine transforms only (e.g. rotation, translation, scaling and
skew). The parameters yielding the maximum mutual information will be the parameters
that best register the misregistered image. Since its introduction in the year 1995 by Viola
and Wells #3 mutual information has been one of the most discussed and (usually) acclaimed
registration measures for multi-modal image registration 4. Mutual information is a
statistical measure that assesses the strength of dependence between two stochastic
variables. Even though mutual information has been shown to outperform other comparison
methods used for registration, it is not a panacea '3, The process can often be improved by
incorporating spatial information when performing the alignment M5, In this work main
focus is to describe how mutual information can be used to perform rigid-body registration.
Mutual information (MI) is a statistical measure that finds its roots in information theory.
MI is a measure of how much information one random variable contains about another. The
MI of two random variables A and B can be defined as:

pa,pla.b)
pala) - pp(b) (3.1)

I{A.B) =) papla.b)log

a,b

pas (a, b) is the joint probability mass function (pmf) of the random variables A and B,
and pa(a) and ps(b) are the marginal probability mass functions of A and B respectively.
In working with images, the functional form of the pmf is not readily accessible. The
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normalized histograms of the intensity values for each image serves as a good approximation
of the pmf. The MI can also be written in terms of the marginal and joint entropy of the
random variables A and B as follows:

IHA.B)=H(A)+ HB)—- H(A.B) (3.2)

H (A) and H (B) are the entropies of A and B respectively and H (A, B) is the joint entropy
between the two random variables. They are defined as follows:

H(A) = —Zjﬁ’_l'{ﬂ-]]‘-}f:'if*’-l'{“'] (3.3)

H(A.B)= =) pagla.b)logpapla.b)

a,b

(3.4)

One interpretation of entropy is as a measure of uncertainty of a random variable. A
distribution with only a few large probabilities has a low entropy value; the maximum
entropy value over a finite interval is achieved by a uniform distribution over that interval.
The entropy of an image indicates how difficult it is to predict the gray value of an arbitrary
point in the image. MI is bounded by cases of either complete dependence or complete
independence of A and B, yielding values of I = H and I = 0 respectively where H is the
entropy of A or B.

The strength of the mutual information similarity measure lies in the fact that no
assumptions are made regarding the nature of the relationship between the image intensities
in both modalities, except that such a relationship exists. For image registration, the
assumption is that maximization of the MI is equivalent to correctly registering the images.
It is clear in Eq. 3.2 that if the joint entropy of A and B are not affected by the
transformation parameters, maximizing the MI is equivalent to minimizing the joint
entropy. The joint entropy is minimized when the joint pmf of A and B contain few sharp
peaks. This occurs when the images are correctly aligned. When the images are
misregistered, however, new combinations of intensity values from A and B will cause
dispersion in the distribution. This dispersion leads to a higher joint entropy value, which
in turn decreases the MI.

3.7.2 RIGID BODY IMAGE REGISTRATION

As the name suggests in rigid body transformation the object remains ‘rigid’ we don’t alter
the geometry of the object, just its position needs to be changed.
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A. PERFORMING IMAGE REGISTRATION

The process of image registration refers to the procedure of geometrically aligning the
coordinate system of two or more images. Given two images, one image is selected as the
reference image R and the other is selected to be the floating F. The floating image is
transformed by some linear transformation until it is spatially aligned with the reference
image R. Let Td be a linear transformation with the vector parameter @. The number of
elements in @ determines the degree of freedom. For this 2D application an affine
transformation with six degrees of freedom was adequate to perform the registration. The

transformation is given as:

F' = Tx(F)
OR
;I-'I ap] a1z iy £
y' |l =] an ax i Y
1 0 0 1 1

where (x, y) are the co-ordinates in the floating image F and (x’, y’) are the co-ordinates
int the transformed floating image F’. It is obvious that the selection of T@ is not restricted
to the transformation matrix. Other transformation matrices can be used based on the

assumptions made regarding the nature of the mis-registration.

An appropriate criterion function which is able to determine the degree of mismatch
between the reference image R and the floating image F’ must be chosen. MI was chosen as
an adequate function based on its previous success in the literature as being a good measure
for multi-modal applications. MI is a popular measure of comparison because of its ability
to measure the similarity between the two images while somewhat ignoring the mismatch
of intensities across modalities. For a given reference image R, floating image F’ and
transformation Ta, the MI is calculated by:

pr (7, [')
I(R F!*- Tﬁ'} — PR, (T'- Jrr} 1053; '
- ;f:f ' - “pr(r) -pe(f) (3.5)

Where the transformation that correctly registers the images is given by

15,,, = arg max I(R.F'.T:)

(3.8)
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After T@& it is then applied to the floating image F to produce F’,. The reference image
R and registered floating image F’.; are compared to test how well the registration process
performed.

B. CALCULATING MI USING PIXEL VALUES

The first step in the registration process was to make an initial guess for the registration
transformation. This helped in avoiding local minimums and speed up the convergence of
the optimization. Image moments were used for initial transformation. The initial value of
the translation in x and y directions was estimated by comparing the center of gravity
(COG) of the two images. The initial scale in both the x and y directions were set to 1.
Given the initial guess

¥, = [ apl, a1, aa1 a99 J".J;d f.._ydj|

an optimization routine was used to find the maximum value of I (or minimum value of —
I) for the transformation T@ as shown in Eq. (3.6). The MI given in Eq. (3.5) is calculated
by generating a normalized joint histogram based on the intensities of both the reference
image R and the transformed floating image F’. Local minima in the criterion function were
eliminated by blurring the joint pmf as well as blurring the images before calculating. This
prevented irregular jumps in the MI function. It was also important to find a function that
would make the MI smooth at the minimum. The following function was used to ensure
that the global minimum of the optimization function had no irregularities.

3.8 REGISTRATION METHODS USED

In this technical report focus is on describing two image registration techniques that have
been used for aligning the images. The two methods used are:

= Skeleton Based Registration

» Pixel Based Registration
In the skeleton based method initially we have time series images 2D MIP images of
dendritic spines. The first step is to obtain the skeleton of these images which is a process
of reducing foreground regions in a binary image to obtain a skeletal remnant that preserves
the connectivity of the original image while throwing away most of the foreground
pixels/voxels. The next step is to register the skeleton of these time series images using
mutual information as the criterion function. Basically this technique involves affine
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transformation with six transformation parameters and our motive is to obtain values for
the parameters which maximizes the mutual information, i.e. optimal values for those
parameters which make the registration quality better. Now, since we have obtained the
optimal transformation parameters which have successfully registered the skeleton we can
utilize these parameters to appropriately register the input images as well by transforming
them. The advantage of using this skeleton based registration is that it takes relatively
lesser amount of time to register the skeleton since it is single-pixel width.

The pixel based registration is very much similar to the skeleton based registration the
biggest difference being that computing the skeleton is not needed in this approach. This
approach takes a little bit more computation time as more number of pixels are needed to
be processed. The quality of registration obtained is very much higher and therefore

segmentation of dendritic spines becomes much easier in time series images.

3.8.1 SKELETON BASED REGISTRATION

The first approach that has been adopted to register the time series images of dendritic
spines is the skeleton based registration approach. As we have discussed earlier the skeleton
is a stick like figure which resembles the original shape of the object and also the skeleton
being of single pixel width has relatively much lesser number of pixels than the original
image. Therefore, the registration of time series images being in general a computationally
expensive procedure becomes a lot faster since only the skeleton needs to be registered. The
first step in the skeleton based registration approach is to obtain the skeleton. The data
that has been used contains time series images of the same dendritic segment at 3 different
instants T0, T1 and T2. Using the GUI that we have developed we can click on the 1*
image at TO time instant so it will generate a red seed point at that particular co-ordinate
in the image so the red point also falls on the same spot of the other images at instants T1
and T2 as well. Now, since the images being unregistered the red spot on T0 will be marked
at a different place when compared to T1 and the spot on T1 will be at a different point
than T2. Basically there is a sort of misalignment. This can result from lens and sensor
distortions or differences between capture devices. The figure 3.10 shows this concept of
misalignment with the help of red seed points at T0O, T1 and T2 instant.
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Fig 3.10 Red seed point at some spot in T0 where it appears in images at instants T1, T2
(a) seed point location in TO (b) seed point location in T1 (c) seed point location in T2

Now using the Skeletonization algorithm as discussed in section 3.6 we obtain the skeleton

of each and every image for time instant TO, T1 and T2. Then we try to registering the
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(i+1) ™ with the i" transformed image of the skeleton. In this process we obtain the optimal
transformation parameters and these parameters are used to transform the original grayscale

images as shown in figure 1.2 of chapter 1. The skeleton of the images are shown in figure

3.11 and the registered images are shown in figure 3.12.

Fig 3.11 Skeleton of MIP images for time series images along with their detected junction
points marked in red (a) skeleton for MIP image at TO instant (b) skeleton for MIP image
at T1 instant (c) skeleton for MIP image at T2 instant

As we can see that quality of skeletonization obtained is not very proper since the quality
of binarization is an issue of medical images since the very beginning. Nevertheless this
approach is very fast and the quality of registration obtained as shown in figure 3.11 is quite
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good. The results will be further better in the pixel based registration approach in section
3.8.2

Fig 3.12 Red seed point at some spot in T0 on mouse click appearing at instants T1, T2
after alignment (Skeleton Registration) (a) seed point location in TO (b) seed point
location in T1 (¢) seed point location in T2
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3.8.2 PIXEL BASED REGISTRATION

Pixel Based Registration is the second approach that has been used to register the 2D
time series MIP images of dendritic spines. As mentioned earlier the images of different
time instants have certain amount of misalignment between them. Consider we have N
images of different time stamps. Then there is misalignment between each i-th and (i +
1)-th image. We need to correct this misalignment which may be due to lens and sensor
distortions or differences between capture devices. Here, in this approach the i-th image
is the fized image and the (i + 1)-th image is the moving image. So, we will transform the
moving image till it bears close resemblance with the moving image. The idea is to find a
spatial mapping i.e. elements in moving image into meaningful correspondence with
elements in a fized image. Registration is necessary in order to be able to compare or

integrate the data obtained from these different measurements.

The overhead of Skeletonization is not there and the alignment quality is much better. So,
this method skips the requirement of binarization which is ultimately used as one of the
initial steps in Skeletonization. Image Binarization has been an issue for medical images
since medical images consist of objects which are microscopic and there are varying regions
of intensity in these images. Also due to the conversion of 3D stack to obtain 2D images
using Maximum Intensity Projection (MIP) there is a certain amount of loss of information
which is not negligible. In this method of registration comparison of intensity patterns via
Mutual Information (MI) is done. This method is a bit more computationally expensive
as more number of pixels are needed to be processed as compared to the skeleton based
approach. Since the skeleton being of single pixel width consists of fewer number of pixels
so in the actual transformation lesser amount of pixels need alignment. But in the pixel
based approach relatively much larger number of pixels need processing. The quality of
registration obtained is very much higher. When we later perform the segmentation of
dendritic spines becomes possible because now the images have been aligned. It would be
impossible to perform segmentation in images of different time stamps if the images were
not properly aligned. After the alignment the segmentation quality in the images of different
time stamps becomes much superior. The figure 3.13 shows the registration quality as a

result of pixel based registration.
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Fig 3.13 Red seed point at some spot in T0 on mouse click appearing at instants T1, T2
after alignment (Pixel Based Registration) (a) seed point location in T0 (b) seed point
location in T1 (¢) seed point location in T2
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CHAPTER 4

METHODOLOGY

Our proposed method is designed to analyze individual dendritic spines automatically in
time series images. This method first performs image registration of time series images which
helps to rectify the misalignment during image acquisition since images are captured under
variable conditions that might the camera perspective or the scene’s contents. Therefore,
after registration spine tracking becomes easier in the time series images since the images
have been aligned spatially. The next objective is to segment the dendritic fragment which
has been done using the theoretical foundation of digital topology like Fuzzy Distance
Transform (FDT), Center of Maximum Balls (CMB), etc. Spine segmentation has been
done by developing an adaptive version of the flood-fill algorithm. Lastly the skeleton of
these time series images has been utilized to calculate individual spine features like spine
area, head width, neck length, etc. which can help us to closely monitor morphological
changes occurring in dendritic spines (i.e. spine plasticity). Spine classification and

numbering is also done utilizing the skeleton and the individual spine features.

. Image
Load Images Pre-processing Regist . i
> egistration

Spine Plasticity Spine Dendrite
Analysis Segmentation Segmentation

Save Analysis
Details

Fig 4.1 Flow chart for quantitative analysis of spine plasticity in 2D images of dendritic

spines at different time stamps
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4.1 PRE-PROCESSING

The purpose of this is to obtain a noise free 2D MIP image of dendritic spines. 3D
microscopy followed by is commonly used to study different biological objects such as cells,

neuron and tissue.

A 3D stack contains all pieces of information needed to reconstruct a focused 2D image. To
create a 2D image from 3D stack a projection in the z direction is often preferred as it
contains the highest amount of information. Above 80 percent of the biologist community
use MIP, to reduce a 3D stack into a single 2D image. MIP retrieves the level of maximum
intensity along the z axis for each x, y position. The image of 3D stack is called the index
map while the image made of intensity values corresponding to that index map is called the

projection.

MIP is widely adopted as it is the simplest method of z-projection, parameter free, fast and
straightforward to use as it is implemented in NIH Fiji/ImageJ7 and in many other
softwares. Our dataset is generated by imaging different neuron from rat dissociated
hippocampal cultures using a confocal light microscope, before and after chemically induced

long-term potentiation (cLTP).

Images have been captured at three different time instants, initially at time instants TO,
T1 and T2 to identify the structural and morphological changes in the chemical solution
over time. Spines have various shapes, and spine images are often not of very good quality,
hence it is very challenging to detect spines in these images. During image processing MIP
of the confocal z-stack used to convert the 3D stack image into a 2D image and Gaussian
de-noising has been performed on the 2D MIP image. The figure 4.2 shows the time series

images of dendritic spine at three different instants T0, T1 and T2.
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Fig 4.2 2D MIP images of dendritic spines at different time instants (a) MIP of cell at T0
(b) MIP of cell at T1 (¢) MIP of cell at T2

4.2 IMAGE REGISTRATION

As it has been already discussed in the chapter 3 that image registration has been used
because it can spatially align time series images of different time instants. The main motive
of our work is to track spine behavior in time series images which would be impossible if
the spatial location of the spines is not properly aligned which is what we see in case of the
data that we have before applying our image registration algorithm. Image registration

helps in rectifying this alignment. The figure 4.3 this concept of misalignment with the help
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of red seed points at T0, T1 and T2 instant and the figure 4.4 shows that the images have

been aligned properly after the image registration algorithm has been applied to the images
at time instant T0, T1 and T2.

| g

Fig 4.3 Red seed point at some spot in T0O on mouse click appearing at instants T1, T2
before alignment (Registration) (a) seed point location in T0 (b) seed point location in T1

(c) seed point location in T2
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Fig 4.4 Red seed point at some spot in T0O on mouse click appearing at instants T1, T2
after alignment (Registration) (a) seed point location in T0 (b) seed point location in T1
(¢) seed point location in T2
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4.3 ENHANCING REGION OF INTEREST LOCALLY

Generally medical images are of not great quality. The images are mostly of such poor
quality that our concerned objects are not clearly visible. In our case the images that we
have acquired are no exception. Since one of our major motives include dendrite and spine
segmentation at least the quality of the concerned region of interest (ROI) had to be
enhanced which has greatly helped in the dendrite and spine segmentation. In the GUI a
user can click anywhere on the image to select a region with similar colors. We also have a
tolerance track bar in the GUI which provides for the range of allowable deviation from a

color so as to facilitate the selection of a region of our interest.

After the images have been registered in the GUI a user can click at any point in the image
which is the seed point. Now, taking that seed point we run our flood-fill algorithm with a
certain tolerance limit which gives the control to the user as to how much deviation in
intensity value from the seed point’s intensity value has to be allowed. Therefore, a region
with similar colors (as per tolerance) is selected and our flood-fill will replace those old pixel
values with the new pixel values that we have supplied in the flood-fill function as
parameter. This change happens in each and every image since we have time series images
and the advantage is that we just need to place a single click on the very first image at T0
instant as shown if figure 4.2(a) and the enhancement is reflected in the images at time
instants T1 and T2 as shown in figure 4.2(b) and 4.2(c). Also, in the flood-fill function we
supply as parameters an operation mask that should be a single-channel 8-bit image, 2
pixels wider and 2 pixels taller than image. This mask is nothing but a binary image which
indicates which pixels have been re-colored by the flood-fill algorithm. Flood-filling cannot
go across non-zero pixels in the input mask. For example, an edge detector output can be
used as a mask to stop filling at edges. On output, pixels in the mask corresponding to re-
colored pixels in the image are set to white (intensity value = 255). It is therefore possible
to use the same mask in multiple calls to the function to make sure the filled areas do not
overlap. The enhanced region of interest of images as shown in figure 4.2 along with their

masks is shown in figure 4.5.
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Fig 4.5 Enhanced region of interest and its mask with tolerance level 76 for dendritic
spine images at instant T0, T1 and T2 (a) enhanced image at TO (b) mask for TO (c)
enhanced image at T1 (d) mask for T1 (e) enhanced image at T2 (f) mask for T2
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The mask that contains the information about the points that are re-colored is now utilized
to detect the boundary points or the contours. Contours can be explained simply as a curve
joining all the continuous points (along the boundary), having same color or. These contours
help us to understand the morphology of dendritic spines in a more detailed way and is an
elegant approach since it will make the task of dendrite and spine segmentation much easier
later. The figure 4.6 shows the enhanced region of interest of images along with their

detected contours.

Fig 4.6 Enhanced region of interest and their contours with tolerance level 76 for dendritic
spine images at instant T0, T1 and T2 (a) enhanced image at TO and detected contour
(b) enhanced image at T1 and detected contour (¢) enhanced image at and detected

contour
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4.4 DENDRITE SEGMENTATION

After enhancing the ROI locally the next task is to segment the dendrite. In our work we
have done color-based segmentation approach. For this we have utilized certain concepts
like Fuzzy-Distance Transform, Center of Maximum Balls, etc. to segment the region

between the source and the destination points using a shortest path algorithm which is very

segmented dendrite of the time-series images.

o /L

much like Breadth-first search with some minor modifications. The figure 4.6 shows the
19

3
L Sy Cmenleds

Fig 4.7 Segmented dendrite of 3 different time-series images at instants T0, T1, T2 (a),
(b) dendrite segments at T0 instant (c), (d) dendrite segments at T1 instant (e), (f)
dendrite segments at T2 instant
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What we have essentially done in this approach is with the help of GUI selected 2 points
one source and destination. Then, we have calculated the shortest path between those 2
points. We have earlier calculated the FDT of the entire image so the points which are
selected for the shortest path must be having some FDT value. So, we have taken these

values as radius and drawn red colored filled circles so that the above results in figure 4.6

has been obtained. Let’s discuss the shortest path algorithm we have utilized.

ALGORITHM FOR SHORTEST PATH

Input: A 2D grayscale image I having an object region O with 2 marked points p & ¢ in O.
Output: Segmented dendrite in concerned ROI between p & q.

PHASE-I

S(x,y): Starting point.

E(x,y): End point.

O: Set of object pixels.

Q: A queue

D: An image where each pixel value represents its distance from the starting point.

NN: An image where each pixel stores position of its neighbour nearest to the starting

point.

_u9)
~ FDT(q)

Cost(p,q)

u(p, q): Distance of the link between p, q

FDT(q)= Distance transform value of g from the background.

1. Vpeo
I. D(p)=ow
II. NN(p)=NULL
2. Forp=S§
1. D) =0

IV. NN{p)=p
V. PUSHpinQ
3. while Q is non-empty
I.  POP p from Q
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II. VgeN*(p)no
a. If D(q) > D(p) + cost(p,q)

i.  D(q) = D(p) + cost(p, q)S
ii. NN(q)=NN(p)

iii. PUSH q in Q
PHASE-II
For end point, p = E,

L. Initiate a path m=p and set q = p;
II. While(q! = S)

IIT. {

IV. q =NN(q)

V. Append q in
VL }

Basically we have 2 points one source and one destination. We have formulated a cost
function which is directly proportional to the distance of the link between two points and
inversely proportional to the FDT value of the point which is our immediate goal. In this
way we explore all neighbors for a particular point and try to find out the neighbor which
has the least cost to be reachable. That is what is happening in 1% phase. In the 2! phase
utilizing the nearest neighbor matrix (NN) we trace back to the starting point drawing filled
red circles all along the way. Therefore, the red region in the figure 4.6 shows that

segmentation of the dendritic backbone is successful.
4.4 SPINE SEGMENTATION

After segmentation of the dendritic backbone next step is to segment the spines in time-
series images. For that the user only needs to click on the desired spine and color-based
segmentation of the concerned spine will be achieved. For this we have developed an
adaptive version of the general flood-fill algorithm. When a user clicks on a spine at some
point which is taken as the seed point and a 3 x 3 neighborhood is taken into consideration
around that point and the mean and standard deviation is computed. Furthermore, a
parameter sensitivity (allowable deviation) multiplied with standard deviation is subtracted
from the mean becomes the lower [imit and the sensitivity multiplied with standard

deviation added to the mean gives the higher limit. Then, all the neighbors are evaluated if
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they lie within this range and only for those neighbors which lie within this range further

recursive calls to the flood-fill algorithm takes place. The algorithm is as follows:
PSEUDO CODE FOR ADAPTIVE FLOOD FILL ALGORITHM

Flood-fill (point, target-color, replacement-color, sensitivity (s)):
1. If target-color is equal to replacement-color, return.
2. If the color of point is not equal to target-color, return.
3. Set the color of point to replacement-color.
4. Calculate the mean and standard deviation of 3 x 3 neighborhood around that point.
5. Set lower limit = mean — (standard deviation (s.d) X sensitivity)
upper limit = mean + (standard deviation (s.d) x sensitivity)
6. If the color of one step to the south of point is between lower limit and upper limit then,
Perform Flood-fill (one step to the south of point, target-color, replacement-color, s).
If the color of one step to the north of point is between lower limit and upper limit then,
Perform Flood-fill (one step to the north of point, target-color, replacement-color, s).
If the color of one step to the west of point is between lower limit and upper limit then,
Perform Flood-fill (one step to the west of point, target-color, replacement-color, s).
If the color of one step to the east of point is between lower limit and upper limit then,
Perform Flood-fill (one step to the east of point, target-color, replacement-color, s).
7. Return.

The figure 4.6 shows the segmented images of dendritic spines at 3 different time instants.
The blue colored region indicates the segmented spines. The figure 4.6(a), (¢) and (e)
corresponds to a single spine at time stamps T0, T1 and T2 respectively. Similarly, the
figure 4.6(b), (d), (f) corresponds to another segmented spine at time stamps T0, T1 and
T2 respectively. It is quite clear that the spine shape changes in the images of different time

stamps. Instead we can say that “plastic” nature of spines is very much clear from figure
4.6.
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Fig 4.8 Segmented images of dendritic spines at 3 different time instants T0, T1, T2 (a), (b) spine
segments at TO instant (¢), (d) spine segments at T1 instant (e), (f) spine segments at T2 instant

4.5 QUANTITATIVE FEATURE EXTRACTION

After the segmentation of the dendrites and spines has been done the next step is to extract
the features from those spines. To do this we need to obtain the skeleton and also do the
spine numbering. Then we can calculates individual spine features like spine length, spine
area, etc. which are relevant to “plasticity analysis”. The figure 4.7 shows one segmented

and numbered spine in our 2DSpAn-v2 application GUI with all the features extracted.

Since we need to calculate features like spine length (Si) and spine area (Sa) defining them

is of utmost importance.

Here, Sa is nothing but the count of the pixels that are re-colored during the spine

segmentation using the adaptive flood-fill algorithm as mentioned in section 4.4.

St= Lo+ (DT[Spine End Position] - DT [Dendrite Junction Position]), where Ly is length of spine

slice as obtained from the skeleton. This individual spine slice lengths are calculated
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iteratively from each spine-dendrite junction point to the spine end are obtained from the

skeleton.

Here, DT denotes the computed distance transform matrix in which each pixel has a value
corresponding to nearest background pixel. DT[Spine End Position] denotes the distance
transform value at the Spine FEnd Position which is also obtained from the skeleton.
DT[Spine Dendrite Junction Position] denotes the distance transform value at the Spine Dendrite
Junction Position which is computed from the skeleton. The features like spine area and spine
length are useful in plasticity analysis. We can observe the morphological changes occurring
in the dendritic spines in images of different time stamps. The figure 4.7 shows marked

spines along with the features extracted in images of time stamps T0, T1 and T2.

LOAD IMAGES

SAVE IMAGE
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2 2dSpAn-v2 — %

"1 2dSpAn-v2 — *

Fig 4.9 Marked spine in 2DSpAn-v2 GUI and quantitative feature extraction of marked
spine at time instants T0, T1 and T2.
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CHAPTER 5
GUI DESIGN AND EXPERIMENTAL RESULTS

5.1 INTRODUCTION TO QT GUI

Qt is a cross-platform framework that is usually used as a graphical toolkit and can run on
any operating systems including mobile operating systems. The Qt GUI module provides
classes for system integration, event handling, OpenGL and OpenGL ES integration, 2D
graphics, basic imaging, fonts and text. These classes are used internally by Qt's user
interface technologies and can also be used directly, for instance to write applications using
low-level OpenGL ES graphics APIs. Qt is very easy to use and user don’t need any high-
level training to get used to with Qt. Although Qt is one of the IDE for C4++ but one can
integrate OpenCV, python with Qt if required.

5.2 USER MANUAL

In this section we introduce the GUI of our proposed method 2DSpAn-v2. Figure 5.1 shows
the GUI followed by the description of each item on the GUI.

% 2dSpAn-v2 - X

Fig 5.1 GUI of 2DSpAn-v2

Button LOAD IMAGES: First user needs to load the directory which contains the time
series images by clicking on this button. After clicking on this button user can choose the
directory and all the files from the directory will be loaded into the application. It is

mandatory to keep some naming convention that necessarily indicates the time instant of
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the image like TO, T1, T2, T3, etc. Since, we are working on image registration in the
beginning the order of the time instants of images will be helpful for sorting them
alphabetically. Suppose we have images of 3 different time instants MAX -0001.png (1%
image), MAX_-0002.png (2™ image) and MAX_-0003.png (3™ image). So, after loading the
file names into our application we run our algorithm to sort the file names alphabetically

so it gives the correct order so as to which image should be registered with its corresponding

reference.
£
_.-,1 Open Directory b
T - » ThisPC » Local Disk (D) v O Search Local Disk (D:) 0o

Organize « MNew folder B
I This PC € Name - Date medified Type ~

J 3D Objects Anaconda File folder

[ Desktop Android File folder

Z Android-SDK File folder Fill Diendrite
|=| Documents
cmake-3.13.2-winfd-x64 File folder
_ eye-work File folder
J’ Music input File folder Fill Pratrusi
=] Pictures Intelli) IDEA Community Edition 2017.3.5 File folder
m Videos JetBrains File folder
i Local Disk (C:) MATLAB File folder
. Local Disk (D) Microsoft Visual Studio File folder
. Local Disk (E) MNov 9 File folder
Octave File folder W
== System Reservec vl 5

Folder ||

Select Folder

Cancel

Load Images

Choose the folder name
and then click on ‘Select

Folder’

Fig 5.2 on clicking the LOAD IMAGES button

Button PREV & NEXT: These buttons lets the user fetch the next and previous images
from the loaded list of images. We can also have a better magnified view of the images by
checking the checkbox beside the magnifying glass icon. When user checked the checkbox
zoom the zoom-in or zoom-out function is activated. Figure 5.3 shows how the PREV &
NEXT button and also how the zoom check box works.
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Check and then increase
the scale value to zoom in
or zoom out to that scale

Navigate to next
image using ‘NEXT’

Navigate to previous
image using ‘PREV’

Current Zoom
Level =1

Fig 5.3 Working of PREV and NEXT buttons and zoom feature (a) Zoom Feature and
NEXT button (b) Zoom Level = 1 and PREV button

Button Register: This button actually performs the image registration that we have
discussed in the earlier chapters. It performs the alignment of two or more images of the
same scene. Suppose we have images of 3 different time instants MAX -0001.png (1%
image), MAX_-0002.png (2" image) and MAX_-0003.png (3 image) so there will be 2

registration operations in the background the first being to align the 2! image with the 1
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one and the second one to align the 3* image with the 2™ one. The figure 5.4 shows the
Register button and the figure 5.5 shows the original misalignment and figure 5.6 shows

how well the image registration algorithm has performed.

S 2dSpAn-v2 _ X

Register Button (

FREY

SAVE IMAGE

Fig 5.4 ‘Register’ Button which performs the actual Image Registration which rectifies the

misalignment between Reference & Moving Images
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Fig 5.5 Before the register button has been clicked seed point location in the 3 time series
images (a) Location at T0 (b) Location at T1 (¢) Location at T2
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Fig 5.6 After the register button has been clicked seed point location in the 3 time series
images (a) Location at T0 (b) Location at T1 (¢) Location at T2

66| Page



Button Fill Dendrite: To segment the dendrite first you need to click on the
radio button Select Dendrite and then mark one source point and one
destination point on the 1* image. These points are automatically marked on
the other time series images (which are already registered) and then if the user
clicks on the Fill Dendrite button we will have the dendrite segmentation
successful. The procedure of choosing points for source and destination is
shown in figure 5.7 and the segmented dendrite of TO, T1, T2 is shown in
figure 5.8.

Fig 5.7 After the Select Dendrite radio button has been selected and on the T0 image

source and destination points have been marked (a) Location of points in TO (b) Location

of points in T1 (c¢) Location of points in T2
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Fig 5.8 After the Fill Dendrite button has been clicked and dendrite segmentation has
been done (a) Segmented dendrite in TO (b) Segmented dendrite in T1 (¢) Segmented
dendrite in T2

Button Fill Protrusion: To segment the spine we just need to click on the
radio button Choose Protrusion and then mark one the spine on the 1
image. These points are automatically marked on the other time series images

(which are already registered) and then if the user clicks on the Fill
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Protrusion button we will have the segmented spine. The procedure of
clicking on the spine is shown in figure 5.9 and the segmented spine of T0, T1,

T2 is shown in figure 5.10.

Blue seed
on spine

Fig 5.9 After the Choose radio button has been selected and on the T0 image spine is
marked with blue point (a) Location of seed in TO (b) Location of seed in T1 (¢) Location
of seed in T2
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Sensitivity controls
spine coloring

Fig 5.10 After the Fill Protrusion button has been clicked and spine segmentation has
been done (a) Segmented spine in TO (b) Segmented spine in T1 (¢) Segmented spine in
T2
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5.3 EXPERIMENTAL RESULTS

The main purpose of our application 2DSpAn-v2 is to analyze dendritic spine plasticity in
time series images. Both qualitative and quantitative analysis has been done on the images
of dendritic spines from dissociated hippocampal cultures which have been obtained using
confocal light microscopy. From the qualitative analysis we are able to visualize the changes
in spine morphology by having a look at the time series images and from the quantitative
analysis we are able to analyze and quantify changes in features like spine length, area,

head-width, neck-length, etc. in time series images.

5.3.1 QUALITATIVE ANALYSIS

In the qualitative analysis of dendritic spines in time series images we are able to observe
the morphological changes occurring in the dendritic spines. We have images of dendritic
spines from dissociated hippocampal cultures 3 different time instants and from them the
spines are segmented using our 2DSpAn-v2 application. The changes occurring in the shape

of some of the dendritic spines over time instants T0, T1 and T2 is shown is figure 5.11.

Fig 5.11 Segmented Spines and their morphological changes over time instants T0, T1 and

T2

5.3.2 QUANTITATIVE ANALYSIS

The morphology of the dendritic spines is complex and difficult to segment and quantify.
In most cases, they are described by simple parameters like length and area. However, high
resolution confocal microscopy allows visualization of the complex structures in greater

details. In this work, we have attempted to define key morphological attributes from the
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2D images of dendritic spines at different time instants. The figure 5.12 shows marked spines
along with the features extracted in images of time stamps T0, T1 and T2 and the figure
5.13 shows the spine ID versus spine area and spine ID versus spine length in graphical

representation.

Fig 5.12 Marked spine in 2DSpAn-v2 GUI and quantitative feature extraction of marked
spine at time instants T0, T1 and T2.
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CHAPTER 6

CONCLUSION

This thesis introduces the theory and algorithm of Quantitative Analysis of Dendritic Spine
Plasticity using Image Registration in 2D MIP Images. Initially there is some sort of
misalignment in the images of different time instants. Commonly, images are captured under
variable conditions that might change the camera perspective or the scene’s contents.
Misalignment can also result from lens and sensor distortions or differences between capture
devices. Image Registration helps to rectify this misalignment. So, firstly in the proposed
2DSpAn-v2 method the images are registered using our Image Registration method. Then,
the segmentation of the dendrites and spines needs to be done. For dendrite segmentation
the user needs to select two points on the region of interest and for the spine segmentation
the user just needs to click on the concerned spine. We might have N number of images
but we need to do these mouse events only on the image of the first timestamp and the
segmentation automatically occurs for the remaining (N — 1) images. Since our main motive
is plasticity analysis of spines in images of different time stamps so we compute features
like spine length, spine area, etc. and display the results in our GUI. We review several
methods of dendritic spine detection, reconstruction and analysis along with a brief
discussion on some of the digital topology applications that can be used for better
performance of spine analysis methods. From this we came to know although there are so
many research works have been done so far in this area for 2D, 3D and 4D. But still there
is a scope of improvement. These methods perform well in some extent but in every case,
there are a lot of manual works needs to be done. Although the 2D-Span method required
less human intervention but still some part of the tool needs manual point marking for
selecting the region of interest. Our proposed method can be termed as semi-automatic

and does give very good results for spine plasticity analysis.

Different experiment shows during highly stress or pathological condition spine dynamics
unveil some anomalies like loss or decrease in spine numbers, immature structure of spine,
reduction of size, highly variable spine density, ectopic spine formation, sometimes highly
increased spine number .This method can be applicable to determine the spine morphology
and changes in different stress model or in different pathological conditions like Alzheimer,
Schizophrenia and Fragile X-syndrome (FXS). This can be used in different neuro-biological

studies.
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This method is tested only on different MIP images of confocal light microscopy and two-
photon microscopy images of dendritic spines of rat dissociated hippocampal cultures. Due
to the conversion of 3-D stack volume to 2-D using MIP some information may lost which
may affect the performance of the algorithm. Some loop may be created after pre-processing
as binarization fails to differentiate two different spines in some region where noisy pixels

present due to 3-D to 2-D conversion.

In future, the work can be extended to do plasticity analysis of dendritic spines in 3-D as
well. Other than that, in 2-D we need to improve our binarization algorithm that is more
efficient in case of poor MIP images. The proposed registration algorithm performs quite
well but due to the images being of very inferior quality binarization is an issue and therefore
the performance of some tasks like Skeletonization, Segmentation of dendrite and spine, etc.
can be improvised. This method only calculates the spine area and spine length in images
of dendritic spines at different time instants. We can extend it to determine other features
of individual spines like head width, neck length and classify them. We can reconstruct the

whole dendritic spine from the skeleton in 3-D for better visualization.
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