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Chapter 1

Introduction

An omnipresent endeavour in the pursuit of enriching our medicinal
knowledge is the identification of specific events that happen as precursors
to the onset of diseases. Timely information of such events, also known as
biomarkers, are key to early detection of many life-threatening illnesses such
as heart disease and cancers. Potentially increasing the success rate of

subsequent treatments to a great extent.

1.1 Biological Significance

A living being is a microcosm in itself. It is characterized by a range of
biochemical processes that impart to it the unique complexities of life [1].
Series of interactions between biological molecules bring into effect the
processes that occur within cells and between cells, which have been
established as the functional units of life. Progressive breakthroughs in

molecular biology have been increasingly successful in identifying the phases



of such interactions thereby facilitating biomarker discovery. Among the
classes of biomolecules, proteins act as major functionaries in keeping the
biochemical processes active [2], [3]. Acting as catalysts in the form of
enzymes and hormones, filling out physically as structural units, enabling

specific functions of the body and others.

The three-dimensional structural conformations of a protein macromolecule
determine its functions and that its structure is determined from its
sequence has been the paradigm [4]. A protein undergoes naturally
occurring usually reversible chemical alterations in its structure during or
post the various stages of its formation from the genetic material. One such
phenomenon is the covalent modifications that occur on the polypeptide
chain forming the protein soon after its formation termed post-translational
modifications (PTM). Examples of such modifications are addition or removal
of molecules from peptides, addition or transfer of functional groups, sugars,
lipids or other peptides and cleavage of bonds at amino acid sites among
many others. An estimate revealing about 5% of the human proteome to be
enzymes involved in catalyzing over 200 types of known PTMs vindicates the
hypothesis that PTMs play a pivotal role in making the protein function the
way it should to keep the biological systems stable [5]. This is based on the
assumption, and a considerable increase in their validations in recent years,
that the overall structure and function of a mature protein in a cell is
influenced by PTMs. Therefore, the orderly expression of PTMs is critical to
the health of an organism. A prime example of a biomarker is the

identification and quantification of proteins that are differentially expressed



in diseased individuals. It is beyond a reasonable doubt that getting behind
the abstraction of the functioning of PTMs is of utmost importance to
understand the entire sphere of biological mechanisms a play. Therefore, full
characterization of PTMs is an interest with a high priority for the research
community. This has resulted in a revised goal in the field of molecular

biology to study and document the vast expanse of proteins.

Capturing the entire gamut of proteins into a perspective is a seemingly
arduous and challenging task. The vastness of the problem can be gauged
from a statistic of the human genome showing it to comprise of a few
thousand genes that give origin to more than a million proteins, including
multiple variants of the same protein present in the proteome [6], [7].
Experimental techniques that are confirmatory in nature such as Western
blotting [8] and Mass spectrometry [9] and others [10] are associated with
temporal and cost overheads. Moreover, because of numerous genome
sequencing projects, a huge number of protein-coding regions and the
related sequences are being identified every passing day [11]. This has
resulted in a demand for credible alternative methods for annotation of

proteins or those that can at least narrow down the search largely.

With the increase in computational or in silico technologies, it is an ongoing
attempt to devise algorithms and software that can sieve the vast amount of
data automatically. These methods, in general, look for patterns in the data
if any that can hint at meaningful information, such as identification of

potential post-translational modification sites in this case. Algorithms



proposed to date have tried to approach the problem from various angles.
They can be broadly categorized into protein primary sequence mining and
machine learning models. Multiple facets need to be factored while
designing an algorithm for such a problem depending on the approach.
While sequence mining methodologies are based on a fairly straightforward
intuition they fail to perform well. This evidently points to underlying
properties that possibly exist in intricate associations that are not very
obvious at the sequence level. Machine learning algorithms as the name
suggests aim to learn from the data rather than work on some pre-defined
rules. There exists multiple such strategies, which have been used
extensively to model complex patterns and they have been shown to

perform reasonably well.

1.2 Scope of the proposed work

This thesis was set out to tackle the challenges in designing a binary
classification algorithm to segregate sites of a protein sequence into those
that have post-translational modification and those that do not. As a
technology demonstrator, the focus has been maintained on a particular
type of PTM called S-nitrosylation. The reason behind the choice ranges from
the consideration of it being a relatively less explored modification among
the rest, the scope for improvement in precision to the fact that recently
there have been increasing evidence of S-nitrosylation being involved in
pathologies. The issues that are well known to affect the performance of

such an algorithm at various stages of designing the algorithm has been



tackled by making use of existing paradigms of formulating a PTM prediction
problem. Greater attention has been paid to the step of optimizing the
attributes that can potentially distinguish between a positive and a negative
instance of the problem with the help of a meta-heuristic search technique.
The resulting performance of the work is compared with other such existing
state-of-the-art algorithms and is shown to improve on some parameters.
Since the decision making logic of a machine learning algorithm is complex,
the exact mechanisms that are at work are quite hard to decipher. The
proposed attribute selection procedure aims to alleviate this issue by listing
out a subset of the entire set of attributes that results in optimal

performance. Thus providing pointers to properties describing the pattern.

1.3 Organization of the thesis

The remaining chapters of the thesis are organized as follows. Chapter 2
provides a background in proteomics analysis. Chapter 3 gives a primer on
computational approaches to proteomics. It discusses some optimization
strategies that have been proposed in the literature and the challenges
associated with them in detail. Chapter 4 is primarily concerned with the
design of feature sets and the algorithms developed to generate the
classifiers. Chapter 5 discusses the experimental findings and finally paves
the road for Chapter 6, which concludes by summarizing the work and sheds

light on future scopes.



Chapter 2

Background on Proteomics

analysis

A number of biological processes within the cell of a living organism is
facilitated by macromolecules called proteins, which form an essential part
of its existence. Proteins are responsible for a wide range of functions that is
required by the biological system maintain its active state such as catalysis of
biochemical reactions, cell signaling, cell adhesion, immune responses,
nutrient storage, formation of scaffolds that maintain cell shape and
transportation of molecules (including other proteins) between subcellular

organelles and across the cell membrane [12].

2.1 Central Dogma of Molecular Biology

All the information required for the cell of an organism to carry out its

designated functions is encoded in the genetic material contained in the



chromosomal macromolecules or DNA. The protein macromolecule is
composed of a chain of amino acids (polypeptide) the length of which can
range from tens to thousands of subunits (residues). Construction of a
protein is carried out by decoding the instruction from the respective protein
encoding region of the DNA known as genes. The Central Dogma of
Molecular Biology outlines the flow of genetic information in the cell [13].
Two of its three main parts, transcription and translation (the other one
being replication) describe the means by which a DNA sequence specifies the
sequence of amino acids in a protein. DNAs are macromolecules that are
composed of double-stranded sequence of nucleotides. Consecutive groups
of three nucleotides, known as codons, determine the particular amino acids
that would occur sequentially in a polypeptide. The relationship between
particular codons and particular amino acids has been found to be the same
for nearly all living organisms better known as the genetic code.
Transcription involves creating an intermediate molecule called messenger
ribonucleic acid (MRNA) from DNA. mRNA is similar to DNA in that it consists
of a long, specific sequence of nucleotides. The mRNAs are then stripped of
unwanted segments before they are translated into proteins by ribosomes

that interpret the sequence of codons into their respective amino acids.

2.2 Post-translational modifications

All throughout the various stages of protein formation mentioned above, an
aberrant incident in any of the stages results in the introduction of “noise” in

the information being propagated. Such modifications are usually ignored
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and occasionally useful for the correct expression of a protein. Of particular
importance, and the area of interest of this work, are the modifications that
occur during translation. A protein can be active or otherwise at the time of
translation. The alteration between these two states is regulated by certain
chemical modifications on the polypeptide chain. This protein modification
which is generally referred to as a post-translational modification, can be
either co or post its translation from the mRNA and involves the addition of a
chemical group, the removal of amino acids from the beginning of the
protein or a mutation of an amino acid from one to another [12]. Positions,
where PTMs take place in proteins, are called modification sites. These are
generally site-specific, which means a particular type of PTM affects only a
specific subset of amino acids and are not therefore random in nature. The
possibilities of a site being modified is believed to be influenced by a number
of factors such as the type of the modification, properties of the amino acids
in its neighbourhood, proximity to functional protein sites, the structure of
the folded protein molecule, its location in the cell and there are probably
others yet to be discovered. PTMs most often than not end up as deciders of
cell dynamics such as its function and interaction with other molecules as its
occurrence usually results in a change of the protein molecules three-
dimensional shape. It has been shown that a protein’s function can be

regulated by a PTM by either activating or suppressing it [12].
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Phosphorylation can be cited as an appropriate example for illustrating the
importance of PTMs in the cell and the complex mechanisms that occur
during modification. Phosphorylation belongs to the category of the most
well-studied PTMs owing to its ubiquitous influence in the workings of a cell,
regulating a number of essential enzymes (protein molecules that act as
catalysts of biochemical reactions) and receptors (protein molecules that
binds to other small molecules such as a hormone to initiate cellular
response) [12], [15], [16]. It is the primary mechanism for switching the state
of activity of a protein. Thus for many signal transduction pathways in a
biological system, phosphorylation of a protein molecule is considered to be
necessary. Phosphorylation and its converse mechanism de-phosphorylation
are catalyzed by kinases and phosphatases respectively which belong to an
enzymatic family of proteins. Phosphorylation includes transfers of a
phosphate group from a high-energy donor molecule such as ATP (the
biological equivalent of a capacitor) to a substrate of the protein being
phosphorylated by a protein kinase. Thereby resulting in a breakdown of ATP
into ADP and activation of the substrate by induction of a conformational
change in the structure of the protein. Similarly, de-phosphorylation is the
removal of the phosphate group by phosphatases and serves as a
mechanism to de-activate the phosphorylated protein by removing the
phosphate group through hydrolysis. Reversibility of a PTM holds as much

importance to the biological system as the forward process.

The PTMs of proteins have been detected by a variety of experimental

techniques, which includes the likes of mass spectrometry (MS) [17], liquid

13



chromatography [18], chromatin immunoprecipitation [19], western blotting
and eastern blotting [20]. The MS technique is one of the mainstay routes in
detecting PTMs in a high throughput manner. At the core of an MS-based
experiment is an analytical instrument called a mass spectrometer that
measures masses and relative concentration of atoms and molecules. A PTM
is characterized in an MS by the variation in the mass of the PTM substrate
that is otherwise absent. A new method of detection based on MS coupled
with capillary liquid chromatography have resulted in path-breaking
advances in enrichment technologies bolstering the quest for confirmatory
validation of various PTMs [21]. The last decade has witnessed the
identification of thousands of modification sites with great precision and
confidence. To date, more than hudreds of PTMs have been experimentally
discovered in vivo. Through experimentation, it has been observed that
PTMs affect protein folding [22], interactions with other proteins [23],
protein degradation [24] and hence are key players in cellular regulation
including regulation of the cell cycle [25], apoptosis [26], signal transduction

[27] from the receptor to the gene among others.

Since proteins play a significant role in cell functions, a disruption in normal
protein function can lead to catastrophic effects in the cell and, consequently
to the entire biological system. On a similar vein, since PTMs are a major part
of the biological mechanism regulating protein function, a disruption in PTM
related processes can also have a detrimental effect on the organism. A
study revealed about 5% of mutations associated with pathologies to be at

known PTM sites, whereas neutral mutations account for only 2% [28].
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Aberrations in PTMs hold major weight in the diagnosis of major ailments
such as cardiovascular disease [29], multiple sclerosis [30], cancer[31] and
many others [32]. Radivojac et al.,, [33] investigated the role of
phosphorylation in cancer and found both gain and loss of a phosphorylation
site in a target protein. Death of nigral neurons which is a leading cause of
Parkinson’s disease has been shown to be aggravated by disturbances to
proteolytic pathways set up by ubiquitination (another known PTM) caused
by a mutation in the protein parkin which is an integral part of its working
[34]. Likewise, patients with Alzheimer's disease has been found to exhibit
abnormal hyper-phosphorylation of the microtubule-associated protein tau
[35]. Moreover, mutations of genes at or near the insulin signalling region,
which can be PTM impairing, have been shown to be a major factor in Type 2

diabetes mellitus [36].

2.3 S-nitrosylation

One of the most common types of reversible post-translational modifications
is the covalent modification of a protein’s cysteine thiol (the sulphur atom to
be exact) by a nitric oxide (NO) group known as S-nitrosylation [37]. Under
physiological conditions, NO is a freely diffusible signalling molecule
produced by NO synthases. In addition to its radical nature, the ability of NO
to diffuse through cell membranes leads to a wide range of interactions with
biological targets in a redox fashion. As a signalling molecule, NO is able to
regulate many vascular and neuronal signalling pathways, as well as

mitochondrial proliferation [38], [39]. In most cell types, protein targets in
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close vicinity of the NO synthases may be nitrosylated in place to form S-
nitrosothiols by direct communications or through scaffold and adaptor
proteins. The enzymatic mechanisms of protein S-nitrosylation are still not
clear, however, several enzymes have been demonstrated to facilitate S-
nitrosylation or de-nitrosylation reactions. For example, Cu, Zn superoxide
dismutase and thioredoxin promote S-nitrosylation, while protein disulfide
isomerase is hinted to regulate de-nitrosylation [40], [41].

S-nitrosylation plays a critical role in multiple physiological processes. Many
intra-cellular signalling mechanisms are influenced by S-nitrosylation [37],
[42]. It also has major say in transcriptional regulation [43], cell signalling
[44] and apoptosis [45]. Therefore in a converse logic aberrations of S-
nitrosylation in the processes which are influenced by it is associated with
the pathophysiology of disorders such as cancer [46], ALS [47], Alzheimer’s
disease, Huntington disease, schizophrenia, mental disorders and
Parkinson’s disease [48], [49]. Furthermore due to its reversible nature, to
make the signalling function of S-nitrosylation even more complex evidence
of events where other PTMs such as phosphorylation, ubiquitylation,
palmitoylation, acetylation and sumoylation have indulged in crosstalk with
S-nitrosylation has been increasingly reported [50]. This comes with an

obvious implication of an added dimension to the pathology of diseases.
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Figure 2.2 - Illustration showing Snitrosylation and de-Snitrosylation of a protein [51]

2.4 Motivation for automation

Keeping the discussion in the previous two sections in mind it can be
convincingly agreed upon that need for accurate identification of S-
nitrosylation sites in proteins at the earliest shrieks of urgency. Initial

attempts to identify candidates on a proteome-wide scale using NO donors
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as S-nitrosylation agents were mired with false positives due to the lack of in
vivo conditions. Conventional experimental identification strategies
improved upon the situation by a marking and replacement mechanism
widely known as the biotin switch technique [52]. This, complemented with
traditional PTM identification techniques such as mass spectrometry has led
to improvements in identification of modification sites and has resulted in a
proliferation of site-related information curated in various databases [53].
However, even these state-of-the-art experiments are laborious and of low-
throughput due to the fact that levels of endogenously nitrated or
nitrosylated proteins in the cell is usually low. Efforts to improve efficiency
requires great escalation of expense. Moreover, proteomic analyses of
nitrosylated sites generated in vivo are usually a challenge due to the low
level, dynamic and unstable features of S-nitrosylation. In biological systems,
nitrosylated events undergo photolytic degradation [54] and are reduced
[55]. In this regard, further efforts are needed to improve the efficiency of
current proteomic methodologies. Although much effort has gone into
finding patterns such as consensus structural features to describe the
specificity of S-nitrosylation based on a large number of datasets from
different proteomic studies, accurate prediction of S-nitrosylation sites in
proteins still remains a challenge. The prospect of an automatic proteome
analysis technique is an exciting proposition given the astronomical rise in
computational prowess over the years. Continuous enrichment of results
from similar attempts for other types of PTMs provide the required

motivation to embark upon such a task.
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Chapter 3

Computational approaches

In the early days of molecular biology, the function of a protein was inferred
from patterns in external observations of pathological expressions and
chemical properties. Much before the sequence of amino acids encoded by
the respective gene was revealed. The advent of genomic sequencing and
subsequent annotation with high throughput techniques has changed the
situation considerably. There has been an explosive increase in the number
of known sequences along with residue specific information, which are
accumulating in databanks online and are easily accessible. Experimental
methods of annotation have not been able to keep up due to their time-
consuming nature. Moreover, the fact that the modalities of annotation such
as PTM type do not apply to the majority of residues in the primary structure
of a protein and at times not even to those that are known to be affected in
a different instance cause exploration that would be otherwise unnecessary.

This has led to a huge number of functionally uncharacterized genes and

19



proteins thus setting the stage for a computational solution, which comes
with an advantage of low cost and fast processing of large volumes of
information. This provides supplementary information in narrowing down
the search space of potential candidates on a proteome-wide scale and
rapidly generate useful information for further experimental investigation.
PTM prediction is a valuable tool for guessing the range of possible functions
that a protein can be involved in. The knowledge of PTMs that affects a
protein is also important for those proteins that have some other features
annotated. Further characterization with a predicted PTM increases the
chances of discovering a new pathway or a biological mechanism. From the
biological point of view, it is important to know which post-translationally
modifying enzyme is the source of the PTM for a given substrate protein
since this relationship carries a piece of pathway information. Computer-
aided prediction of the possibility of a protein’s PTM from the amino acid
sequence is an important task that is critical to the biological interpretation

of proteome data.

3.1 Sequence similarity based approaches

Since the appearance of the first DNA sequences, scientists have sought
patterns in them to explain and predict biological phenomena at the
molecular level. As a starting point, computational approaches in this
problem domain tried to assimilate the unearthed protein sequence data in
order to calculate the similarity if any between proteins that go under similar

modifications. Tools such as BLAST[56] that computed amino acid sequence
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similarity were designed to search available databases for target proteins
that have high similarity to a specific query protein or peptide to gather
ideas about its attributes. Observations found conserved regions in
sequences which led to the definition of consensus patterns. Subsequently,
the attribute annotations of the target proteins thus found were used to
infer the attribute for the query protein. These patterns obtained from such
straightforward sequence mining models, although confirming the direction
of research, were not very specific and were not a strong enough decider.
Also, they lacked the capability of generalization to unknown proteins that
did not exhibit sequence similarity with any of the known proteins. But the
mere presence of them indicated deeper underlying associations between
other features of the proteins. This has been subsequently verified in

experiments [57]-[60].

3.2 Machine learning models

The next step up in complexity included the identification of features
possibly having correlations that would together form patterns
discriminating the sequences of interest from the rest. Query sequences
could then be annotated using decisions based on similarity scores of the
sequence features to the pattern identified. One of the first examples of
such features were weight matrices[61], which allotted scores based on the
probability of an amino acid residue occurring at a position in a
subsequence. This allowed a much more diverse description of patterns.

Going even further in complexity, as more features started getting included

21



in the list of probable pattern descriptors it led to a proportionate increase in
the complexity of the computational models required to process these. With
the introduction of machine learning concepts, computational pattern
recognition received a major boost that broadened its scope hugely [62]. It
was now possible to extract feature associations that were not obviously

comprehensible on manual exploration automatically.

Machine learning is a computational discipline in the field of artificial
intelligence that involves generating inferences about a collection of data
from its underlying statistical properties, by building a mathematical
construct using them, and subsequent use of the generated inferences for
decision making without depending on any explicit instruction [62]. A model
is an abstract representation of the problem of interest that describes the
intricate relationships between observations and the apparently hidden
causes that give rise to such observations. Given a real world model, a
machine learning algorithm attempts to “learn” or discover the pattern that
describes the model by replicating it into a mathematical model based on a
number of instances of observations that is given as input to the algorithm.
Therefore, a general machine learning based computational pattern
recognition approach to solving a problem begins by designing a problem
model and an appropriate learning algorithm. This is followed by the
algorithm learning the model using an input data (called training data) that
instantiates the model. Generalizing from experience is a core objective of a
learner. If a learning algorithm is able to perform accurately on new, unseen

data after gathering experience from a training data it is said to generalize
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well. To look at it from a theoretical point of view, the learner that is able to
generalize well is able to build a general model about the space of
distribution the training samples belong to. The learned model can then be
used to make predictions about unknown (test) data by finding the
probability of match to the discovered patterns. Various strategies of
creating such a mathematical learning model have been proposed in the
literature over the years. These differ in their approach, the type of data they
can handle and the type of task or problem that they are intended to solve
and can be broadly grouped into three categories:

a) Supervised and semi-supervised learning

b) Unsupervised learning

c) Reinforcement learning
Among these, supervised learning most suits the problem definition being
worked upon. Supervised learning is the family of machine learning
algorithms that takes supervised data instances (data which have been
labelled to belong to a particular class) as input, tries to find the patterns
ingrained in the data that best describe a class, capture the pattern in a
model and finally use the model to classify (predict the class) of a new data
instance. In the mathematical model, each training example also called a
pattern instance, is represented by an array or vector of values for the
features that express the pattern instance. The outputs or class labels are
provided as another vector. The training data in its entirety is represented as
a matrix (vector of vectors). Through iterative optimization of an objective or
loss function, supervised learning algorithms learn a function that can be

used to predict the output associated with new inputs. The optimality of this
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function learned by the algorithm determines its performance on data that it
has not experienced during training. Mathematically this concept can be
explained as, given an unknown function f:A - B mapping input
examplesa € A to output labels b € B, along with training data X =
{(a4, by), ..., (a,, b,)} that is assumed to represent accurate examples of
the mapping, produce a function h: A = B that approximates as closely as
possible the correct mapping g. The loss function which is used for
calculating the approximation function by the algorithm assigns a value to

the error resulting from producing an incorrect prediction.

In the context of the present problem, the input model can be described as a
two-class classification task where a suitable representation of a protein
substrate site is said to belong to one class (let's call it positive) if it is found
to be modified by a PTM from existing PTM data of known proteome, else to
the other class (let’s call it negative). Several PTM specific predictors have
been published in the literature for a number of different types of PTMs [63].
In addition to these, a number of meta-predictors have also been designed
that keep multiple PTMs in scope to try and identify PTMs for whole
proteomes. The AutomotifServer [64] and PTMProber [65] is an example of
such a meta-predictor that implements different models for each of the PTM
types and uses a consensus scheme to arrive at the final decision. These
methods differ in multiple aspects such as the training and test datasets
used, the ratio of positive vs negative samples, feature selection strategy,
feature vector representation, machine learning algorithm used and the

specificity obtained from the design on the test set and more. The ideal
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predictor is characterized by its ability to confidently predict potential PTM
sites which are also accurate. In the practical scenario though, more often
than not a compromise has to be struck upon the number of positive class
predictions obtained that are actually positive and the number of actual
positive examples that are recognized as positive by the predictor when
tested on a portion of the known data kept hidden from the predictor during
training. Other issues affecting the algorithms range from the complexity of
the mathematical models to the constant updation of available databases
thus creating room for a lot of improvements. The above discussion points to
several concerns that need to be taken care of while designing a PTM
predictor:
1) Quality, reach and sources of the dataset being used.
2) Engineering of features and selection of the ones that are finally used
to build the predictor model.
3) The prediction algorithm to be used and any assumptions it makes
about the problem.
4) Evaluation schemes for analysis of the prediction results.
The following sections are aimed at providing a brief insight into the details

of designing a PTM predictor and the challenges associated with it.

3.2.1 Data sources

Quality of prediction is largely influenced by the diversity of the data that it
models. Higher the diversity, higher the chances of capturing all underlying

patterns. It is difficult to estimate the amount of data that would be required
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by the learning algorithm to build a reliable predictor with sufficient
confidence since exact features that can accurately explain a pattern is not
known. An increase in the number of features being considered increases
the complexity of possible correlations thereby subsequently increasing the
requirement for training examples in order to effectively capture those
correlations. In addition to data from in vitro experiments on incubations of
a randomized peptide library with a given enzyme, databases recording
various properties of proteins are available at present. A typical record in the
database contains a subset of protein identifier, sequence position number
of the modified residue, type of the residue, type of modification, attached
chemical group, modification enzyme, citation information and
characteristics of the experiment as fields. There are PTM specific databases
that aggregate low as well as high throughput experimental observations for
a particular type of PTM from the scientific literature. PhosphoSite [66] for
phosphorylation, OGlycobase [67] for glycosylation are to name a few of the
popular ones. The key repository though is the internationally managed
UniProt knowledgebase [11] that is a comprehensive database of a number
of protein properties and functions along with PTM annotations. The data in
the UniProt are collected from information resources and bibliographic
sources. The dbPTM [68] database is an information repository exclusively
for PTMs retrieved from several databases including UniProt as well as data
extracted from publications. The annotated sequences retrieved from these

databases are used to assemble the dataset that is mined by the predictor.
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3.2.2 Data preparation

Proper representation of the data that is to be given as input to the learning
algorithm for its training is mandatory for it to build a model that is equally
representative of the various underpinnings in the data. The major

considerations in this direction are discussed in the following sections.

3.2.2.1 Labelling

For a PTM in consideration, the sequence positions of target residues that
are annotated to be modified by it are denoted as positive instances. The
following step of labelling the negative instances is not so obvious as it is
hard to gain exhaustive surety of a residue not being modified under any
biological condition or environment. Therefore it is difficult to get around the
ambiguity regarding the labels. The reason for this is, the reactions resulting
in PTMs are stochastic in nature. Modifications are determined in varying
conditions in different experiments. Therefore, the available data does not
contain exhaustive information on the occurrence of a PTM on a particular
protein. This leaves place for alternate interpretations of the negative
patterns. At present, the construction of negative sets has no uniform
standard. There are quite a few strategies that have been used by
researchers to circumvent the situation under certain assumptions. The most
common of them is to sample positive and negative instances in a 1:1 ratio
or in a 1:x ratio where ‘X’ is a reasonable multiple [69]. A strategy that has
been used frequently marks all remaining target residues of a PTM in a

particular protein that has not been found to be modified through
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experimentation as negative instances [70]-[73]. The rationale behind this
assumption is that, it is better to use the residues from the proteins
experimentally inspected that have not shown any modification albeit in a
specific set-up, than residues from proteins that have not been studied.
Plewczynski et al. [64] extracted instances that have not been experimentally
found to be modified by any PTM at random and labelled those as negative
instances. Blom et al. [74] generated an augmented set of samples by using
predictions from a learning algorithm designed using the majority approach
and selected the ones that were most isolated. Another strategy that has
found wide acceptance is the bootstrapping method of generating N/P bins
of randomly selected negative instances where N is the total number of
negative instances and P is the total number of positive instances, training a
similar number of learning algorithms and taking the majority prediction as

the final decision [75].

3.2.2.2 Training sample representation

Once the data to be looked into has been decided upon, it must then be
formulated into a numeric representation that can be exploited by the
learning algorithm. The most obvious way forward is to consider the
protein’s amino acid sequence for its representation. However, it has been
found that a particular type of PTM occurs at a specific amino acid residue or
a subset of residues [76]-[78]. It has also been observed that the mere
presence of a target residue for a particular PTM in a protein’s primary

structure does not always imply its modification [79]. Prompted research in
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this direction due to this observation has led to the discovery of conserved
regions in the sequences of modified proteins also called consensus
sequences or motifs. This points to the presence of some common attributes
in these conserved zones that are essential for its function and thus has
resisted evolutionary changes [79]. It is these regions therefore, which are of
most importance and worth investigating. Further studies have strengthened
this belief. Crystallization studies indicate that during phosphorylation, a
region between seven and twelve residues in size surrounding the acceptor
residue comes in contact with the active site of the enzyme that catalyzes
the modification [77]. Based on large sets of experimentally verified
phosphorylation sites, Blom et al. [74] found certain residues to be
expressed more than others in the context of phosphorylation sites. Their
exploit was subsequently validated when some of the sites they predicted to
be potential candidates for phosphorylation exhibited homology. Existence
of possible motifs for phosphorylation has been confirmed in a number of
other experiments [57], [80], [81]. Methylation of the arginine residue in a
number of proteins was shown to be on an arginine-glycine-glycine (RCG)
motif [82]. S-nitrosylation of cysteine residues were hypothesised to be
flanked by acidic and basic amino acids[76], have aromatic side chains [83] or
be embedded into a hydrophobic area [84] which suppressed or favoured
the modifications. These pieces of evidence led to the conclusion that the
event of post-translational modification of a particular target residue is
influenced by its immediate neighbourhood in the protein sequence.

Following these revelations, experimental strategies and computational
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approaches started incorporating local sequence information into their
methods for prediction [72], [85].

To set the reference frame for considering the neighbourhood, an alphabet
of 20 symbols is taken for the 20 individual amino acid residues each. A
training sample instance I, (k=1,2,..,P+ N) is represented by a
subsequence window of 2m + 1 residues from the protein sequence at a
time with the site being considered for modification at the centre which can
be expressed as

It =R_,R_m-»yR_¢n—2) .. R.4RoRq ... R (u_2)Ri(m—1) R () (1)

where R, is the target residue at the centre, R,,, the m™" upstream and
R_,, the m™ downstream amino acid residue from it. A binary label
indicating the occurrence of a PTM type is associated with each instance.
Such a 2m + 1-tuple representation of a training sample can then be

labelled as:
1 if Ry is positive
n=fo, @
' if Ry is negative
All positively and negatively labelled instances together form the training
dataset. The value for m varies from one modification to another due to the
different physical natures of each and is generally decided by inputs from
domain experts or through experimentation. For example, a very short
window would not sufficiently describe a chemical or structural space while

increasing the window length comes with an overhead of added complexity

and possibly hinder performance rather than enhancing it.
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Having decided on the reference frame for a site of interest, to establish a
useful predictor model the training samples now need an effective
mathematical expression of its features that can reflect their intrinsic
correlations and form determining patterns with respect to a class. A
number of concerns arise and need to be factored while designing a
representation to render it an effective collection of markers that is able to
exhibit the intricacies in correlations among the instances of a class that

reduce ambiguity as much as possible and determine a good separation.

PID Cysteine Position Subsequence Window
Size
P60202 227 NLLSICKTAEF 11
P60202 227 SNLLSICKTAEFQ 13
P60202 227 GSNLLSICKTAEFQM 15
P60202 227 GKVCGSNLLSICKTAEFQMTFHL 23
P60202 227 PGKVCGSNLLSICKTAEFQMTFHLF 25
P60202 227 FPGKVCGSNLLSICKTAEFQMTFHLFI 27
P60202 227 AFPGKVCGSNLLSICKTAEFQMTFHLFIA 29

Figure 3.1 — Window representation

3.2.2.3 Feature extraction

Sequence motifs which are the substrate of activity in proteins can be
complex in the sense that correlations between residues along with their
specific positions in the sequence may play an important role. The amino
acids in the neighbourhood of a target residue may not contribute
independently to determining the modification of a site. This means that a
simple representation of the sequence windows with their raw character

values or linear weight matrices based on motifs may not hold enough
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information to help the model separate positive sites from the negative
ones. Two positions can only make independent contributions, and complex
rules that possibly factor positional correlations which are required for
obtaining acceptable levels of performance cannot be taken into account
[74]. This raises the possibility of the presence of other potential consensus

motifs based on features other than the amino acid sequence position.

This presents the opportunity to investigate the vast composition of physical
and chemical properties of each of the 20 amino acids as well as other
biological properties of the protein in consideration that decides specificity
and diversity of its structure and function. Protein sequence information is
the most logically relevant feature since it represents the evolutionary forces
responsible for conserving functionally useful motifs and have been
generally found to be the most distinguishing one too [77], [78]. Thus protein
sequence information is considered in almost all predictors. Orthogonal
binary coding, amino acid frequencies or amino acid composition [86] are
used to represent protein sequence windows as numeric vectors. Since such
a discrete representation may cause loss of the positional information,
positional weighted matrix [61], position weight amino acid compositions
[87], position specific amino acid preference [64], amino acid pair
composition [88] were proposed to extract the position information of
amino acid residues in the neighbourhood of a target residue. Chou et al.
[88] introduced pseudo amino acid composition which proposed a vector
representation of proteins that were without significant sequential

homology to other proteins and have found wide application in molecular
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biology and have been subsequently used in a number of biological
predictors. Along with sequence information, the identity of a protein is also
shaped by the composition of its constituent amino acids. Physicochemical
encoding have been shown to be particularly suited for sequence windows
[89]. The AAindex is a database of numerical indices representing various
physicochemical and biochemical properties of amino acids and pairs of
amino acids. Currently, 566 amino acid indices are released in the AAindex1
database. These indices cover extensively various formulations of amino acid
properties that have been proposed in the literature over the years and have
been used as features in the designing of a number of biological predictors
[90]. The structure of a protein is the primary decider of its accessibility. A
side-chain of amino acid that undergoes PTM prefers to be accessible on the
surface of a protein. Therefore, structural information is potentially a
significant feature. However, structural information is hard to ascertain due
to temporal and cost constraints associated with experiments. Some of the
structural features that have been proposed are accessible surface area [91]
which quantifies the percentage of the solvent-accessible area of each amino
acid on a protein and B-factor, a measure a protein’s crystal structure that
reflects the fluctuation of atoms about their average positions and provides

important information about protein dynamics.

33



3.2.2.4 Feature selection

The capability of a machine learning algorithm is greatly influenced by the
choice of features used to represent the data that it is trying to model.
Presence of redundant or strictly correlated features imparts unnecessary
complexity to the data which correspondingly raises the complexity of the
model and possibly dampens its generalization power. It also increases the
required number of training examples by the model to capture the

complexity [62]. This is an exact appeal to the present situation.

Since the features belong from different sources they are possibly noisy and
redundant. Building a predictive model using all the features is fraught with a
high computational cost. Therefore, it is imperative to select the ones that
would benefit the learning algorithm most. From a biological perspective, a
systematic comparative analysis of the best performing features so found
would help in the understanding of underlying mechanisms of the biological
event being studied. For example, on analysis of combinations of four
features (amino acid composition, accessible surface area, position weighted
matrix and physicochemical properties) for designing an S-nitrosylation
predictor, Lee et al. [72] found amino acid composition to be the most
influential individually, and more effective when combined with position
weighted matrix. While the performance was reduced when all the four
features were considered together. Such an exhaustive analysis would not
have been possible if the features being considered were not four but in

hundreds. Also, the influence of a particular feature depends on the PTM
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type. This is due to the reason that different PTMs occur in different
biological contexts. Therefore, a feature selection strategy is essential for

finding the optimal or near-optimal features of a particular type of PTM.

A feature selection strategy is a combination of a search technique over the
space of all possible feature subsets with an evaluation measure which
scores the different feature subsets. A naive way to do this is an exhaustive
evaluation of all combinations and selection of the one with the highest
predictive performance. This is computationally infeasible for large subsets
due to its exponential complexity (n features = 2™ combinations). A
number of works have subsequently explored the use of heuristics to define
a semi-optimal selection. Two of the most prominent examples of such an
approach are the forward selection and backward elimination techniques
[92]. Forward selection starts with an empty feature set and keeps adding
features one at a time that results in most improvement in the evaluation
measure while backward selection starts with the set of all features and
keeps removing features individually that most improves performance.
These methods though optimal at each stage are unable to analyze all
interactions between individual features thereby restricting the search. Both
forward selection and backward elimination techniques of feature selection
have been used extensively in designing biological models. A different
direction of approach is the use of randomness. Randomized algorithms use
randomized or probabilistic steps for selecting the subsets. The Relief
algorithm is a notable one in this sphere. It assigns weights to features based

on the performance of randomly sampled instances. Improving on the
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uncertainty of complete randomness genetic algorithms (GA) [93] use a
guided randomness approach modelled on the concepts of natural evolution
and survival of the fittest. It iteratively evolves a population of possible
solutions devising strategies to explore and exploit and the search space. By
introducing an element of guidance with help of operators that mimic the
survival of the fittest concept, it aims to find the optimal or semi-optimal
solution. GAs have been shown to be an extremely potent search and
optimization technique and several applications have deployed various
avatars of it over the years [94]-[97] for the simplicity of the working

principle.

All the feature selection techniques discussed above and a large number of
others can be grouped into three broad categories based on the way
selection is carried out (independent of the learning algorithm or not)
namely filter methods, wrapper methods and embedded methods that
combine both filter and wrapper methods. Filter approach selects feature
subsets based on the intrinsic statistical properties of the data defined by the
feature in a predictor independent way. In contrast, wrapper methods first
select a feature subset by some technique and use the performance of the
learning algorithm as the evaluation measure for the selection [98]. This
implies that the actual model performance plays a crucial role in selecting
optimal feature subsets. This approach has been shown to produce better
subsets than the filter methods with a tradeoff for computational time and
complexity. Meta-heuristic algorithms such as GAs, Particle Swarm

Optimization, Ant Colony Optimization and Simulated Annealing among
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others are applied as wrapper methods to implement the search. An
embedded approach attempts to combine the best characteristics of filter
and wrapper methods. It generally involves a preprocessing step by a filter
method for a wrapper method. In this thesis, an instance of the embedded
approach has been used as the feature selection technique. Clustering of the

features followed by a two-stage genetic algorithm has been proposed.

3.2.3 Predictor algorithm

The choice of a predictor depends on the type of data it can handle
(continuous, discrete, statistical distributions, homology), classification
transparency it can provide and the number of required resources for an
acceptable level of performance by the model which is also robust and
scalable. None of the existing methods is superior to all others for all types of
data, but each of these methods has its strengths and weaknesses
determining the scope of its applicability. Classification transparency of a
model is an important concern from the perspective of biologists since a
black box model is incapable of revealing the steps that lead to the actual
prediction decision, thus of little value in understanding the underlying
biological process. Therefore a model that can chalk out the path taken in
the decision-making process such as decision trees and random forests are
preferred over a model the working of which is difficult to decipher such as
Artificial Neural Networks and Support Vector Machines. However,
transparency and performance share a conflicting relationship yet and there

is generally a tradeoff.
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Sequence homology-based predictors such as the PTMProber [65] deploy
sophisticated sequence matching techniques between the query sequence
and the annotated protein sequences in the database. Statistical supervised
machine-learning models such as the Bayesian methods and Decision Trees
have been known to be efficient classifiers. Both these methods are
transparent predictors, the rule-based disjunction of conjunction
representation of a decision tree and the probabilistic inferences of the
Bayesian methods can be followed by hand. While the assumption of non-
existence of any correlation between features is a deterrence for Bayesian
methods, decision trees have been used extensively. Charpilloz et al. [99]
designed a motif based decision tree as a predictor which uses a category of
motifs with different similarity properties as nodes for the tree and genetic
algorithm to search for suitable candidates in the protein sequence that fit
the motifs. The pSuc-Lys [85] uses an ensemble of random forests to predict
succinylation in lysines. The computational cost of training these type of
models is relatively low but their performance tends to decrease with
increasing complexity of feature correlations. The machine learning methods
SVM and ANN can model complex correlations between features better than
other methods and have been deployed as predictors by many authors. The
AMS [64] uses a simple SVM to predict sites for multiple PTMs while Wang,
Liu &Wang [73] uses a SVM with two self-designed kernels to realize a
multiple predictor. The updated versions AMS3.0 [69] uses multiple ANNs

optimized for different evaluation measures using variations of consensus
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between multiple ANNs. A number of biological predictors use machine

learning due to their capability of modelling complex correlations.

3.2.4 Evaluation scheme and metrics

Evaluation of the performance of a predictor with standard metrics is
necessary to gauge the extent of its ability to model the problem.
Standardization is required to compare it with other prediction tools. In
order to evaluate its performance, a predictor needs to be tested on a set of
data that it has not learned on. This is achieved by holding out a portion of

the data to be used for testing purposes.

Among the several existing measures that reflect different aspects of
classification performance, four of them are most relevant in the context of
prediction of PTM sites namely accuracy, sensitivity, specificity and Mathews
correlation coefficient (MCC) [100]. For an instance in the testing set, the
model gives the probabilities of it belonging to each class as output. A user-
defined threshold then decides which class should be labelled to it. It is
possible to compare the class label predicted by the model with the actual
class label of that instance. The number of cases possible over the entire set

can be surmised into four scenarios in form of a confusion matrix.

Actual label
Positive Negative
Positive True Positive(TP) | False Positive(FP)
Predicted Label
Negative False Negative(FN) | True Negative(TN)
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The accuracy of the classifier measures the proportions of correct

predictions made and can be expressed as:

Number of true positive instances + Number of true negative instances (3)
Total number of instances

Sensitivity is a measure of the proportion of positive sites that were correctly
identified. Given as:

Number of true positive instances

(4)

Total number of positive instances

While the measure of the proportion of negative sites that were correctly
identified is referred to as Specificity:

Number of true negative instances

(5)

Total number of negative instances

A good predictor should be able to provide reliable answers for both positive
and negative cases. The ideal predictor is characterized by a high true
positive prediction rate (sensitivity) and a very low false positive prediction
rate (1-specificity). Any predictor is always a compromise between these

two oppositional requests. A low threshold results in high sensitivity but is
rife with false positives. On the other hand, a high threshold warrants a low
false positive prediction rate for a trade with the true positive prediction
rate. In a practical context of an experimental laboratory and for proteome
scans, the achievement of low false-positive prediction rates becomes more
important for the predictor for the recognition of possible cases in feasible

time. The area under the receiver operating characteristic curve (AUC), gives
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a statistic that tries to capture these two measures in a single number. IT
calculates the area under the curve formed by plotting values of sensitivity
and specificity at different decision thresholds. Taking care of the inherent
class imbalance in PTM data becomes all the more important here as a
disproportionately large negative set is bound to flood the user with false
positive instance predictions by a low-specificity predictor. The Matthews’
coefficient of correlation is widely used as an unbiased performance

estimator:

(TP X TN) — (FP X FN)
J@TP+FP)x (TP + FN) X (TN + FP) x (TN + FN)

(6)

MCC gives a balanced measure of the positive and negative instances. For
example, a model predicting all instances to be positive correctly predicts all
instances which are actually positive but this is of no use practically. The
MCC would reflect this since it takes into account all scenarios of prediction
outputs. A perfect predictive performance has an MCC value of +1 while a
random prediction has a value of 0. In the case of a total misprediction, it has
a value of -1. Also of importance is the F1 score that gives the harmonic
mean of the metrics of precision and sensitivity where precision is

Number of true positive instances

(7)

Total number of instances predicted as positive
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And therefore F1 stands as,

2TP
2TP+ FP+FN

(8)

A learning algorithm may accept a set of parameters that need to be tuned
for optimal performance. An evaluation scheme is used to tune the different
parameters of the model being built. Using the test set to tune the
parameters would amount to a biased evaluation. Therefore, there is a need
for an additional split of the data for tuning or validation. Various splitting
strategies exist among which the popular ones include the k-fold technique,
stratified folds, and leave one out validation also known as the jackknife test.
The most popular due to its lower computational demand, k-fold cross-
validation is used to verify the achieved strength of the training by weeding
out any bias that may have been caused by random sampling of instances
into training and test set. The entire dataset is divided into k splits based on
a chosen strategy. Now, k times k — 1 splits are used as training data and
the remaining split as test data. The metric scores averaged over k iterations

are then used as the final result.

3.3 Genetic algorithm

Section 3.2.2.4 introduced genetic algorithms (GA) as a guided random
search and optimization technique for obtaining good semi-optimal solutions
to the feature selection problem. Feature selection can be visualized as an

optimization problem, that is a search over all possible combinations of
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features for the subset that provides the best performance. GAs were
proposed as a computational procedure that tried to mimic the
phenomenon of adaptability so prevalent in nature [101]. Based on the
Darwinian theory of evolution of organisms by the “survival of the fittest”, a
GA operates on a population of possible solutions from the search space,
each of which is encoded in a specific manner and termed as a
“chromosome”. Each constituent solution variable (for example a feature) of
an encoding chromosome is called a “gene”. The quality or “fitness” of each
chromosome is measured using some objective function (the performance of
a machine learning model can be thought of as an example). With the help of
special genetic operators, “crossover” and “mutation” the GA aims to create
a population of new, better chromosomes from the randomly generated
initial ones. This is carried on over successive generations to find the optimal
solution until a stopping condition is reached. Increase in fitness of the
chromosomes over the generations is ensured with the help of a stochastic
sampling procedure called “selection” which results in a more directed
strategy than a purely random search. Compared to other gradient-based
deterministic search techniques [102] a stochastic strategy aided by its
randomness is able to avoid convergence to a local optimum solution which
plagues the gradient-based techniques. Exploration and exploitation are two
competing events that pose a challenge to the genetic algorithm in its search
which needs to be considered during its design in order to reach as close as
possible to the global optimum solution in feasible time. Exploitation ensures
the width of the search or the number of possibly good solutions in different

regions of the search space that can lead on to the best solution. While
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exploration, as the name suggests, refers to the investigation of the
neighbourhood of a solution with an expectation that possibly better
solutions exist within its vicinity [103]. The balance between exploration and
exploitation is controlled by a number of parameters. Other than those that
are specific to implementations of genetic algorithms for a particular
problem, the population size, crossover rate and mutation rate is common to
all and needs to be mentioned. Exploitation of fitter individuals is
determined by the selection operator. The crossover and mutation rate
determines the rate of exploration. The population size generally determines
the reach of the algorithm in a single generation and is generally constrained
by the availability of resources. The next few sections provide a discussion on
the major modules that constitute a genetic algorithm in the context of a

feature selection problem.

3.3.1 Encoding

In order to apply the genetic algorithm, each candidate solution in the search
space must be parameterized and encoded as a string called the
chromosome. In the feature subset selection problem a solution can be
coded as a n-bit binary vector where n is the number of features. A
chromosome then represents a subset of features, the presence(1l) or
absence(0) of the j-th feature determined by the value of the j-th bit (j =
1,2,3..n).

Figure 3.2 — A chromosome for a feature selection problem
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3.3.2 |Initialization of population

The algorithm manipulates a set of solutions at a time, also called the
population. The size of the search space guides the decision on the number
of chromosomes m to form a population. The chromosomes of the initial
population are generated by setting the bits of the vector to 0 or 1 randomly
or according to some heuristic. Often, the initial population is generated in
as diverse a way as possible. If the size of the population is too small it may
fail to represent enough diversity and the algorithm may converge to a
solution prematurely while a very large population size would take a long

time for convergence.

1 0 1 | s 1 Chromosome 1
1 feature 2" feature 3 feature n® feature
0 0 i 1 Chromosome 2
1% feature 2" feature 3" feature nt feature
g 1 0 0 | 1 Chromosome 3
.g
= 1% feature 2" feature 3" feature n™ feature
o
o
[
1 1 1 | GG 0 Chromosome m
1= feature 2" feature 3 feature n® feature

Figure 3.3 — Illustration of a population in a genetic algorithm

3.3.3 Fitness evaluation

For each chromosome c in the population, the learning algorithm is trained

and tested using the data described by the subset of features represented by
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the chromosome. One of the evaluation metrics used to express the
performance is then used as the fitness score f[c] of the respective

chromosome.

3.3.4 Selection

The selection operator decides which chromosomes from the population
would participate in creating the next generation based on a strategy.
Usually, the fitness of a chromosome plays a major role in deciding its
chances of getting selected as the “parent”. This selection operator is
responsible for incorporating the concept of Darwin’s “survival of the fittest”
into the genetic algorithm. Essentially, the better fit chromosomes contain
good features and their exploitation along with other well fit chromosomes
should possibly lead to better solutions and convergence to the optimal
solution in succeeding generations. The selection operator may be
parameterized to establish a control on the selection pressure which is
necessary for maintaining the balance between exploration and exploitation.
A very strong selection pressure would cause the algorithm to converge early
without much exploration while a very low selection pressure would cause
the algorithm to wander around randomly without any direction. The
Roulette Wheel Selection (RWS) method is a very popular choice for the
selection operator. The RWS attaches to every chromosome c¢ in the
population a probability value p[c] of its selection which is proportional to

its fitness f[c].
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P = S

Where m is the population size.

The RWS algorithm can be described as,

(9)

Input:
Population

Procedure:
totalfitness=0
for c in population
{
totalfitness+=f[c]
}
generate a random number x€[0,totalfitness]
sum=0
for c in population
{
sum+=f[c]
if sum>x
return c
}

Output:
Selected chromosome

Several selection methods have been designed till date [104] among which

Roulette Wheel Selection, Stochastic Universal sampling and the tournament

selection are very widely used.

3.2.5 Crossover

Once the parent chromosomes are selected from the population, the

crossover operator is used to exchange the information contained by them

for further exploration. The idea is to combine the good parts of one parent
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with the good parts of another to form an “offspring” chromosome that is
better than each of the individual parents. Traditionally crossover methods
decide on a single or multiple crossover points along the length of the
parents by some strategy, dividing them into segments, which are then
exchanged. The crossover strategy used plays an important role in balancing
exploitation with exploration or vice-versa by causing disruptions in the
search direction of the genetic algorithm [105]. A number of crossover
strategies have been devised such as the single-point crossover, 2-point
crossover, k-point crossover, ordered crossover, etc. which vary in their
capability to maintain an order and the amount of disruption they cause. The
uniform crossover method has been shown to perform well in large scale
feature optimization problems [105]. It considers each gene (bit position) as

a segment and exchanges them randomly.

Parent 1 0 O 1 1 SssssssssRsEREs RN 1
1 feature 27 feature 3 feature 4" feature At feature
Parentz 1 0 0 0 ass EERARERANBRERRER N 1

1+ feature 2" feature 3 feature 4" feature n'" feature

Prob « cross_rate

ES
58
€
E

Prob > cross_rate

Oﬁsprlngl 1 0 1 0 SEs s sssERRERRERRR S 1
1+ feature 2 feature 39 feature 4™ feature ' feature
Offsprlngz 0 0 0 1 Sss s sssERRERRERRR S 1

1+ feature 2" feature 3 feature 4" feature n'" feature

Figure 3.4 — Uniform Crossover
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3.2.6 Mutation

Offspring chromosomes formed after crossover between parents are further
explored with the mutation operator. The idea being having combined the
information from two good chromosomes with the possibility of retaining
the parts that are responsible for the good-ness, it might be the case that an
addition or removal of a good or bad feature or two respectively could result
in a little more exploration and make it even better. The rate of mutation
decides the amount of disruption to be caused. It is usually kept very low
since a high mutation rate may cause the offspring to lose whatever
information it gained from the combination of its parents and derail the
search. For the length of a chromosome, a bit position is switched if it is less
than the mutation rate otherwise left alone. Mutation is also necessary to
break deadlock situations which may arise while performing crossover
between two instances of the same chromosome. Such a situation is possible

since a highly fit chromosome can get selected multiple times.

Prob < mut_rate

Prob > mut_rate

Offspringk 1 O 1 O SssssBEsEEER RN RS 1
1% feature 27 feature 3 feature n'" feature
Offsprlngk 0 O 1 O SsssEBEss SR ERRREE S 1

1% feature 27 feature 3 feature n'" feature

Figure 3.5 - Mutation
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3.2.7 Parallelization

The past few decades have seen an increase in computational prowess in
multiples. With the advent of new-age parallel architectures that leverage
the additive performance of multiple processors, computational throughput
has increased manifolds. Executing multiple tasks in parallel can significantly
reduce the computing time of high complexity jobs, especially the ones
which has discrete modules. In addition to the implicit parallelizability of a
genetic algorithm (a set of solutions are investigated at a time), it is possible
to reduce the time for search by modifying it into a suitable parallel
implementation by employing a number of computer processes with
distributed or shared memories. The concerns regarding such a parallel
implementation range from the number of available processors to the inter
processor communication time and computation time of the distributable
tasks. The strategies that are in use can be categorized into two broad
groups. The “island” model divides the entire population into a number of
distinct subpopulations which are evolved independently and simultaneously
with some amount of migration between them. The “farming” model uses a
master-slave approach in which the population resides on a master
processor and the fitness computation of the chromosomes is distributed to

multiple slave processors [106].

These modules form the foundation of the genetic algorithm. The algorithm

starts with the initialization of the population followed by evaluation of the

fitness of the chromosomes. This forms the first generation of individuals.
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Thereafter, the selection operator iteratively selects parent chromosomes,
crossover is applied to mate them, the offsprings are further mutated
followed by their fitness evaluation forming the population of the new
generation and this process is repeatedly carried out until a stopping

condition is met.

Deciding on the making of the new population and the stopping condition is
an essential cog in the wheel. The algorithm is supposed to ensure the
evolution of the solutions in successive generations. The new population has
to be a representative of that notion. Although the inherent mechanism of
the genetic algorithm is evolutionary, it can be further supported either by
keeping a check on the new chromosomes formed or deciding on a
replacement strategy. A popular technique is to retain the best chromosome
from the previous generation if none of the chromosomes of the new
population is able to perform better. Such an elitist strategy has been shown
to perform well when there is sufficient exploration. Among the replacement
strategies, the crowding scheme makes the new chromosome replace the
worst chromosome of the previous generation if it has a better fitness [107].
Finally, determining the stopping condition is also crucial for the genetic
algorithm to be able to locate a good solution. Common strategies include
fixing a number of generations for which the algorithm is allowed to run,

fixing a threshold fitness value or specifying a saturation point [108].
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Algorithm: GA

Input:
pop_size: population size
pc: crossover rate
pm: mutation rate
g: number of generations
s: saturation
Procedure:
while [population|<pop_size
{
generate new chromosome c and evaluate fitness f[c]
}
best=c in population with maximum f[c];saturation=0
dof
while [new population[<pop_size
{
select two chromosomes from population p1 and p2
generate random number x€[0,1]
if x<pc
{
Crossover p1 and p2 forming c1 and c2
mutate c1 and add to new population
mutate c2 and add to new population
}
else
{
if p1 and p2 not in child population
add to child population
else
continue

}
}
worst=c in new population with minimum f[c]
if maximum f[c] in new population <f[best]
replace worst with best
saturation+=1
else if maximum f[c] in new population=f[best] and number of 1 in ¢ with maximum
flc]>=number of 1 in best
replace worst with best
saturation+=1
else
best=c in new population with maximum f[c]
saturation=0
} while generation<gen and saturation<s
return best

Output:
Best chromosome
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Chapter 4

Materials and methods

This thesis has proceeded to work on the problem of predicting S-
nitrosylation post-translation modification sites in proteins. For the purpose,
a feature optimization technique has been proposed to improve predictive
performance. It ensues by clustering of the features followed by
optimization in two steps. Genetic algorithm is used as a wrapper based
feature selection method to find the optimal subset of features within the
clusters, the resulting subsets are then merged and optimized using another
iteration of the GA. The performance of a classifier machine learning
algorithm is used as the objective function for the GA. The following sections

elaborate the steps taken to carry out the proposed process.
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4.1 Data collection and preparation

The benchmark dataset used in this work has been downloaded from the

dbPTM (http://dbPTM.mbc.nctu.edu.tw/) [68] database that contains

information about multiple PTMs. The database contains non-homologous
benchmark datasets for individual PTM types which are curated by the CD-
HIT program [109] for homology reduction. After homology reduction, the
resulting sequences are labelled by mentioning the sequence positions of the
residues annotated to be modified protein-wise in the positive set and the
non-modified residues of the same type in the negative set. Moreover, to
reduce the imbalance between the negative and the positive set, a further
homology reduction step has been performed on the negative set and the
sequences that are found to be at a similarity threshold that is higher than
what prevails in the positive set are removed. The extracted data for S-
nitrosylation contains 3592 sites in 2077 proteins in the positive set and
5803 sites in 1434 proteins in the negative set. The corresponding protein
sequences are then derived from the uniprot knowledgebase (UniprotkB) of

the Uniprot (http://www.uniprot.org) [11] database. In order to reduce the

imbalance some more, 4000 negative sites selected randomly are considered
as negative data. Post this 283 sites in 82 proteins are separated from the
dataset to be used as a test set for final performance evaluation and
comparison with other S-nitrosylation predictors. The filtered dataset now
contains 3458 sites in 1495 proteins as positives and 4000 sites in 1267

proteins as negatives to be considered as training instances.
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4.2 Classifier model

The support vector machine (SVM) [110] is chosen as the learning algorithm
to carry out the classification, it being one of the most preferred classifiers
when the problem is a binary classification. With respect to PTM related
predictions, it has been shown to perform well compared to other shallow
classification algorithms such as Random Forest, KNN and a few others [111].
The SVM tries to create a decision hyperplane in the data space between the
two classes such that it is separated from them as much as possible. It aims
to achieve this by projecting the data into a higher dimension and selecting
certain data points, called support vectors, which it uses to decide on the
separation. This makes it better suited for high-dimensional datasets. The
publicly available SVM package scikit-learn is used to design the classifier

using a polynomial kernel.

4.3 Feature extraction and training sample representation

Next, the lengths of 17 to 21 are chosen as values for m to describe the
reference frame of each site instance. Thereafter, the sub-sequences of
interest with respect to each site are extracted from their respective protein
sequences as windows of length 2m + 1 with Cysteine at the centre. The
window that provides the best performance is selected to be worked upon
further. A rather crude similarity negation step is carried out while
generating the subsequences by restricting any overlap between two

subsequences. For the features, in the present work, 566 different feature
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descriptors viz,. various physicochemical and biochemical indices from the

AAindex (http://www.genome.ad.jp/aaindex/) [90] database have been used

to describe an instance initially. Also, in order to retain some of the sequence
positional information of the amino acid residues, a feature called the
Position Specific Amino Acid Propensity (PSAAP) have been adopted from
[112]. The PSAAP is defined as a matrix of dimension 20 X 2m + 1 where an
entry in the ith row and the jth column indicates the propensity of the ith
amino acid in the set of 20 amino acids arranged alphabetically to occur at
the jth position in the subsequence. The PSAAP takes into account the
negative imbalance by averaging over b bins of size P each, where b = P/N,
if N and P are the total number of negative and positive sequences
respectively. Then an entry in the i, j-th position of the PSAAP matrix is be

given by

CF@Dr = FG Dy,

PSSAP;; = (10)
’ OF (i) yp

Where f (i, ) is the occurrence frequency of amino acid i at position j.

A feature then comprises of a (2m + 1) + (2m + 1) length max-normalized
vector for each sub-sequence, formed by substituting the amino acids with
their values of the respective property from the AAindex and their

propensity value from the PSAAP.
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Figure 4.1 = An example of an instance vector

4.4 Feature optimization

A multitude of steps is performed next to optimize the set of features. The
566 indices from the AAindex are first clustered using the method described
in [113] which uses a hierarchical clustering technique and a silhouette score
as a measure for the validity of a cluster. This is done to group together the
features which are similar based on their descripting values. This returns 331
non-singleton and 185 singleton clusters. A genetic algorithm is then used to
optimize the features corresponding to the clustered AAindices in two steps.
A first run of the GA selects the best performing features from within each
cluster. The so obtained features are then merged together and the GA is run
a second time on these features. The GA is parallelized based on the master-
slave model. The features indicated by each chromosome is used to form the

training data for an SVM model. The ratio of the positive and negative
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samples is kept at 1:1 for which the negative instances are randomly
sampled from the total set of negative instances. The model performance is
averaged over 3 equal folds of cross-validation, each on a different
processor. MCC is selected as the evaluation metric which is used as the
objective function by the genetic algorithm. The implementation of the
genetic algorithm designed includes a Roulette wheel as the selection
operator. The crossover between two parents is performed uniformly across
the length of the chromosome and its subsequent mutation. Existence of
duplicate solutions in the population is checked and weeded out. The
chromosomes forming the new population is checked for twins, if found they
are discarded and the creation of another chromosome takes place. This is
done to ensure diversity in the population. Along with this, the best
performing individual is retained in the succeeding generation if a better
solution is not found. To break a tie between two equally performing
chromosomes, the one with the lower number features is retained. Finally,
the global best chromosome is returned. A successful iteration of the GA
results in a subset of the original features. The GA is restarted on this feature
subset. This continues until a recursive instance is able to improve the

performance further.
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4.5 Parameter Selection

A number of parameters have been used across the designing of the
method. The SVM accepts two essential parameters. The kernel parameter
‘gamma’ which is set to 0.02 decides the radius of influence of samples from
the decision plane. The penalty parameter ‘C’ indicates the stringency of the
classifier and how it treats wrongly classified instances. This is set to 1 which
is otherwise also its default value. The essential parameters for the genetic
algorithm are population size, crossover rate, mutation rate, and the
stopping condition. The population size is set to 15. This decision is primarily
based on the number of available processors. The crossover rate is set at 0.7
and the mutation rate at 0.01. 100 generations are fixed as the stopping
condition along with a saturation criteria. If the global best fitness does not

improve over 50 consecutive generations the iteration is terminated.
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Chapter 5

Experimental Results

The experimental results obtained in multiple stages of the method are
described in this chapter.

Table 5.1 shows the performance of the classifier on different window
lengths using all the features together. The length of 19 was found to give

the best result and was subsequently selected for further experimentation.

Table 5.1 — Performance of different window lengths

17 18 19 20 21
F1 0.707 0.710 0.714 0.712 0.708
AUC 0.783 0.785 0.788 0.785 0.784
MCC 0.384 0.390 0.411 0.4 0.387
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Having fixated on the window the features were tested individually and
ranked according to their MCC scores. Table 5.2 shows the top 20

performing indices.

Table 5.2 — Top 20 performing features ranked by MCC

BIOV880101 0.688 0.767 0.397
RICJ880108 0.703 0.767 0.395
O0OBM850103 0.675 0.764 0.395
MEEJ810102 0.717 0.768 0.394
MEIH800103 0.668 0.766 0.393
MEIH800102 0.699 0.766 0.392
HUTJ700102 0.718 0.768 0.392
MIYS850101 0.71 0.768 0.392
PALI810104 0.702 0.764 0.391
WARP780101 0.7 0.767 0.389
ROSG850102 0.678 0.767 0.389
NADH010102 0.685 0.769 0.389
MANP780101 0.662 0.765 0.389
00BM770103 0.677 0.766 0.388
TSAJ990102 0.653 0.762 0.388
ZHOH040103 0.681 0.765 0.388
GEIM800105 0.705 0.763 0.388
KARS160106 0.658 0.76 0.388
BIGC670101 0.669 0.762 0.387
RADA880108 0.697 0.762 0.387
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Following this, forward selection was performed on the ranked features.
Table 5.3 shows the indices that were selected as the result of forward

selection.

Table 5.3 — Features selected by forward selection

BIOV880101

RICJ880108
00BM850103

MEEJ810102 0.721 0.770 0.399
MEIH800103

MEIH800102

HUTJ700102

Next, the indices were clustered using their raw values from the AAindex.
This resulted in 331 clusters, of which 185 were singleton clusters. The
genetic algorithm was run on each individual cluster first. 441 indices were
selected from the 566 initially over all the clusters. The GA was then

executed again on these 441 indices which finally resulted in the 55 indices.
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Table 5.4 — Largest 10 clusters of feature descriptors formed and their reductions after two stages of GA

CLUSTER NUMBER

Cluster16

Cluster38

Cluster51

Cluster56

Cluster116

Cluster156

Cluster183

Cluster233

Cluster235

INITIAL

PALJS10101 LEVM780104
GEIM800101 PRAM900102
LEVM780101 PALJ810102
CHOP780201 MAXF760101
KANMBS00101 ISOY800101
ROBB760101 CRAJ730101
BURA740101 TANS770101
NAGK730101 PALJ810109
GEIMS00104
GOLD730102 BIGC670101
KRIW790103
GRAR740103
TSAJ990102
TSAJ990101
CHOC750101 PONJ960101
HARY940101
ROBB760103 PTIO830101
ROBB760104 QIANS80109
QIANS80108
QIAN880110
FAUJS880113 FASG760103
BLAMY30101 ONEK900101
BUNA790101
PONP930101 MANP780101
PONP800108 NISK800101
CORJI870101 PONP800102
PONP800101
PONP$00103
SIMZ760101 GOLD730101
JOND750101
ARGP820101
FAUJ880108 CHOP780212
RACS820104
GRAR740101
KIDA850101 ROSM880102
KUHL950101
ROSMS80101
GUYHS$50104 JANJ780101
JANJ780103
CHOC760102
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AFTER INTRA-CLUSTER

GA

PALJ810101
CRAJ730101
BURA740101

PONJ960101

ROBB760103 QIAN880108

QIANS80110

ONEK900101

PONP800103

ARGP820101

RACS820104 GRAR740101

ROSM880102 KUHL950101

GUYHS850104 JANJ780101

AFTER INTER-
CLUSTER GA

KANMS800103 RACS820108
1SOY800101 CRAJ730101
RICJ880112 PALJ810108
HUTJ700103 HUTJ700102
QIANS880112 FINA910104
KARS160111 DAWD720101
JACR890101 FASG760105
NADHO010103 CORJ870101
TANS770103 NAGK 730102
CHOP780209 PALJ810112
PTIO830102 WIMW960101
ZASB820101 VASMS830103
RICJ880111 COSI940101
CHOP780203 CHOP780211
PARS000102 KARP850103
FAUJ880110 JANJ780101
1SOY800107 RICJ880113
MEIH800102 KARP850101
BULH740101 NAKH920102
JUKT750101 NAKH920107
FUKS010105 GEOR030104
AURR980119 FASG760104
1SOY800106 WEBA780101
JOND920102 OOBM770105
OOBMS850104 PALJ810114
CHAMS820102 WILM950103
WILM950104 GEIM800103
ROBB760111



Table 5.5 — Performance comparison of feature selection

feeﬁllllres gglzgfi B

F1 0.714 0.721 0.719
AUC 0.788 0.770 0.778
MCC 0.411 0.399 0.468

It can be observed from the results (Table 5.5) that the genetic algorithm
was able to converge on a subset of features that improved its performance
as compared to using all available features. To compare the predictor, it was
then tested with three other S-nitrosylation predictors GPS-SNO [114],
SNOSite [72] and DeepNitro [115] that had a web-server running or an
executable available that could be downloaded. Further, the GPS-SNO
allowed testing at the decision thresholds of low, medium and high. As is the
practice that a PTM predictor should accept entire protein sequences, the
sequences of the 82 proteins separated into the test set at the beginning of
experimentation containing 283 cysteine sites were submitted to all the

predictors. The performance scores thus obtained are given in Table 5.6.

65



Table 5.6 — Comparison of designed predictor with other predictors from the literature

GPS_SNO GPS_SNO GPS_SNO Proposed
SNOSite DeepNitro
(low) (medium) (high) Method
Accuracy 0.593 0.611 0.636 0.636 0.72 0.625
F1 0.444 0.395 0.343 0.611 0.582 0.646
MccC 0.127 0.136 0.175 0.299 0.395 0.351
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Chapter 6

Conclusion

Even several years after the publication of the human genome, the largest
functional category of the predicted and known genes, is the one labelled
“function unknown”. Classification of these proteins which have no
homology to known proteins represents a gigantic experimental task.
Prediction methods may aid in solving this task. For example, it has been
shown that some proteins, which are related functionally, but not related at
the sequence or structure levels, share some of the same PTM features.
PTMs are therefore significant biomarkers and of interest much beyond the
individual sequence, to understanding evolutionary pressures that go
beyond maintaining protein structure. It might be speculated, that for some
proteins the ability to become modified is more important than to preserve
its three-dimensional structure. It is not unlikely, that the understanding of
protein function in the coming years will involve PTMs in a much more

prominent role, and in that sense balance the picture which so far has mostly
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been based on protein structure. The thesis is intended at designing a
robust and reliable predictor for potential S-nitrosylation sites in proteins
which is also able to provide an insight into the analysis of biological
relations that are responsible for the event. Results obtained indicate, that
the predictor is able to achieve comparable performance with other S-
nitrosylation predictors. This work proposes a feature optimization
technique on two levels. As a preprocessing step, the feature descriptors
used to formulate the problem space, are clustered to group the ones
together that are similar. A recursive implementation of a GA is then used to
optimize the features intra-cluster and inter-cluster. A much regrettable fact
is that, though machine learning techniques are able to model complex
correlated factors and are hence highly sought for, they are completely
mathematically oriented and the models that they generate are extremely
hard to interpret back to human readable logic. The genetic algorithm based
optimization of attributes proposed in this work can alleviate the issue by
providing a way to understand what attributes are at work, which can be
accepted with a reasonable compromise. Along with the analysis of
predicted PTM sites, the analysis of the selected features and the ones
excluded should reveal important hints to the concerned. The work reveals a
few threads that can be improved upon in the future. An issue with the
PSAAP is that it is not able to factor correlations between residues.
Currently, the physicochemical properties of the surrounding environment of
the modification site were used as the main structural information to
develop the predictor. However, the enzymes involved in reactions exhibit

specificity not only for the amino acid residues to be modified but also for
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the tertiary structure of protein substrates. Studies have indicated that a
distinct subset of reactions occurs at residues buried deeply in the proteins.
Therefore structure-based properties need to be compulsorily integrated.
There exist a number of other properties of a protein which are possible
major players in its function. Cellular localization and the interaction
pathways to name a few. All of these pose as important candidates for
features. The genetic algorithm also has multiple scope for improvement. A
purely stochastic GA has to deal with an issue of premature convergence.
Local gradient-based search added to it as support could improve its
performance. Finally, the proposed method as a feature optimization

technique for PTMs can be generalized to other PTMs.
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