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ABSTRACT 

 Advances in composite technology have led the extensive application of composite 

materials in energy, aviation and marine engineering. A cantilevered twisted composite 

cylindrical shell idealized as turbo machinery blade offers higher strength to weight ratio, 

durability and design flexibility with tailoring of fiber angles in different layers. Delamination is 

the most common cause of failure of laminated composite structures, particularly under 

compressive loads. The presence of delamination in the composite turbomachinery blades 

reduces its overall strength and attenuates the desired vibration characteristics. Moreover, the 

delamination tends to increase rapidly under impact loads, causing further reduction in structural 

strength. In order to improve the safety and durability, stiffeners are integrated at suitable 

orientations of such composite shell structures. Stiffeners also help to improve the vibration and 

impact response of such structures. Therefore, the composite turbomachinery blade is idealized 

as twisted laminated cylindrical shell with laminated composite stiffener. Dynamic analyses in 

respect of free vibration characteristics and impact response of pretwisted delaminated stiffened 

cylindrical shells are studied in this present work using finite element method. 

 The element stiffness and mass matrices for the laminated stiffened shell elements have 

been computed by appropriate combinations of the eight noded isoparametric shell element with 

three noded isoparametric curved beam element. In the present method, the effect of mass and 

stiffness of the stiffener are being lumped at the nodal points of the shell element considering 

their eccentricity and curvature. Multi-point constraint algorithm is utilized to model 

delamination within the shell. A generalized in-house computer code is developed to compute 

numerical results. The present method is validated with benchmark problems of free vibration 

and low velocity impact problem available in the open literature. Furthermore, additional 

problems have been taken up with different parametric variations for both free vibration and low 

velocity impact analyses to arrive at some meaningful conclusions.  

 For free vibration analysis a generalized cylindrical stiffened shell as well as long, 

intermediate and short cylindrical stiffened shells based on Aas-Jakobsen's parameters is 

considered. Parametric studies have been performed to predict the effects of stiffener orientation, 

twist angle, fibre orientation, delamination along span and across thickness, stiffener thickness to 

shell thickness ratio, eccentricity of stiffener and rotational speed on the fundamental frequency 

of the stiffened shell. Some basic guidelines are suggested to select the useful design parameters 

of the panel such as x-directional eccentric top stiffeners with fiber orientation within the range 

of 60
0
 to 70

0
are beneficial. 

 Low velocity impact response of pretwisted laminated composite stiffened shells under 

the impact of single and multiple masses have been investigated. The modified Hertzian contact 

law is utilized to compute the contact force between shell and impactor while Newmark's time 

integration algorithm is used to solve time dependent equations of cylindrical stiffened shell and 

the impactor. A detailed parametric study in terms of stiffener orientation, delamination across 

the thickness, eccentricity of stiffener, stiffener depth to shell thickness ratio, initial twist, 

diameter of impactor, velocity of impactor and rotation of stiffened shell are performed for low 

velocity single impact, multi-impact and time delayed multi-impact cases to arrive at some 

significant conclusions. The work reported in this study provides an efficient modeling approach. 
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[ ]D   Elasticity matrix of shell element  
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xyyx NNN ,,  In-plane force resultants of shell per unit length 
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xz QQ ,
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[ ]ijQ  Off axis elastic constants  

yzxz QQ ,              Transverse shear resultants of shell per unit length 
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y
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Torsion resultants per unit length of x-and y-directional stiffeners, 

respectively 

X, Y, Z Global coordinate axes 

a Length of delamination 

b width of shell in plan 

bst width of the stiffener 

d Distance of centre of delamination from fixed end. 

dst thickness of the stiffener. 

{ }nd  Vector containing element nodal displacements and rotations.
  

sxe , sye  Eccentricities of x and y direction stiffeners with respect to  

 shell mid-surface, respectively. 

h  Thickness of shell 

h′  Distance of delamination across the thickness from top ply 
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k  Contact stiffness of the shell 

im  Mass of the impactor 

nl, nlx, nly Number of layers in laminated shell, x-directional stiffener and y-

 directional stiffener, respectively 

nx, ny number of stiffeners in x and y directions, respectively 

p intensity of uniformly distributed load per unit area 

ir  Radius of the spherical impactor 

u , sxu  Tangential displacements along x axis of shell and x-directional 

stiffener elements, respectively 

v , syv  Tangential displacements along y axis of shell and y-directional 

 elements, respectively 

w , sxw , syw  Transverse displacements along z axis of shell, x-directional stiffener 

 and y-directional elements, respectively 

iw  Displacement of the spherical impactor 

ν  Poisson’s ratio of the spherical impactor 

ξ , η                    Local natural coordinates of an element  

α , sxα , syα  Rotations along x axis of shell, x-directional stiffener and y-

 directional elements, respectively 

β , 
sxβ , 

syβ  Rotations along y axis of shell, x-directional stiffener and y-

 directional elements, respectively 

α  Depth of indentation 

mα  Maximum indentation 

crα  Critical indentation beyond which permanent indentation 

12ν , 13ν , 23ν  Poisson’s ratios of laminated shell and stiffener 

θ  Orientation of fiber in the lamina with respect to x-axis. 

yx εε ,         Normal strains 

γxy , γxz, γyz    Shear strains 

yx κκ ,  Parameters of curvature variation of shell 

xyκ  Parameter of torsion 

yx σσ ,  Normal stresses in the shell along X- and Y- directions respectively. 

yzxzxy τττ ,,  Shear stresses in YZ, XY and XZ planes of shell, respectively. 

sy

y

sx

x σσ ,  Normal stresses in the x- and y- directional stiffeners, respectively 

sx

xz

sx

xy ττ ,  Shear stresses in YZ plane of x-directional stiffener, along Y and Z 

axes, respectively 
sy

yz

sy

yx ττ ,  Shear stresses in XZ plane of y-directional stiffener, along X and Z 

axes, respectively 
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sy

s

sx

ss kkk ,,  Shear correction factor for shell, x-and y- directional stiffeners, 

respectively 

ρ mass density of shell and stiffeners 

kρ  Mass density of the k
th

 layer of the laminated shell and stiffener 

Ω′  Actual angular speed of rotation of the stiffened shell about Z-axis 

Φ  Twist angle of the stiffened shell 

Ω  Non-dimensional rotational speed [ nω/Ω′=Ω ] 

nω  Fundamental natural frequency of stationary stiffened shell 

ϖ  Non-dimensional fundamental frequency [ϖ = 2

1

2 / hELn ρω ] 

∆t time step 

 

Numbering of Figures, Tables and Equations 

Figures, tables and equations have been numbered in accordance with the chapters in 
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CHAPTER 1 

INTRODUCTION  

 
1.1 GENERAL 

 Fibre reinforced polymer (FRP) composites have been introduced into a wide range of 

industrial applications as found their superior performance over alternative materials. FRP 

composites are favored in many practical applications because of their high strength to weight 

ratios, excellent fatigue and corrosion resistance, longer durability, high tailorability and also 

have greater resistance to environmental degradation. Plates and shells consisting of composite 

layers with different fibre orientation, posses high specific strength and specific stiffness and are 

used as structural elements for aircrafts, ships, automobiles, turbomachinery blades, impellers 

etc. Application of shell structures in mechanical engineering which found in automobile, marine 

and other industries covers turbine blades, helicopter blades, and impeller of pumps etc.  

 The engineers have attempted to make the composite shell as thin as practicable so as to 

reduce the dead weight is reduced and structure function as a membrane, free from large initial 

bending stresses but not at the cost of its strength. This idea of achieving increased strength-to-

weight ratio was led to a step forward by integrating the skin with a row of ribs called as 

stiffeners. These are so named because the presence of the ribs makes any thin-walled structure 

such as composite plates /shells stiffer due to the addition of the stiffness of the stiffener itself. 

Such structures are not purely human innovation. Examples also exist in nature in the form of 

fish, mushroom, leaf etc. The wide use of stiffened structural elements in engineering has started 

in the nineteenth century, mainly with the application of steel plates for hull of ships, steel 

bridges and aircraft structures. The composite stiffened structures are widely used in the 

engineering applications and have found applications in several fields of modern industry. The 

stiffeners used in these structures may consist of open or closed sections. The open sections are I, 

T, Z, L inverted T or rectangular sections and closed sections are box and hat stiffeners. The 

open sections are less rigid in torsion than the closed ones. Depending on the arrangement of 

stiffeners with respect to the shell mid surface, it can be classified as concentric or eccentric. The 

stiffener is concentric, if the centroid of the stiffener cross section coincides with the shell mid-

surface and is eccentric, if the stiffener centroid remains above or below the shell midsurface.  
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   Owing to its laminated construction of the stiffened shell, delamination happens 

to be one of the most feared damage modes in composite structures. Because of its insidious 

nature, the detection and prediction of delamination presence and growth becomes very difficult 

for the designers. Delamination tendencies of structures are higher near holes, cracks, free edges, 

and bonded joints wherein the stress concentration effect are generally higher. Presence of 

delamination reduces the strength and stiffness of the composite laminates which resulting in 

reduced service life of the components. Moreover, high rotational speeds in turbomachinery 

blades results in centrifugal forces of considerable magnitude manifest itself through geometric 

stiffness, which known as centrifugal stiffening. This could be regarded as problem of initial 

stresses of the shell element. Existence of initial stresses usually aggravates the delamination 

damage and hence the study of delaminated shell is of prime concerned. In early 1950’s the 

development of high-speed turbomachineries such as turbines, compressors, fans and blowers 

search for advanced materials that could resist the high temperature and the associated dynamic 

stress generated on the turbomachinery components. Failure of the turbine or turbo-compressor 

blades due to fatigue became a critical issue for researchers especially the turbine blades 

vibrating near their resonant frequencies. The accurate prediction of the natural frequencies of 

the turbomachinery blades became a topic of considerable research interest during the design 

phase itself. Pretwisted open cylindrical shells are special shells where the curvature of the mid-

surface along one of the orthogonal direction is absent (Rx=∞) and the pretwist provides for the 

initial stress-stiffening of the composite structure. Turbomachinery, impeller or fan blades can be 

idealized as composite cylindrical stiffened shells of low aspect ratio. Owing to the fact that there 

are numerous fixed and rotating blades in a turbo-machine the accurate point of failure of such a 

system is extremely complex and hence requires the help of numerical techniques such as finite 

element method.  

 The impact load in general results large deflection bending of the blades, generating high 

local stresses and deformations ensuing complex damage modes in the blades because of 

heterogeneous and anisotropic behavior of composites. Among these loads, low velocity impact 

loading due to its high strain rate causes more damage in composite structures than their metallic 

counterparts. Damage mechanisms typically caused by low velocity impacts in laminates are 

matrix cracking, fiber fracture and delamination at resin-rich interfaces within the composite 

structure. Impact damages cause a substantial reduction in the material’s compressive strength 
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and stiffness. Hence, for effective design of the stiffened shell it is very significant to understand 

the low velocity impact response of the structure. Consequently, the present investigation is 

concerned with the free vibration and low velocity impact analysis of rotating delaminated 

pretwisted stiffened cylindrical shell. 

1.2 METHODS OF ANALYSIS 

The exact analysis of rotating delaminated pretwisted stiffened shells is based on the 

theory of elasticity. This is rarely performed due to its tedious and difficult computational 

procedures for evaluation of deflection and stresses of this complex structure. Considering the 

early modeling of stiffener, three types of models were created to idealize the structure to simpler 

one for which solution methods were known. In the first category, the elastic properties of 

stiffeners are distributed uniformly along the orthogonal directions and the stiffened shell is 

replaced by an equivalent orthotropic shell of constant thickness. The orthotropic shell theory 

demands equal and close spacing of stiffeners. Also the stiffeners are to be of identical profiles. 

Moreover, as the shell and the stiffeners are converted into an equivalent shell, the evaluation of 

stresses in the shell and the stiffeners separately becomes difficult. Further, the evaluation of 

properties of the equivalent shell becomes a difficult proposition. This restrict the usefulness of 

the technique. 

 In the second type of model, the stiffened shell is idealized as grillage, which is a plane 

structure of intersecting beams and carry lateral load through the action of beam bending. There 

are basically two drawbacks in this approach. First, the centroidal planes of beams in different 

directions are assumed to be same, which affect the accuracy of stresses calculated. Secondly, 

that the beam properties are derived based on effective breadth of plate/shell is an issue, which 

still remains inconclusive. Further, a part of same plating (effective breadth) is considered to be 

effective for both the intersecting beams. Therefore, this model has restrictive usage. 

The third category of model is more realistic and accurate. Here, the stiffened plate/shell 

structures are replaced by discrete plate/shell and beam idealization, where the plate/shell and the 

stiffener are modeled separately maintaining the compatibility at the interface of the two. The 

plate/shell-beam idealization makes the analysis sufficiently involved and complex, but it gives a 

better picture of structural behavior. However, the advent of digital computers and parallel 

development of techniques of structural analysis, have made the analysis of structures simpler 
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and more accurate. There are a number of numerical methods in which the plate/shell and the 

stiffeners are treated as separate entities. These are  

Finite difference method, 

Energy method, such as Rayleigh’s method, Rayleigh-Ritz method, Galerkin method, etc, 

Dynamic stiffness method, 

Finite element method. 

Out of these, finite element method is considered to be the most versatile due to its ability 

to cater to any arbitrary geometry, incorporate complicating effect, ease of formulation and 

include wide range of elements. Finite element method for stiffened structure has various 

approaches such as finite strip method, discrete stiffener approach, lumped model approach and 

arbitrary orientated stiffener approach. Out of these approaches, the arbitrary oriented stiffener 

approach is considered to be the most flexible model as the stiffener can be placed anywhere 

within the plate element and need not necessarily be connected at the nodes.  

Delamination is the most feared major damage mode as delaminated composite under 

sustained loading may prompt the delamination layer to buckle under compression, or may 

prompt delamination crack to grow further. In the present analysis, pre-existing delamination is 

also included in the composite shell to investigate its effect on free vibration and transient 

response due to low velocity impact. Virtual crack closure technique is generally used in 

classical fracture mechanics to model debonding of laminated composites which requires the 

computation of strain energy release rate at the delamination crack front. But in the present 

formulation, it is not possible to obtain the strain energy release rate directly, so an adequate 

algorithm called Multipoint Constraints Algorithm based on shear deformable lamination theory 

is used along with finite element method to formulate delamination in the shell. The 

compatibility of deformation and equilibrium of resultant forces and moments are ensured at the 

delamination crack front. In the model of delaminations in the laminated stiffened shells, the 

undelaminated region is modeled by a single layer of shell elements, while the delaminated 

region is modeled by two layers of shell elements whose interface contains the delamination. 

Based on the multipoint constraint conditions, the formulation of stiffness matrices of the 

elements at the delamination crack tip is modified accordingly. 

In addition to this, rotational speed of the stiffened shell can result in centrifugal forces of 

considerable magnitude. Because of this rotation, when we apply Lagrange’s equation an 
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additional stiffness term emerges which is generally called the ‘additional stiffness’ or 

‘supplementary stiffness’. Effect of the initial stresses is due to the second-order strain 

components, and, when the displacements are small, manifests itself through ‘geometric 

stiffness’ or ‘stress-stiffness’ matrix. It is to be noted that the analysis is performed for moderate 

rotational speeds and the Coriolis component resulting from rotation is neglected as in an earlier 

study. Sreenivasamurthy and Ramamurthi (1985) reveals that, it has no effect at moderate 

rotational speed while it becomes prominent at higher rotational speed. 

Regarding low velocity impact, local deformation in the contact region is accounted for 

the investigation in order to accurately predict the contact force history. Impactor mass and 

stiffened structure can be considered as two solids in contact and the impact problem can be 

considered as a dynamic problem. However, this approach cannot describe the effect of 

permanent deformation and local damage in the unloading process. Unloading part of the 

indentation process can be modeled only using experimentally determined contact laws. A 

simple relation between the contact force and the indentation has been used by Sun and Chen 

(1985) to study the impact of laminated plate by spherical impactor employed in this 

formulation. This contact law includes both loading and unloading phases. During the first 

loading phase, the contact laws closely follows Hertz’s  law of contact while in unloading phase, 

the contact law is changed and depends upon the maximum contact force and maximum 

indentation. Both the loading and unloading curves are of two distinct curves. Several types of 

mathematical models are used to study the impact of structures by foreign objects, which include 

equivalent spring mass system, energy balance method etc. The equilibrium equations derived 

from Langrange’s equation of the stiffened shell panel and the impactor are solved by using 

Newmark’s time integration technique.  

1.3 PRESENT STUDY - ITS RELAVANCE IN RESEARCH 

Laminated composite twisted shells find many advanced engineering applications as 

compressor or turbine blades, flow guide vanes, helicopter blades, aircraft / marine propellers, 

etc. Delamination or separation of two adjacent plies in laminated composite, which is one of the 

most common modes of damages, may occur due to manufacturing defects, dynamic loading, 

impact of foreign objects, etc. Presence of delaminations and their growth during the service life 

may seriously affect the structural integrity by reducing the strength and stiffness of composite 
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twisted shells. Hence, the delaminated shell is often stiffened to achieve greater strength with 

relatively less amount of material and thus satisfy the objective of minimum weight design with 

economy of the material. Moreover, delamination and stiffener in the structure may result in a 

change in dynamic characteristics. Therefore, it is very much important to know the natural 

frequencies of the stiffened panel accurately with delamination. 

It is evident that recent research has focused on the dynamic analysis of damaged 

structures. In the present study, an attempt has been made to investigate the response of the 

damaged cylindrical shell with stiffener. Though the response of stiffened shell structures has 

received some attention from the researches, but damaged structures with stiffener is 

unexpressed. 

1.4 REMARKS 

The present literature in the field of shell research indicates that study of rotating 

composite pretwisted stiffened shell with or without delamination is of recent problem. It is 

worth mentioning that laminated composite stiffened shells, delamination in shells and rotating 

pretwisted shells need a comprehensive investigation to realize the full potentialities of the 

structures. 

A thorough review of earlier literature in this field explores the scope of further research. 

The review of the existing literature along with the gap is presented in the next section.  

 1. 5 LITERATURE REVIEW 

 Research, design and construction of shell structures with or without stiffeners have a 

long history and the literature that has accumulated in this area is vast. Shell structures have been 

used in different places of which, the use of these forms as turbomachinery blades is of the 

present interest. In this chapter, a historical review of shell structures is presented. Section 1.5.1 

gives a picture of the course of development of studies on composite shell structures, starting 

with plate and shell theories to its application in tubromachinery blades. Section 1.5.2 to 1.5.11 

present the detail review of the studies on the dynamic response of delaminated twisted 

composite stiffened shell, so as to find out the actual scope and objective of the present study in 

these areas. Finally, based on the earlier contributions of the researchers, the possible research 

gaps in this field are identified and objectives of the work are defined.  
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1.5.1 Plate and shell theories 

 An elastic shell is a body made of elastic substance whose one dimension (especially in 

the thickness direction) is extremely small compared to the other dimensions. The behavior of an 

elastic shell under the influence of an external load is governed by the three dimensional theory 

of elasticity. A boundary and/or initial value problem is solved in this theory to understand how 

the shell behaves under the given loading conditions. However the boundary or initial value 

problems are extremely difficult to be solved directly even in the simplest cases and hence 

various approximation techniques like the finite element method, finite difference method, 

perturbation method or the calculus of variations have been adopted for obtaining approximate 

solutions of such problems in most practical scenarios.  

 Classical laminated plate theory (CLPT) has been widely used as the basis of the analysis 

and design in structural laminates though it possesses some serious deficiencies like assumption 

of plane stress state in the constitutive relations and elimination of shear deformation as per the 

Kirchoff’s hypothesis (normal sections remains normal). Classical laminated plate theory, which 

is primarily an extension of the Kirchoff’s thin plate bending theory which neglects the 

transverse shear deformation and transverse normal strain effect was analyzed in by Ashton and 

Whitney (1970). This theory was later elaborated for very thin laminates by Jones (1975) and 

Tsai (1988).  Longitudinal modulus of advanced carbon/graphite fiber reinforced composites is 

much higher in comparison to their transverse shear modulus. This significant material 

anisotropy may cause an appreciable amount of transverse shear deformation and warping in the 

case of moderately thick to thick laminated composite plates. It must therefore be first ensured 

that the transverse shear deformation must be accounted effectively in order to ensure accurate 

determination of interlaminar shear stresses. Yang, Norris and Stavsky (YNS) theory (1966) 

which is an extension of the Mindlin’s two-dimensional theory (1951) was the first one to 

account for the transverse shear deformation in symmetrically laminated aeolotropic, orthotropic 

and isotropic plates. They showed that the effect of transverse shear deformations is always 

significant in the dynamic theory of heterogeneous plates.  

 The credibility and limitations of the classical plate theory were later analyzed by Pagano 

(1969, 1970a) who formulated the three-dimensional linear elasticity solutions for the static 

bending of bidirectional composite laminates. It was found that the conventional plate theory 

leads to a very poor description of laminate response at low span-to-depth ratios, but converges 
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to the exact solution as this ratio increases. These exact solutions along with the extended works 

of Pagano (1970b) on the effect of shear coupling established the range of validity of the 

classical laminated plate theory. It was concluded that the stresses generally converge more 

rapidly to the exact solution than plate deflection using classical plate theory while incorporating 

shear deformation can substantially reproduce the deflections predicted by elasticity theory in 

most cases. Whitney and Pagano (1970) analyzed the YNS theory in details by employing 

transverse shear stress coefficient and showed better agreement with exact solutions. Pagano and 

Hatfield (1972) further considered the response of multi-ply laminates and showed that a 

conservative estimate of the magnitude of the error obtained in CLPT compared to exact 

solutions could be achieved for laminates consisting of only several layers. Whitney (1972) 

addressed the concern that the bending moments and stresses may either converge towards a 

wrong solution or may not converge at all due to the existence of cross-elasticity bending 

stiffness terms in homogeneous or symmetrically laminated anisotropic plates, by using a 

classical Fourier analysis that satisfied both the geometric and natural boundary conditions. 

 Reddy (1984) developed a higher-order shear deformation theory for laminated 

composite plates having the same dependent unknowns as in the first-order shear deformation 

theory of Whitney and Pagano (1970) and also accounted for the for parabolic distribution of the 

transverse shear strains through the thickness of the plate. The theory reveals the deflections and 

stresses more accurately compared to the first-order theory. Later, Phan and Reddy (1985) 

developed a higher-order shear deformation theory that accounted for parabolic distribution of 

the transverse shear stresses, but required no shear correction coefficients. A displacement finite 

element model of the theory is developed and used to analyze laminated anisotropic composite 

plates for deflections, stresses, natural frequencies and buckling loads. Murthy (1981) presented 

an improved transverse shear deformation theory for laminated anisotropic plates under bending 

and eliminates the need for an arbitrarily chosen shear correction factor. Lu and Liu (1992) 

developed a theory that accounted for the interlaminar shear stress continuity and transverse 

shear deformation. Lee and Chen (1996) developed a generalized laminate theory which 

incorporated both single-layer and multiple-layer approaches for computation of interlaminar 

shear stresses. This layer reduction technique is computationally efficient and retains the 

accuracy of the predicted stress within ±8%. 
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 Whitney (1969) obtained closed form solutions for off-axis symmetric laminates and 

showed that transverse shear deformation could significantly affect the plate response in case of 

highly anisotropic laminates. Sun and Whitney (1973) investigated the effect of heterogeneous 

shear deformation over the thickness of the plate on the dynamic behavior of laminates. It was 

found that local shear deformation depended highly on the transverse shear rigidities of the 

constituent layers. Sciuva (1986) formulated a displacement field incorporating transverse shear 

deformation, in-plane and rotary inertia effect in predicting deflection, natural frequencies and 

buckling loads for thick-multi layered orthotropic plates. The new displacement model satisfies 

the contact conditions at the interfaces. A review on the first-order shear deformation theories for 

multi-layered composite plates based on linear displacement assumptions in the thickness 

direction was made by Noor and Burton (1989).  

 Bert and Malik (1996) reviewed the application of differential quadrature method (A 

numerical solution technique for initial and or boundary problems in computational mechanics) 

in comparison to conventional numerical solution techniques such as the finite difference and 

finite element methods. Malik  and Bert (1995,1996, 1996) presented a quantitative assessment 

of the relative effect of shear deformation and rotary inertia on the free vibration of symmetric 

cross-ply laminated plates. Eigenvalue equations for the problem were derived from the 

governing differential equations using the differential quadrature method (DQM). Differences in 

the frequencies based on shear deformation only and those based on shear deformation with 

rotatory inertia were found to be less than 1 per cent. Craig and Dawe (1986) predicted that the 

scale of the influence of transverse shear, and of rotary inertia increases with increase in the ratio 

of plate thickness and an increase in the transverse shear flexibility of the plate. Classical plate 

theory was found to often give unacceptable errors except for lowest modes of vibration of very 

thin plates. 

 Sun and Whitney (1976) studied the dynamic behavior of symmetrically laminated 

composite plates under initial stress including the effect of transverse shear deformation. 

Numerical results depicted that the influence of initial in-plane tensile stress resultant was 

considerable in comparison to the static solution. Yang and Shieh (1987) studied the vibration 

behavior of antisymmetric cross ply laminates using virtual work theorem and included the effect 

of transverse shear deformation and rotary inertia. In 1990, Professor J.N. Reddy revised a 

variety of the current third-order plate theories (Reddy, 1990). Differences and similarities 
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between such theories were pointed to identify the actual contributions. After compiling all of 

these third-order theories, Reddy proposed a general, consistent-strain plate theory from which 

any of the reviewed theories can be derived. He also accounted for nonlinear strains by using von 

Kármán’s assumptions. 

 Finally, the question of which plate or shell theory presents the best results, especially in 

intricate cases such as those of laminated stiffened structures, remains open. As more and more 

references are seen, it is possible to say that a linear plate theory can give better results that a 

sophisticated non-linear one, if it is better solved, numerically and/or physically. This means that 

numerical errors will be minimized, or the solution will not neglect the relevance of physical 

behaviors and dimensions of the problem. Therefore, the first-order shear deformation theory of 

plate/shell is used to solve the current problem using mainly the FEM. 

1.5.2 Turbomachinery blades 

 Dynamic behavior of rotating turbomachinery blades with a pretwist has been a field 

where extensive research works have been conducted. Rao (1973, 1977, 1980, 1983) carried out 

an exhaustive survey of turbomachinery blades including important aspects of blade vibrations 

like estimation of the natural frequencies, blade excitation forces, effect of blade aspect ratios, 

blade geometry, resonant vibrations in addition to the analytical and experimental determination 

of these aspects. 

1.5.3 Pretwisted plates & shells 

 Vibration analysis of turbomachinery blades has traditionally been carried out by means 

of beam theory. One can find literally hundreds of references in the literature incorporating 

considerations such as coupling between bending and torsion, taper, shear deformation, rotary 

inertia, pretwist and rotational effect into one-dimensional beam vibration analyses. However, 

beam analysis becomes inadequate for low aspect ratio blades. Most obviously, vibration modes 

which involve predominantly chordwise bending are completely missed. These modes become 

more important as blade thicknesses and aspect ratios decrease. Furthermore, another important 

question arises. Even for those modes obtainable from beam analysis (i.e., spanwise bending and 

torsion), accuracy of beam theory is a major concern. In 1980s two-dimensional methods of 

blade vibration analysis have been developed. As seen from Leissa (1980), most of these utilize 

finite elements and tend to require considerable computation time. However, the chordwise 

bending effect are accounted for and, with properly conformable finite elements, accurate results 
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are obtainable if sufficient elements are employed. Carnegie (1959a, 1959b, 1964) studied the 

vibrations of pre-twisted cantilever blades pre-twisted linearly about the centroid of its cross-

section up to an angle of π/2 radian and assumed to be mounted encastre at the root. 

 Achenbach et al. (1968) studied the vibrations of a laminated body employing the 

governing equations and boundary conditions to study the thickness-twist motion of a laminated 

layer. Whitney and Leissa (1969) obtained the closed form solutions to the linearized equations 

for heterogeneous anisotropic plates where the coupling between bending and stretching is 

unavoidable. The governing equations of the laminated anisotropic plate were formulated using 

the basic assumptions of thin-plate theory, including nonlinear terms in the von Karman sense. 

Dokainish and Rawtani (1969a, 1969b, 1971) carried out vibration analysis of a cantilever plate 

mounted on the periphery of a rotating disc using the finite element method wherein the 

distributed centrifugal force is resolved into two components: one acting in the plane of the plate 

and the other normal to the plate. Macbain (1975) studied the effect of varying tip twist and 

increasing centrifugal loading on the resonant characteristics of a cantilevered plate using 

numerical and experimental methods. Later on, Kirkhope and Wilson (1976) studied the coupled 

vibration modes of a rotating blade-disc system using finite element method. Rao and Banerjee 

(1977) calculated the natural frequencies of a cantilever blade with an asymmetric cross-section 

mounted on a rotating disc using a polynomial frequency equation method. Crawley (1979) 

determined the natural frequencies and mode shapes of a number of Graphite/Epoxy plates and 

shells while Crawley and Dugundji (1980) developed a method for estimating the natural 

frequencies of composite cantilever plates and for non-dimensionalizing the frequency data. 

Leissa (1980, 1981) studied the vibrational aspects of turbomachinery blades by shell analysis. 

Vibration characteristic of rotating pretwisted cantilever plates was studied by Sreenwasamurthy 

and Ramamurti (1980, 1981). Ravn-Jensen (1982) studied the free vibrations of turbine blades 

numerically using a general shell theory talking into account the centrifugal forces. Ramamurti  

and Kielb (1984) determined the natural frequencies of twisted rotating plates. Kielb et al. (1985) 

compared the results related to the vibration of twisted cantilever plates. Rao and Gupta (1987) 

studied the free vibration characteristics of a rotating pretwisted small aspect ratio blade, 

mounted on a disc at a stagger angle, using classical bending theory of thin shells. Qatu and 

Leissa (1991a, 1991b) presented the first known natural frequencies and mode shapes of 

laminated composite twisted cantilever plates using the Ritz's method. 
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 Navi and Ganesan(1996) compared the free vibration results of pretwisted composite 

blades using beam and plate theories and reported that for the accurate prediction of natural 

frequencies of metal matrix composite twisted blades one could use plate elements. Lim et al. 

(1997) presented the free vibration results of pretwisted composite conical shell incorporating the 

effect of pretwist based on Ritz extremum energy method. Karmakar and Sinha (2001) examined 

the first ply failure load based on the tensor polynomial failure criterion of rotating pretwisted 

blade employing finite element method. Chandiramani et al. (2003) carried out the free and 

forced vibration of a rotating, pretwisted laminated composite blade using beam theory wherein 

the structural model includes transverse shear flexibility, restrained warping and centrifugal and 

Coriolis effect. Kee and Kim (2004) carried out the vibration analysis of initially twisted rotating 

thick cylindrical shell including the effect of centrifugal force and Coriolis acceleration. Their 

investigation was based on the concept of the degenerated shell element with the Reissner–

Mindlin’s assumptions while the governing equations were solved by FEM. Sinha and Turner 

(2011) studied the natural frequencies of a typical turbo-machinery cantilevered airfoil blade by 

considering it as a plate of an equivalent rectangular cross-section subjected to a quasi-static load 

due to centrifugal force field. Asha and Sahoo (2011) carried out vibration, buckling and 

parametric instability characteristics of general laminated cross-ply pre-twisted cantilever flat 

and curved panels wherein the linear part of the strain was used to derive the elastic stiffness 

matrix and the non-linear part of the strain was used to derive the geometric stiffness matrix. Dey 

and Karmakar (2012) studied the free vibration response of delaminated pretwisted rotating 

conical shell neglecting Coriolis component for moderate rotational speed using FEM. Carrera et 

al. (2013) used a self unified formulation to study the free vibration of rotating composite blade. 

They used finite element method to solve the governing equations derived in a weak form by 

means of Hamilton’s principle. Cao et al.(2017) investigated a pretwisted rotating cantilever 

sandwich-plate model with thermal barrier coating (TBC) layers wherein the classic von Karman 

plate theory and the first-order shear deformation theory were applied to derive the energy 

equations of the rotating TBC blade. 

1.5.4 Composite stiffened structure 

 While many researchers were simplified and improved the theory of shell structures with 

isotropic and laminated composite materials from time to time, a group of investigators started 

working on stiffened shells due to their superior performance under different load conditions and 
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cost effectiveness, and have wide applications in varieties of structures, such as aircraft, ships, 

automobile, turbomachinery applications, etc. There were two main types of analysis in the 

considerable literature on this subject depending upon whether the stiffening rings were treated 

by averaging their properties over the surface of the shell or by considering these as discrete 

element. The first method was particularly applicable to geometry having a large number of 

closely and equally spaced rings. On the other hand, second method could be more general as it 

could accommodate any distribution of the stiffeners and present a clear picture of the behavior 

of the structures. Earlier, the usual method of analyzing the structure was to treat as an 

orthotropic continuum with effective extensional and flexural stiffness by considering the 

stiffeners to be closely spaced and to average the stiffening effect over the surface of the shell as 

was done by Miller(1957) and Hoppmann II (1958). Weingarten (1965) predicted the natural 

frequencies of the ring stiffened simply supported conical shells by finding the equivalent 

orthotropic shell in which Galerkin method was adopted for the solution. The free flexural 

vibration of cylindrical shells stiffened by equidistant frame was investigated by Wah(1966) 

using finite difference method. Egle and Sewall (1968) studied the vibration of orthogonally 

stiffened cylindrical shells with stiffeners treated as discrete elements. McDonald (1970) 

reported the vibration of rib-stiffened freely supported cylindrical shells by solving the coupled 

equations of motion of the shell and stiffener directly, neglecting the shell in-plane and rotary 

inertia. Wang and Rinehart (1974) performed an exact analysis of longitudinal stiffened 

cylindrical shells with any edge supporting conditions. After arrival of digital computers and 

parallel development of the techniques of structural analysis like finite difference, finite element, 

boundary element, energy methods, etc. made the analysis of structures simpler and more 

accurate. Out of these, the finite element method was considered to be the most versatile due to 

its ability to cater to any arbitrary geometry, incorporate complicating effect, ease of formulation 

and include wide range of elements. As a result, the research on stiffened shells got a new 

dimension. 

 From the present discussion, it is evident that the primary attention of research on 

stiffened shell structures gradually shifted from one aspect to another in the course of time. 

Presently, the attention of some researchers is mostly on laminated stiffened shells based on 

finite element method. Therefore, the detailed study of earlier investigations on the composite 

stiffened shells are summarized and presented in the following with four headings viz. bending 
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analysis, free vibration analysis, transient analysis and other aspects to identify the inherent 

lacunae and gap of research.  

1.5.5 Bending behavior of stiffened plate/shell 

 Venkatesh and Rao(1983) introduced a finite element analysis of laminated shallow 

shells reinforced with laminated stiffeners using a rectangular laminated anisotropic shallow thin 

finite element with 48 d.o.f conjunction with a laminated anisotropic curved beam and shell 

stiffening finite element having 16 d.o.f.. Compatibility between shell and stiffener was 

maintained all along their junction line. Further, a finite element analysis of laminated shells of 

revolution reinforced with laminated stiffeners was reported by the same author (Venkatesh and 

Rao, 1985) employing doubly curved quadrilateral laminated anisotropic shells of revolution 

finite element with 48 d.o.f. and two stiffener elements with 16 d.o.f. namely; (i) a laminated 

anisotropic parallel circle stiffener element (PCSE); (ii) a laminated anisotropic meridoinal 

stiffener element (MSE). However, the above two analyses made by Venkatesh and Rao(1983, 

1985) were based on classical thin shell and beam theory and thus, transverse shear deformation 

was neglected.  

 Liao and Reddy (1990) presented a continuum based, two-dimensional degenerated shell 

element with a compatible degenerated beam element for stiffeners to study the geometric non-

linear analysis of laminated, anisotropic stiffened shells. Chattopadhyay et al.(1993) studied the 

effect of the number of layers on the flexural response of the blade stiffened plates, where 

stiffeners can be placed anywhere and in any orientation within the plate element, and need not 

follow nodal lines and the formulation is based on finite element method. Goswami and 

Mukhopadhyay (1994) reported the static analysis of composite stiffened shells with the help of 

two different elements- the nine noded Lagrangian isoparametric element and Heterosis element. 

In the formulation, the stiffeners need not be placed along the nodal lines as it could take care of 

the placement of the stiffener anywhere within the shell element. Biswal and Ghosh (1994) 

investigated the flexural response of stiffened laminated plates wherein a standard four-noded 

rectangular element with seven degrees of freedom at each node was considered for the 

laminated plate and the stiffness of the stiffener was reflected at all four nodes of the plate 

element where the stiffeners were placed. The finite element formulation uses a higher order 

displacement function. Mukherjee et al.(1994) developed a higher order theory to study the 
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displacement and stress of the stiffened plate wherein a special smoothing technique was 

employed to evaluate the stresses at the nodal points of the stiffed plate.  

 Kolli and Chandrashekhara(1996) presented a model of composite stiffened plate to study 

the bending of angle ply and cross ply stiffened plate under different loading and boundary 

conditions based on first-order shear deformation theory. Stiffeners were modeled as laminated 

beams and placed along the nodal lines. Effect of the depth, number, and location of stiffeners 

were also examined. Sadek and Tawfik (2000) presented a model based on a higher order shear 

deformation theory wherein a realistic cross-sectional deformation pattern was assumed. Non-

linear variations of longitudinal displacements through the thickness were included in the model. 

Thus the use shear correction coefficient was eliminated and the model was applicable for both 

moderately thick and thin stiffened composite plates. The model was developed using a nine-

noded plate element with seven degrees of freedom at each node and a three-noded stiffener 

element with four degrees of freedom at each node. Static analyses on the isotropic and 

composite stiffened plates under different loading condition were reported. Effect of eccentricity 

of the stiffener and the stacking sequence of both plate and stiffener were also examined.  

 Prusty(2003) used the  finite element method to investigate the static behavior of the 

stiffened shell using different types of stiffener such as open and closed section stiffeners. This 

formulation is based on concept of equal displacements at the shell–stiffener interface. 

Formulation of the shell was made by eight-noded isoparametric quadratic element, which has 

been derived on the basis of Mindlin-Reissner's theory and satisfying C
0
 continuity for the 

interpolation functions, where stiffener was modeled as a three-nodded curved beam element. 

Nath et al. (2007) presented an analytical solution of the elastic field of a deep stiffened 

cantilever beam of orthotropic composite material subjected to a parabolic shear loading at the 

free lateral end and the two opposing longitudinal edges were stiffened. Numerical Solutions 

obtained in the form of infinite series and the distribution of different stresses and displacement 

components were reported. Ojeda et al. (2007) reported a new approach for the large deflection 

analysis of isotropic and composite stiffened plates considering eight node isoparametric plate 

elements combined with three node beam elements wherein the concept of equal displacements 

at the plate–stiffener interface were adopted. Non-linear equilibrium equations were derived 

using the principle of virtual work applied to a continuum with a total Lagrangian description of 

motion. In addition to this Newton–Raphson incremental iterative solution technique was used to 
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obtain the non-linear response path. Nath and Ahmed (2009) investigated elastic behavior of 

stiffened struts of orthotropic composite material under an eccentric loading using displacement 

potential formulation. The authors presented the solutions of stresses and displacements of 

boron/epoxy composite struts wherein the effect of material orthotropy and different stiffeners on 

the elastic field were also investigated.  

 Bhar et al. (2010) presented the significance of using higher order theory over first-order 

shear deformation theory of laminated composite stiffened plate employing finite element 

method. The authors used Taylor series expansion to derive the spatial displacement fields of 

both the plate and the stiffener as functions of reference plane variables. Thinh and Quoc (2010) 

investigated the bending failure of laminated stiffened glass fiber/polyester composite plates with 

laminated open section (rectangular or T-shaped) and closed section (hat shaped) of stiffeners 

employing finite element method wherein a 9-noded isoparametric element with 9 degrees of 

freedom per node was combined with a 3-noded isoparametric beam element with 5 degrees of 

freedom per node to model the stiffened panel. Li et al.(2010) proposed , a finite element model 

based on the higher-order global–local theory to study the flexural behavior of stiffened 

laminated plates wherein the stiffeners were treated as a part of the laminated plate to ensure the 

compatibility of displacements and stresses between plate and stiffener and distributions of the 

displacements and stresses through the thickness of laminates were presented.  

 Bhaskar and Pydah (2014) investigated the static deflection of blade stiffened plate 

employing three dimensional models for plate and two dimensional plane stress model for 

stiffener with simply supported boundary conditions. Ahmed and Modak (2015) developed a 

finite-difference computational scheme wherein a new displacement potential was introduced to 

model the problem of laminated composites and obtained strain and stresses at different plies of 

the laminated cantilever. They investigated the elastic field of a laminated cantilever beam under 

the influence of symmetric and anti-symmetric arrangements of discrete stiffeners. Pydah and 

Bhaskar (2015) presented an analytical approach for simply supported blade-stiffened 

rectangular plates. Here, plane stress idealization was used to model the kinematics of transverse 

bending of the stiffener while simple one-dimensional classical models were employed for lateral 

bending and torsion. Nguyen-Thoi et al. (2017) reported a cell-based smoothed discrete shear 

gap method (CS-FEM-DSG3) using three-node triangular element for static analysis of stiffened 



17 

 

Mindlin plates wherein the compatibility of displacement field of stiffeners and shell was applied 

at the contact positions. 

 It is observed form the above discussion that most of the researchers developed their 

finite element models or other type of models and verified their efficiencies in the flexural 

bending analysis of composite stiffened shells. Further, several aspects of bending analysis of 

composite stiffened shells are yet to be taken up such as effect of delamination or debonding 

between skin and stiffener on the bending response of the twisted panel. 

1.5.6 Free vibration behavior of stiffened plate/shell 

 Chao et al.(1980) studied the natural frequencies of rectangular laminated plates 

reinforced by  stiffeners based on the solution of equation of motion of the plate segments, 

stiffeners and related displacement compatibilities. Stiffener-plate coupling was based on the 

equivalent orthotropic idealization. The shear lag effect was neglected and the extensional 

displacements in the laminate are assumed uniform.  Bhimaraddi et al.(1989) considered a shear 

deformable shell of revolution element  and a shear deformable curved beam element  based on 

the higher-order theories to model the shell and the stiffener. Further, finite element method was 

used to find the frequency response of the orthogonally stiffened shell. The limitation of this 

element was that it could only handle the shells of revolution.  

 Chattopadhyay et al.(1992) reported the free vibration of eccentrically stiffened shell 

employing finite element method considering an isoparametric quadratic plate bending element  

wherein the properties of the stiffener element found at the Gaussian integration points in a 

direction tangential to the stiffener which  results in a skew axes system and the strains were 

transformed from this system to the global axes system. Lee and Lee (1995) presented the 

vibration response of anisotropic plates with eccentric stiffeners based on finite element method 

wherein the stiffeners were modeled based on Timoshenko beam theory and used nine-noded 

quadrilateral elements for the skin plate and three-noded quadratic elements for the stiffener. 

 Ghosh and Biswal(1996) used a realistic cross-sectional deformation pattern, which 

eliminates the use of shear correction coefficients to study the free vibration response of stiffened 

laminated plates on the basis of higher order shear deformation theory. The finite element results 

were experimentally verified wherein a four-noded rectangular element with seven degrees of 

freedom at each node was used for the discretization of the stiffened plate. Stiffness of the 

stiffener element was counted at all four nodes of the plate element. Chandrashekhara et 
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al.(1997) presented the results of  free vibration characteristics of laminated plates with discrete 

stiffeners considering the same model (Kolli and Chandrashekara, 1996) by  finite element 

method wherein the inertia effect due to in plane, flexural and rotary motions of the plate and 

stiffeners were included and effect of ply orientation and boundary conditions on vibration 

response of the stiffened plate were investigated.  Kumar and Mukhopadhyay(2000) developed a 

new element, which was the combination of Allman’s plane stress triangular element and the 

Discrete Kirchhoff-Mindlin triangular plate bending element to investigate the static and free 

vibration response of laminated plates stiffened with blade and parallel stiffeners based on first-

order shear deformation theory. They used the same shape functions for both plate and stiffener 

to ensure the displacement compatibility. This element can adjust numerically to both thin and 

thick plate without any problem of shear lock.  

 Guo et al. (2002) presented the layered (zigzag) finite element method based on the first 

order shear deformation theory to investigate free vibration analysis of stiffened laminated 

composite plates wherein the laminated plate was modeled using nine-noded isoparametric 

degenerated flat shell element and the stiffeners as three-noded isoparametric beam elements 

based on Timoshenko beam theory where bilinear inplane displacement constraints is used to 

maintain the inter-layer continuity. Prusty and Ray (2004) used eight-noded isoparametric 

quadratic shell element and a three-nodded curved beam element having the same displacement 

functions as that of the shell for modeling the shell and the stiffener, respectively. Free vibration 

characteristics of pannel was analyzed for both open and closed type stiffeners, which includes 

rectangular, L, T and I shaped stiffeners. A spline fine strip method for prediction of the natural 

frequencies, buckling stresses and modes of stiffened sandwich plates was reported by Yuan and 

Dawe (2004),wherein  the formulation was established on the basis of a three-layer, third-order 

plate theory for the main sandwich plate, and an equivalent-single-layer plate theory for the 

compact stiffeners. The structure was modeled in the contexts of both first-order shear 

deformation plate theory and classical plate theory.  Solution procedure was adopted based on 

the superstrip concept. Nayak and Bandyopadhyay (2005) made use of hyperbolic paraboloid, 

hypar, and conoidal shell forms to study the free vibration response of the laminated composite 

anticlastic doubly curved stiffened shells. In their investigation, a nine-noded isoparametric 

doubly curved thin shallow shell element and a three-noded isoparametric curved shallow beam 

elements were combined to model the stiffened structure. The effect of stiffness and mass of the 
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stiffener were lumped at the nodes of the shell using appropriate transformations for eccentricity, 

curvature and position of stiffener based on Sanders’ first-approximation theory of thin shells. 

They presented the effect of stacking sequence, number of stiffeners, and orientations of 

stiffeners, stiffener depth to shell thickness ratio for different type of shell forms on the 

fundamental frequency.  

 Free vibration characteristics of stiffened laminated plate was studied by Qing et al. 

(2006) on the basis of the state-vector equation theory, where the plate and stiffeners were 

considered as two and three-dimensional elastic bodies. Effect of transverse shear deformation 

and the rotary inertia were included in the model, and the thickness of plate and the height of 

stiffeners had no restriction. Compatibility of displacements and stresses on the interface 

between the plate and the stiffeners were ensured through uniting the algebraic equation of the 

plate and the stiffeners. Sahoo and Chakravorty (2006) investigated the free vibration response of 

stiffened composite shell roofs using eight noded shell element and three noded beam element 

for the structure based on finite element method. They presented the distinctiveness of the 

response by varying the number and depth of stiffeners, laminations and boundary conditions. 

Effect of different stiffener arrangements on fundamental frequency were also presented by the 

authors. Prusty (2008) used the  same formulation(Prusty and Ray, 2004) to investigate the free 

vibration and buckling behavior of the stiffened shell using different types of stiffener such as 

open and closed section stiffeners and reported the comparison between the two types of 

stiffeners. Torkamani et al. (2009) investigated the free vibration of orthogonally stiffened 

cylindrical shells employing the similitude theory wherein Donnell-type nonlinear strain–

displacement relations along with the smearing theory were used to model the structure. Bhar et 

al. (2010) reported the significance of using higher order shear deformation theory (HSDT) over 

the first order shear deformation theory (FSDT) based finite element method. The spatial 

displacement fields of both the plate and the stiffener were derived as functions of reference 

plane variables using Taylor series expansion. Both static and free vibration results of the 

stiffened plate using both HSDT and FSDT were reported and compared. Thinh and Quoc(2010) 

used 9-noded isoparametric element with 9 degrees of freedom per node and a 3-noded 

isoparametric beam element with 5 degrees of freedom per node for finite element modeling of 

the plate and the stiffener, respectively to study bending failure and free vibration of the stiffened 
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plate. In addition to this, Dewebook device and DasyLab 7.0 software were used for obtaining 

the experimental results of the stiffened plates and compared with the computational results.  

 Li et al. (2013) proposed a layerwise/solid-element (LW/SE) method, which was 

established, based on the layerwise theory and the finite element method (FEM) to obtain the 

static and free vibration response. The layerwise theory was used to model the composite 

cylindrical shell and the eight-noded solid element was employed for discrete the stiffeners. 

Displacements coordination was used to ensure the compatibility of displacements at the 

interface between shells and stiffeners. Bhaskar and Pydah (2014) presented the analytical 

elasticity solution for static and free vibration of blade stiffened plates wherein the plate was 

modeled as 3D solid and the stiffener as plane stress problem, so that non-classical effect such as 

transverse shear deformation and rotary inertia were automatically accounted for any types of 

boundary conditions. Pydah and Bhaskar (2015) reported an analytical model based on the 

elasticity approach to investigate the statics and dynamics of simply supported plates stiffened by 

multiple blade stiffeners. Influence of the non-classical effect of transverse shear deformation, 

thickness stretch and rotary inertia in the analysis of stiffened plates were investigated. Sahoo 

(2015) presented the natural frequency and mode shapes of laminated composite stiffened elliptic 

parabolic shell employing finite element method wherein and eight noded shell element was 

combined with a three noded beam element. The author included the modeling of cutout in the 

stiffened panel and reported the effect of cutout size and position on the natural frequency of the 

stiffened panel.   

 Tuan et al. (2016) reported the frequency response of the laminated stiffened cylindrical 

shell based on finite element method wherein both the shell and the stiffener were modeled 

employing eight-noded isoparametric degenerated shell element. Zhao and Kapania (2016) 

developed an efficient finite element method to study vibration mode results of a curvilinear 

stiffened composite panel subjected to in-plane axial and shear loads. Displacement 

compatibility conditions were imposed at the panel-stiffener interfaces. They examined influence 

of the stiffener geometric curvature and placement, the stiffener depth ratio and that of the in-

plane load factor on the panel vibrational responses. Castro and Donadon (2017) presented a 

semi-analytical approach to carry out the numerical investigation on the effect of skin-stiffener 

bonding flaw size on the vibration and linear buckling behavior of T stiffened composite panels 

wherein the penalty-based approach was used to assemble the domains and to model the 
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debonded region between the stiffener flange base and the plate. Compatibility of displacement 

and rotation between stiffener and panel was guaranteed. Damnjanovic´ et al. (2017) reported the 

free vibration of stiffened plate based on FSDT and HSDT employing dynamic stiffness method. 

Dynamic stiffness matrices for transverse vibration of laminated composite plate based on the 

HSDT and FSDT previously derived by authors were coupled with the dynamic stiffness matrix 

of laminated composite plate undergoing in-plane vibration. Fang et al.(2017) reported an 

analytical and more cost-effective method to study the free vibration of a finite ring-stiffened 

elliptic cylindrical shell. Stiffeners were simulated by smearing technique wherein the effects of 

the stiffeners were averaged over the shell surface. Vibration equations of the elliptic cylindrical 

shell were derived based on Flugge shell theory. Nguyen-Thoi et al. (2017) presented a cell-

based smoothed discrete shear gap method (CS-FEM-DSG3) using three-noded triangular 

element to carry out static, free vibration and buckling analyses of stiffened Mindlin plates by 

combining the original plate element CS-FEM-DSG3 with Allman's plane stress element and a 

linearly isotropic two-node stiffened beam element. Sheng and Wang (2018) developed a 

theoretical model to study the dynamic stability and nonlinear vibrations of the stiffened 

functionally graded (FG) cylindrical shell in thermal environment, wherein Von Kár- mán 

nonlinear theory, first-order shear deformation theory, smearing stiffener approach and Bolotin 

method were used to model stiffened FG cylindrical shells. Galerkin method and modal analysis 

technique were used to obtain the discrete nonlinear ordinary differential equations. 

 It is evident from the above that most of the researchers studied the free vibration aspects 

of composite stiffened shells without delamination, pretwist and rotation. Free vibration analysis 

of stiffened structure especially in the field of turbomachinery blades is yet to receive its due 

attention. 

1.5.7 Transient response under low velocity impact 

1.5.7.1 Composite plates and shells: 

 Advantages of these composites structures discussed before, however, are overshadowed 

by their relatively poor resistance to the impact loadings, which has prevented the application of 

these materials to many applications such as turbine fan blade and many more. Many other 

reports dealing with the responses of advanced composites to various type of impact have further 

increased the need for a better understanding of the problem so that the survivabi1ity of these 

composites can be improved. Low-velocity impact problems refers to the situations where, the 
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entire structure deforms as the elastic waves during the contact duration and propagates to the 

boundary and finally are reflected back several times. Failure modes of composite structures 

under low-velocity impact are quite different from those of the metallic structures where the 

damage starts from the surface and can be detected by routine visual inspection.  

 Goldsmith (1960) examined the vibrational aspects of impact, contact phenomenon 

involved in the impact of elastic solids and the results of impact experiments. Moon (1972, 1973) 

studied the stress waves due to impact on anisotropic plates and composite plates using a 

Mindlin’s plate theory. It was shown that both extensional and bending waves were generated 

due to transverse impact. The Mindlin’s plate theory was used to perform stress wave 

calculations in composite plates. This model was valid as long as the scale of the changes in 

stress levels (e.g., wavelength) was much longer than the sizes of the composite constituents 

(e.g., fiber diameter, ply-spacing’s etc). Sun (1973) studied the shock fronts in laminated plates 

subjected to impact loading employing the ray theory. Kinematic conditions of compatibility and 

dynamic conditions on the wave front were also derived. Sun and Lai (1974) proposed that when 

a plate is subjected to an impulsive load, the reflections of waves from the top and bottom 

surfaces cannot be accounted for by the plate theories and investigated the transient waves set up 

in composite materials subjected to lateral impulsive loadings described by pressure distribution 

according to the Dirac delta function and Heaviside function. Sun and Chattopadhyay (1975) 

studied the impact of a mass on a simply supported laminated composite plate under initial stress 

by solving a nonlinear integral equation and found that higher initial tensile stress elevates the 

maximum contact force but reduces the contact time, deflections and stresses. Kubo and Nelson 

(1975) studied analytically the two-dimensional response of an elastic laminated composite plate 

subjected to an impact load on its surface. Behavior of the plate along the thickness direction was 

modeled by a sufficiently large number of generalized coordinates to capture the propagation and 

dispersion of stress waves due to the surface impact thereby calculating the stresses at the 

laminate interfaces. Sun and Yang (1980) performed static indentation tests to determine the law 

of contact between a steel ball and graphite/epoxy laminated composites and found that an index 

of 1.5 in the power law was adequate for the loading and unloading curves.  

Thereafter, many researchers have attempted to match experimental results with the vibration 

theories by postulating the existence of a quasi-elastic layer beneath the contact point. Previous 

work of Hertz (1882) involved a theory based on the local indentation analogous to an 
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electrostatic problem. The Hertzian contact law between an elastic sphere and an elastic half-

space provides an expression for the local indentation in respect of the contact force and a 

constant parameter which depends upon the radii of curvature at contact and elastic properties of 

the impactor and target.  However, this relation was found to be valid for static loading only and 

neglects the effect of the elastic vibration in the local indentation and thus this theory was valid 

only for impact between very compact bodies.  

 Yang and Sun (1982) conducted static indentation tests on glass/epoxy and 

graphite/epoxy composite laminates by steel balls and loading, unloading, and reloading data 

were fitted into power laws. They established the critical indentation (αcr) that was used to 

predict permanent indentations in composite materials during unloading. Lal (1983) analyzed the 

behavior of 8-ply, quasi-isotropic, graphite epoxy laminates subjected to low velocity transverse 

impact loading assuming that the indentation, flexural and shear stiffnesses could be represented 

by 3-equivalent springs in series. Ramkumar and Chen (1983) studied the low velocity impact of 

laminated plates and transversely isotropic beams and plates respectively.  

Shivakumar et al. (1985a) developed an energy-balance model and a spring-mass model to 

predict the impact force and duration during low-velocity impact on circular composite plates 

and included the effect of contact deformation, bending, transverse shear and membrane 

deformations. Shivakumar et al. (1985b) also studied the low-velocity impact damage in clamped 

circular composite plates and predicted that failure would initiate as splitting in the bottom-most 

ply and then propagate to the other plies. Tan and Sun (1985) studied the impact response of 

graphite/epoxy laminates both theoretically and experimentally using a 9-node isoparametric 

finite element in conjunction with an empirical contact law. Sankar and Sun (1985) presented an 

efficient numerical algorithm for transverse impact problems wherein the iterations of the 

nonlinear problem were separated from the structural response computations. Joshi and Sun 

(1985) studied the impact induced fracture in graphite/epoxy laminates and established the 

importance of transverse shear stress in crack initiation. Schonberg et al. (1987) studied the 

dynamic structural contact problems of a rigid, smooth cylindrical striker impacting an 

elastically supported transversely isotropic beam and plate. Liu (1988) studied the damage 

characteristics of composite plates made of glass/epoxy, Kevlar/epoxy, and graphite/epoxy and 

proposed that the mismatching of bending stiffness between two adjacent laminae was an 

indicator of delamination initiation in the composite laminates subjected to subperforation 
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impact. Cairns and Legace (1989) presented an analytical method to study the transient response 

of graphite/epoxy and kevlar/epoxy laminates subjected to impact considering the effect of 

shearing deformation, bending-twisting coupling, and nonlinear contact behavior. It was 

predicted that mass of the impactor at a fixed-impact kinetic energy has a strong influence on 

impact event due to the relative inertia between the projectile and target.  

 Qian and Swanson (1990) compared the results of different solution techniques of the 

governing differential equations for impact response of composite plates. The analysis was based 

on two theories: one based on the Rayleigh-Ritz approach with numerical integration while the 

other involved an analytical approach using Laplace transformation. Christoforou and Swanson 

(1991) studied the impact on laminated plates based on the Fourier series expansion for simply-

supported plates, combined with Laplace transform techniques for the solution of the impact 

problems. Abrate (1991) studied the impact dynamics on laminate composite materials in order 

to predict the location, type, induced damage size and the residual properties of the laminate. 

Yigit and Christoforou (1995) developed an impact model based on static contact laws 

incorporating the damage effect, to investigate the impact response of thin composite laminate 

supported by a rigid substrate. Maiti and Sinha(1996) reported the low velocity impact response 

of thin and thick plates based on FSDT and HSDT employing FEM. The variations of impact 

induced stresses were also presented. Christoforou and Yigit (1996) studied the impact on a 

simply-supported composite beam using an analytical method based on the impulse-momentum 

principle wherein the effect of local contact behavior is accounted for through the use of an 

appropriate coefficient of restitution obtained from an elastic-plastic contact law. Christoforou 

and Yigit (1998) studied the nature of impact response of composite plates through 

normalization of the governing equations and identified key parameters to governing the 

transition from locally dominated to globally dominated responses in order to characterize the 

impact response. On the other way, impact problems have also been investigated using several 

analytical methods like the integral method, energy balance method, lumped parameter method, 

spring-mass model, wave propagation method and the numerical analysis methods. Abrate 

(2001) reported three models: (1) energy-balance models assuming a quasi-static behavior of the 

structure; (2) spring-mass models accounting for the dynamics of the structure; (3) complete 

models in which the dynamic behavior of the structure is fully modeled.  
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 Lee et al. (1984) presented a three dimensional finite element and dynamic analysis for 

fiber-reinforced composite laminates subjected to a given impact loading using the Central 

difference method. Sun and Chen (1985) studied the impact response of initially stressed 

composite laminates using the finite element method employing the Newmark time integration 

algorithm in solving the time dependent equations of the plate and the impactor. Effect of initial 

stress, impactor velocity, mass and size of impactor on the transient response were investigated. 

Chen and Sun (1985a) studied the nonlinear transient response of initially stressed composite 

plates. Chen and Sun (1985b) also studied the impact response of composite laminates with and 

without initial stresses using the finite element method employing an experimentally established 

contact law which accounted for the permanent indentation.  

 Aggour and Sun (1988) presented a two-dimensional finite element analysis for fiber-

reinforced composite laminates subjected to circular distributed impact load resulting the impact 

of a blunt-end impactor. Wu and Springer (1988) calculated the impact induced stresses and 

strains in a rectangular fiber-reinforced plate after low velocity impact by a solid object using a 

three-dimensional, transient finite element method comprising of 8-node brick elements. The 

locations, lengths, and widths of delaminations were predicted by means of a proposed failure 

criterion based on the concept of dimensional analysis. Sun and Liou (1989) analyzed the 

deflection and stresses of the laminated composite plate subject to central small area impact 

loading using a three-dimensional hybrid stress finite element method in the space domain along 

with the Newmark direct integration method in the time domain. Wu and Fu-Kuo (1989) 

presented a transient dynamic finite element analysis for studying the response of laminated 

composite plates due to transverse foreign object impact using a 8-point brick element with 

incompatible modes wherein the direct Gauss quadrature integration scheme was used 

throughout the element thickness to account for the changes in the material properties from layer 

to layer within the element. 

 Vaziri et al. (1996) presented a numerical procedure in predicting low-velocity impact 

response of laminated composite plates and shells using super finite elements. The governing 

finite element formulation took into account the classical Kirchoff-Love laminate theory for thin 

elastic plates and shells (neglecting the effect of transverse shear deformation) while the impact 

force was calculated using a non-linear Hertzian-type contact law that accounted for the 

curvatures of the colliding bodies. Kim et al. (1997) investigated the dynamic behavior and 
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impact-induced damage of laminated curved composite structures using incompatible eight-

noded brick elements with Taylor’s modification and predicted that the maximum impact force 

increased with curvature for the same impact velocity. Chun and Lam (1998) studied the 

dynamic response of fully-clamped laminated composite plates subjected to low-velocity impact 

of a mass using a numerical method wherein the non-linear, second-order differential governing 

equations are derived by the Lagrange's principle and the Hertzian contact law with modified 

contact constant. 

 Mili and Necib (2001) studied the impact behavior of cross-ply laminated composite 

plates under low velocity impact where the Hertzian contact law was developed using spring-

mass model approximation. Johnson et al. (2001) developed a continuum damage-mechanics 

(CDM) model for fabric-reinforced composites for modeling the in-ply and delamination 

failure wherein the structural response and failure modes from numerical simulations and impact 

tests were found to be in good agreement. Aslan et al. (2003) performed a numerical simulation 

for evaluating the stresses and contact forces of a composite plate during impact along with the 

associated failure analysis for predicting the impact damage and initiation of delaminations. 

Krishnamurthy et al. (2003) determined the impact response of a laminated composite cylindrical 

shell by the classical Fourier series and the finite element methods. The finite element method 

was included to predict the impact-induced damage using the semi-empirical damage model and 

the effect of controlling parameters like impactor mass, approach velocity and shell curvature 

were studied. Whittingham et al. (2004) experimentally quantified the effect of an initial pre-

stress on the response of laminated plates subjected to low velocity impact and observed that the 

effect of the pre-stress on the permanent indentation depth, absorbed energy and peak impact 

loads becomes significant at higher impact loads (>10J). Swanson (2004, 2005) studied the 

contact loading of orthotropic materials using numerical contour integration to determine the size 

and aspect ratio of the elliptical contact area, contact pressure distribution and then obtained a 

detailed stress fields by general solution for transverse pressure loading of the laminated 

orthotropic materials.  

 Mikkor et al. (2006) developed an explicit finite element (FE) model (software package: 

Pam-Crash), incorporating a bi-phase material degradation model, to predict the behavior of 

loaded carbon/epoxy panels when impacted over a range of low energy levels. Chen et al. (2008) 

studied the effect of thickness, in-plane dimensions and boundary conditions on the contact 
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problem of a laminated plate indented by a rigid sphere and concluded that thickness has 

significant effect on the force-indentation response if the plate thickness is less than 2 mm. 

Heimbs et al. (2009) studied the effect of a compressive preload on the low velocity impact 

behavior of different carbon fibre-reinforced plastic (CFRP) materials using the commercial 

explicit finite element code LS-DYNA. An increase in deflection and energy absorption was 

observed for composite plates with a preload of 80% of the buckling load while the Non-

destructive inspections showed large extents of delamination occurring between individual plies.  

Aktas et al. (2009) studied the impact response of unidirectional glass/epoxy laminates by 

considering energy profile diagrams and associated load–deflection curves and discussed on the 

damage modes and the damage process of laminates under varied impact energies. Olsson (2010, 

2015) presented an analytical model to study delamination initiation and growth and the resulting 

response during small mass impact on orthotropic laminated composite plates fast stepwise 

numerical solution of a single integral equation. Yang and Cantwell (2010)  performed a series of 

low velocity impact tests on (0
0
/ 90

0
) glass fiber-reinforced epoxy resin and predicted that impact 

force required to initiate damage, Pcrit, varies linearly with t
3/2

, where t is the target thickness at 

test temperatures between 23
0
C and 90

0
C, indicating the temperature effect on damage. Caputo 

et al. (2014) developed a numerical procedure based on finite element models and simulation 

techniques to study the structural behavior of laminated composite plates under low velocity 

impact loading conditions. Sanga et al. (2016) developed a robust model using homogenized 

shells based on degenerated tri-dimensional brick elements to study the low velocity barely 

visible impact damage (BVID) in laminated carbon composite structures based on the Hashin 

and the Benzeggagh-Kenane damage criteria's. English et al. (2016) performed simulations of 

low velocity impact with a flat cylindrical indenter upon a carbon fiber fabric reinforced polymer 

laminate in order to ensure quantifiable confidence in material characterization and model 

physics when simulating low velocity impact in structures of interest. Choi (2016) numerically 

studied the transient response of a composite laminated plates and cylindrical shells subjected to 

low-velocity impacts using the shear deformation theory of a doubly curved shell and von 

Karman’s large deflection theory. Park (2017) investigated the behavior of steel plates and 

graphite/epoxy composite laminated plates under low velocity impact based finite element 

method wherein it was observed that the composite laminated plate showed about two times 

more displacement difference than the steel plate. 
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 Impact response of laminated composite structures having an preexisting delamination 

has been a research topic in the recent years. Sekine et al. (1997) and Hu et al. (1999) studied the 

impact response of partially delaminated and multiple delaminated composite laminates. 

McCallum (2015) studied the influence of preload and boundary condition on pre-damaged 

composite plates subjected to soft-body impact using LS-DYNA 971.  

1.5.7.2 Composite stiffened plate/shell 

 Gong and Lam (1999) studied the transient response of a eccentric stiffened composite 

plate subjected to low velocity impact using finite element method wherein an impact force 

function based on Hertz contact law was linked into a commercial FE code. Effect of stiffener 

spacing and thickness, anisotropic material properties, impact mass, and contact stiffness on the 

impact response were investigated. Structures impacted by a solid striker were simulated by 

well-established commercial software LS-DYNA3D using the three-dimensional contact-impact 

algorithm, in which both striker and structure were modeled. Seydel and Chang (2001a) 

developed a real-time identification technique for the prediction of the location and force history 

of low-velocity impacts on composite panels with beam stiffeners. Numerical results verified 

with the experimental results wherein piezoceramic sensors were used to reconstruct the force 

history using the smoother-filter algorithm. Seydel and Chang (2001b) experimentally 

investigated the importance of modeling boundary conditions and sensor placement for the 

success of model-based impact identification technique of stiffened plate.  Sekine and Atobe 

(2009) reported identification of locations and force histories of multiple point impacts on 

composite isogrid-stiffened panels using measured longitudinal strain response of isogrid to 

adjust the modal coordinates determined from the longitudinal strains measured on the free edge 

side of isogrid. Identification of location and force history of a single point impact at an oblique 

impact angle was also examined. Based on a continuum damage mechanics approach, an 

intralaminar damage stiffened composite panel was proposed by Faggiani and Falzon (2010) 

implemented in a finite element package. A detailed finite element model was used to simulate 

the response of a stiffened composite panel subjected to low-velocity impact wherein fiber 

tensile and compressive breakage, matrix tensile and compressive fracture, and shear failure 

were observed. In their investigation, the contact algorithms and friction between delaminated 

plies were also included for better simulation of the impact event. Li and Chakka (2010) 

fabricated a sandwich structure with a hybrid cellular core (periodic isogrid stiffened stochastic 
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syntactic foam) using the pin-guided dry-weaving technology wherein Instron Dynatup 8250HV 

impact testing machine was used to carry out impact (CAI) tests of the said panel. Ultrasonic 

inspection was performed for damage identification. Sharif-Khodaei et al. (2012) presented a 

methodology for impact identification on composite stiffened panels using piezoceramic sensors. 

A large number of impacts at various locations of a composite stiffened panel were simulated 

using the finite element (FE) method and the data generated from FE analyses were used in 

artificial neural networks to predict the impact location. Li et al. (2014) investigated the response 

and impact induced damage of stiffened laminated plates due to low velocity impact based on 

Layerwise/solid elements method (LW/SE) and progressive failure model. Nonlinear Hertz’s 

contact law used to obtain the contact force at the interface of impactor and the impacted surface 

while the initiation of the impact-induced damages were predicted by employing 3D Hashin 

criteria. Further continuum damage mechanics used to observe the effect of accumulation of 

damages in the composite plate and stiffener. Sun and Tong (2014) reported nonlinear finite 

element method, combined with the user-defined materials subroutine (VUMAT) of the 

ABAQUS software to predict low-velocity impact damage on the stiffened composite structure, 

which represents a real aircraft structure.  

 Kim et al. (2015) experimentally investigated a complex stiffened composite structures 

subjected to low-velocity impact. Impact tests were conducted on the composite panel in which 

four multiplexed fiber Bragg grating (FBG) sensors were attached on the bottom surface. 

Verification of results indicated that 20 verification points were successfully localized with the 

maximum error of 43.98 mm and average error of 14.23 mm using four FBG sensors. Dai et al. 

(2016) investigated the thermo-mechanical behavior of a rectangular high-strength low alloy 

(HSLA)-stiffened plate under low-velocity impact based on von Kármán equation and classical 

thin plate theory. The authors used modified nonlinear Hertzian contact law for computation of 

contact force without considering the effect of friction. This investigation was based on the 

assumption that stiffener cross section does not deform in its plane for the derivation of the 

nonlinear governing equations using the Hamilton’s variational principle. Li and Chen (2016) 

experimentally studied the effect of low velocity edge impact damage on the damage tolerance of 

wing relevant composite panels stiffened with both T-shaped and I-shaped stiffeners under 

uniaxial compression load. Ricco et al. (2016) used non-linear explicit FEM to predict the low 

velocity impact induced damages of omega shaped stiffened panel. Cohesive Zone Model 
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(CZM) was adopted by the authors to study the onset and the propagation of the inter-laminar 

damage while intra-laminar damage model was based on the Continuum Damage Mechanics. 

Gurben et al. (2017) investigated the failure behavior of steel stiffened panel experimentally and 

numerically. Finite element simulation of the model was based on the elastic-viscoplastic J2 flow 

theory and a one-parameter fracture criterion wherein a method for mesh refinement based on h-

adaptively was proposed for handling fracture in large-element simulations. Kumar and Babu 

(2017) presented a pre-damaged I-stiffened panel to study the effect of delamination location and 

mode for delamination initiation and propagation under load. Effect of delamination location on 

crack growth and collapse behavior was based on the Virtual Crack Closure Technique. Morin et 

al. (2017) investigated the failure behavior of an aluminum alloy stiffened (T-shaped) shell under 

quasi-static and low-velocity impact loading conditions. Based on the obtained experimental 

data, a constitutive model and a failure criterion suitable for numerical simulation of large-scale 

offshore structures were identified and evaluated using finite element models with different mesh 

sizes. Sun et al. (2018) studied experimentally the effect of stiffener damage caused by low 

velocity impact (LVI) on compressive buckling and failure load of the three T-stiffened 

composite panels. They used a vertical drop-weight impact test system to introduce the impact 

damage in the panel.  Failure loads drops to a maximum of 44% compared to the undamaged 

specimen. 

 The above discussion reveals that large attention is focused on low velocity impact of 

unstiffened shells/plates while limited attention is received on low velocity impact response of 

composite stiffened shells. However, such studies on rotating delaminated twisted cylindrical 

shell appear to be a major field for research.  

1.5.8 Delaminated composite plate/shell structures 

 Delamination is the most feared damage mode of failure in composite, hence cannot be 

ignored. Presence of delamination may result in a progressive stiffness reduction, material 

degradation and structural disintegration, which may lead to final failure of the composite. 

Delamination is a matrix dominated mechanism mostly takes place in resin-rich interlaminar 

regions in the form of separation of plies. Delamination is commonly initiated at the geometric 

boundaries, manufacturing defects, and service-induced-damage. Wang (1980) investigated the 

initiation of delamination from a surface notch of an angle ply laminate in the form of broken 

plies and studied its failure mechanics and mechanism using  hybrid-stress finite-element 
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formulation wherein Muskhelishvili's complex stress functions was used to examine the failure 

mechanics and mechanism of delamination. Chai and Babcock (1985) developed an analytical 

model to evaluate the compressive strength criticality of near-surface interlaminar defects in 

composite wherein the low velocity impact application was emphasized. The analysis was 

subdivided into two parts namely elastic stability problem and the fracture problem and was 

solved by Rayleigh-Ritz method and simple energy balance criteria, respectively. Simitses et al. 

(1985) analyzed a simple 1-dimensional model of a laminated plate with simple supported and 

clamped ends to check the effect of location, size, and thickness of delamination on buckling and 

load carrying capacity. Pardoen (1989) investigated the effect of delamination position and size 

on the natural frequency of the beam wherein the contact between the delaminated layers was 

included without considering the bending/extension coupling.  

 Cheng and Dharan (1990) used the fracture mechanics approach to analyze delamination 

during drilling wherein the crack growth was considered collinear and the crack was in the plane 

of material symmetry. The whole system was modeled and analyzed based on classical plate 

theory and linear elastic fracture mechanics. Peck and Springer (1991) studied both the 

experimental and analytical results of elliptically delaminated composite plate subjected to in 

plane forces and thermal loads. The authors used Rayleigh-Ritz energy method to predict the 

bending and buckling characteristic in the sublaminate wherein the growth of delamination was 

also included. Ju et al. (1995) carried out the free vibration study of multiple delaminated 

composite plate based on finite element method wherein the sublaminates arising from 

delamination were meshed separately and displacement continuity at the connecting boundaries 

were established by transforming stiffness and mass matrices. The effect of contact in 

delaminated layers and delamination growth were not considered by the authors. Identification of 

delamination in the laminated composites and its behavior up to rupture was reported by Allix et 

al. (1998) wherein the identification process based on initiation and propagation delamination 

tests. The authors conducted standard edge-delamination tension tests to identify the other 

parameters of the interface damage model. Geubelle and Baylor (1998) simulated the 

delamination process in cohesive/volumetric finite element method which includes a volumetric 

constitutive model to represent the bulk behavior and a cohesive model to simulate the 

spontaneous creation of internal failure surfaces. They introduced cohesive elements along the 

boundaries of the inner layers and inside the transverse plies to simulate the spontaneous 
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initiation and propagation of transverse matrix cracks and delamination fronts. Allixa and 

Corigliano (1999) proposed an elastic-damage interface law to study the interactions between 

delamination and geometrical nonlinearities of composite beam in which interface models were 

used for the description of material degradation along the layer connections and of a large 

displacement formulation. A detailed study of delamination processes i.e. from initiation to 

structural failure was reported.  

 Alfano and Crisfield (2001) carried out an analysis of delamination in composite plate 

using interface elements and an interface damage law based on linear elastic fracture mechanics 

and discussed some issues related to numerical solution and factors influencing mechanical 

strength. Numerical results for analyses of a double cantilever beam specimen and for a problem 

involving multiple delaminations for which comparisons were made with experimental results 

were reported. Fleming (2001) reported the predictions of delamination growth using the virtual 

crack closure technique were implemented using the finite element crash code MSC/DYTRAN 

and compared with other methods of modeling delamination in finite element crash analyses. 

Parhi et al. (2001) carried out the free vibration and transient response of multiple delaminated 

composite plates under hygrothermal loading. Cho and Kim (2001) developed a higher-order 

zig-zag theory for laminated plate with multiple delaminations for buckling analysis wherein the 

opening as well as slipping behavior of the delaminated parts were considered. The displacement 

fields assumed for multiple delaminations were supplemented with unit step-functions which 

allow discontinuities in the displacement fields. The authors developed a multiple delaminated 

model based on finite element method. Hu et al. (2002) reported the free vibration results of 

delaminated composite beam and plates wherein the least-square technique was used to establish 

the continuity condition at the delamination front. This analysis is based on higher order shear 

deformation theory and penalty function method was also adopted to enforce the constraint 

conditions. Grassi and Zhang (2003) performed finite element analyses of mode-I interlaminar 

delamination in z-fibre reinforced composite laminates, which was based on a double cantilever 

beam configuration. The authors emphasized on the advantage of z-fibre technique to improve 

the crack growth resistance. Yam et al. (2004) reported a numerical method to determine the 

natural frequency of delaminated composite plate where delamination was modeled by inserting 

a virtual/artificial spring at the nodes of the upper and lower sublaminates within the delaminated 
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region. Further, the structure was coupled to a vibroacoustic system to bring desirable effect to 

the interface in the delaminated region.   

 Karmakar et al. (2005) used multipoint constraint algorithm to model delamination in 

pretwisted composite shells to study the free vibration response. The compatibility of 

deformation and equilibrium of resultant forces and moments at the delamination crack front 

were well established by the said algorithm. Oh et al.  (2005) used the higher-order cubic zigzag 

theory of laminated composites with multiple delaminations proposed by Cho and Kim (2001) to 

investigate the natural frequency and transient response wherein the penetration at the 

delamination interfaces were prevented by using unilateral contact constraints by Lagrange 

multiplier method. Cappello and Tumino (2006) studied the buckling and post-buckling 

performance of unidirectional and cross-ply composite laminated plates with multiple 

delaminations using ANSYS and 2D meshes. This study reported on buckling results by the 

variation of delamination length and its position across the thickness. Davies et al. (2006) carried 

out the investigation dealt with the problem of modeling onset of delamination/debonding in 

composite structures and its consequent propagation wherein they developed a new interface 

element based on a monotonic force/displacement law. Johnson and Holzapfel (2006) used a 

continuum damage mechanics (CDM) model for fiber reinforced composite shell structures 

subjected to high velocity impacts to model both in-ply damage and delamination failure. 

Delamination failure model was based on delamination failure energy criterion. Jinhua and 

Yiming (2007) investigated the dynamic stability of delaminated cylindrical shell by 

incorporating the Heaviside step function into the displacement fields and finally Rayleigh–Ritz 

method was used to derive dynamic governing equations. Aymerich et al. (2008) reported the 

damage prediction in laminated structures subjected to low-velocity impact based on finite 

element technique with cohesive interface elements adopting a bilinear cohesive law. Alnefaie 

(2009) developed a three-dimensional (3D) finite element model of delaminated fiber-reinforced 

composite plates where a detachment of the nodes at the delaminated region was considered and 

their displacements on the upper and lower surfaces were not connected to each other. 

Nagashima and Suemasu (2010) presented buckling analyses of carbon fiber reinforced plastic 

laminate with delaminations wherein delamination was modeled independently of the finite 

element mesh through enrichment with the Heaviside and asymptotic basis functions.  
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 Dey and Karmakar (2012a) carried out the free vibration analyses of multiple 

delaminated pretwisted angle ply conical shells based on Mindlin’s theory and delamination was 

modeled by Multipoint constraint algorithm wherein the undelaminated region was modeled by a 

single layer of plate elements while the delaminated region was modeled using two layers of 

plate elements. The same authors (2012b) also investigated the effect of delamination on the 

natural frequencies of rotating conical shell. Mohanty et al.(2012) presented the free vibration of 

woven fiber glass/epoxy (G/E) composite plates with delamination experimentally and 

numerically wherein delamination mode was based on the multi point constraint algorithm. 

Nanda and Sahu (2012) adopted the same algorithm to model delamination to investigate the free 

vibration response of delaminated shells (cylindrical, spherical and hyperbolic paraboloid) based 

on different shell theories.  Kumar et al. (2014) investigated the free vibration of delaminated 

composite plate considering mixed interpolation tensorial component, nine node quadrilateral 

(MITC9) element in finite element method. Delamination in laminate was modeled either using 

region based approach or layerwise approach. Region based delamination model was employed 

in ESL (Equivalent single layer theories) models and layerwise delamination model in LW 

(Layerwise theories) model. In layerwise theory, delamination was modeled by introducing a 

discontinuous function while in region based model delamination was introduced by splitting the 

delaminated structure in span wise direction into delaminated segment and integral segments. 

Muc and Stawiarski (2015) used finite element and damage index to identify delamination in 

cylindrical composite panels using guided waves and detect debonding using an inverse 

algorithm based guided wave signals activated and captured by surface-mounted PZT elements. 

 Hammami et al. (2016) presented the linear and nonlinear vibration response of 

delaminated composite beam experimentally wherein double superposed delaminations were 

artificially introduced using Teflon tape during the lay-up at the interfaces between plies having 

different stacking directions. Hirwani et al (2016) investigated both experimentally and 

numerically the effect of delamination on free vibration of the curved panels which inculdes 

cylindrical, spherical, elliptical, hyperboloid and flat. Two different higher-order shear 

deformable kinematic models are considered to model the delaminated curved panel. The 

response of the panel was computed experimentally using CDAQ-9178 (National Instruments) in 

conjunction with LABVIEW soft-ware. Sahoo et al. (2016) reported the effect of delamination 

on the static and dynamic response of the composite plate wherein the same method as reported 
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by Hirwani (2016) was employed to model delamination. Torabi et al. (2016) investigated 

theoretically and experimentally the transverse vibration of delaminated composite beam using 

two approaches. In the first approach it was assumed that delaminated layers deform freely 

without touching each other while in second approach the delaminated layers were allowed to 

slide over each other. In experimental work, delamination was artificially created by inserting a 

release film with proper thickness (20μm) at the desired location during manufacturing. Yazdani 

et al. (2016) presented an extended finite element method (XFEM) for modeling delamination in 

composites wherein the discontinuities were imposed within any arbitrary interface by enriching 

the displacement field. Thus two sub-domains defined the plane of the discontinuity. Arumugam 

and Rajamohan (2017) investigated theoretically and experimentally the free and forced 

vibration response of rotating delaminated tapered composite plate wherein the displacement 

fields of delaminated segments and intact segments with continuity condition was presented. In 

experimental work, a Teflon films was inserted at the interfaces of plies to create delamination. 

Shankar et al. (2017) reported the vibration analysis and control of delaminated smart composite 

plate under hygrothermal environment. Delamination was modeled by dividing the laminates 

into sublaminates then the upper and lower segments of the delaminated region were meshed 

separately. Hirwani et al. (2018) investigated the doubly curved shallow delaminated shells using 

higher order theory based finite element method. The delamination between the consecutive 

layers was included using two sub-laminate approaches including the intermittent displacement 

continuity conditions. Yazdani et al. (2018) used the extended finite element method (XFEM), 

the mixed-mode cohesive zone model, the contact formulation, and the damage criterion to study 

the interfacial delamination initiation and growth in composite shells with less computational 

effort.  

1.5.9 Delaminated composite stiffened plate/shell 

 Studies conducted so far with delamination in the unstiffened shells or plates are 

available in literature but attention of a very few researchers have been focused on delaminated 

stiffened shells. Wang et al. (1995) used facture mechanics approach to study the flange skin 

strip debond configuration and a skin-stiffener debond configuration of the stiffened panel 

wherein 4-node and 9-node shell elements were used to model the debond configurations where 

strain energy release rates for the debond configuration were computed by virtual crack closure 

technique (VCCT) and the gradient method. Naganarayana et al. (1996) presented a multidomain 
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modeling technique for modeling the delaminated stiffened composite shell structures for 

postbuckling solution under compressive load wherein stiffener was modeled as a two-noded 

curved element and shell as a three-noded element. This analysis also includes the delamination 

growth prediction using pointwise energy release rate obtained from the three-dimensional J 

integral.  

 Haoran et al. (2003) used virtual crack closure technique and a self-adaptive grid moving 

scheme to investigate the failure of the delaminated stiffened composite plate under compression 

and the delamination growth prediction was included in their investigation. Shape of the 

delamination was elliptical and circular and the continuity of displacement and rotation along the 

delamination front was satisfied by imposing the constraint equations. Armentani et al. (2004) 

used a hybrid (FEM/analytical) procedure based on virtual crack closure technique to compute 

the enegrgy release rate for delamination at skin/stinger interface of a stiffened composite panel 

under longitudinal compression load. Rui-xiang and Hao-ran (2004) used total energy release 

rate as the criteria of estimating delamination growth with virtual crack closure technique 

(VCCT) wherein they reported the postbuckling and delamination propagation behavior in 

delaminated stiffened composite plates by finite element method. The authors developed a 

moving mesh technique to simulate the growth of the delamination front. Bisagni (2006) made 

use of an ultrasonic system obtaining C-scan and B-scan representations to predict the 

progressive debonding between the skin and the stringer under compression.  The stiffened panel 

was analyzed numerically by using ABAQUS and experimental verifications were also reported. 

The growth of delamination was investigated by means of the Virtual Crack Closure Technique 

(VCCT) implemented within ABAQUS. Chen et al. (2006) studied the natural frequency of pre-

damaged stiffened composite plate which includes delamination in the composite plate and 

debonding between skin and stiffener employing finite element method based on the principle of 

hump resonance. A virtual interface nonlinear contact element, called Hertz’s discontinuous 

spring, was employed for simulating the separate/contact mode state along the interfaces of 

delamination and/or debonding regions. Suemasu et al. (2006) investigated the effect of localized 

damage on the compressive buckling as well as post buckling behaviors of blade stiffened 

composite plates wherein debonding between a skin panel and a flange and multiple 

delamination in the skin panel were considered. A contact problem between the skin and flange 

panels was approximated by a spring element with no restraint of the positive relative 
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displacement and a strong restraint of the negative displacement. Delamination in the skin panel 

closed during compression and the normal relative displacement was constrained to prevent the 

delaminated portions from overlapping.   

 A finite element formulation for a solid-like interface element based on the formulation 

of eight node continuum elements was proposed by Wagner and Balzani (2008) wherein a 

cohesive interface element was derived to predict both delamination and skin–stringer separation 

avoiding the interpenetration of the crack faces. An irreversible cohesive law was introduced a 

continuous cohesive free energy function of Smith–Ferrante type to detect  the initiation and 

propagation of delamination. Riccio et al. (2013) investigated the skin delamination growth in 

stiffened composite panels using finite elements method, based on the Virtual Crack Closure 

Technique (VCCT) and on the fail release approach. This approach was used to simulate 

delamination growth while VCCT for computing the energy release rate along the delamination 

front.  Riccio et al. (2014) reported skin–stringer debonding growth in composite panels under 

compressive load wherein the traction–separation law in Cohesive Zone Model (CZM) was 

presented. Virtual Crack Closure Technique (VCCT) based FEM analyses on Double Cantilever 

Beam (DCB) and End Notched Flexure (ENF) specimen were used to characterize the traction–

separation law for fracture mode I and mode II, respectively. Riccio et al. (2014a) presented an 

experimental study on skin delamination buckling and growth phenomena in stiffened composite 

panels subjected to compression loading. In the lay out process of delamination a Teflon circular 

was inserted between the layers. To investigate the delamination phenomenon optical fibers were 

positioned very close to the delamination. Thermography test was conducted to monitor the 

artificial delamination status during the compression. Riccio et al. (2014b) investigated 

numerically the delamination buckling and growth of stiffened composite panels under 

compression wherein they made use of virtual crack closure technique with fail release approach 

for the simulation of the delamination propagation.  

 Borrelli et al. (2015) investigated kinematic coupling approaches for FE simulation of the 

mechanical behavior of stiffened composite panels. They made use of two coupling methods 

such as point-wise kinematic coupling and the weighted residual kinematic coupling. Area 

surrounding the delamination was modeled by two layers of solid elements, while all the other 

regions have been modeled by shell elements. Global–local elements were used to couple the 

two differently modeled regions. Contact elements were also placed on the initial delaminated 
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area in order to avoid overlapping between the two delaminated sub-laminates. Riccio et al. 

(2015) investigated the stinger-skin debonding growth in the composite stiffened panel under 

compression. Debonding growth was predicted by adopting standard Virtual Crack Closure 

Technique (VCCT) along with fail release approach. VCCT was used for calculating the energy 

release rate at delamination crack front. This approach was implemented in ANSYS by means of 

Ansys Parametric Design Language (APDL) to conduct the tests.  A non-linear finite element 

model was proposed by Yetman et al. (2015) to study the effect of stinger-skin debonding of top 

hat stiffened panel on the failure modes, post-buckled ultimate strength and its damage tolerance. 

The model, which accounts for both geometric and material nonlinearities, was implemented in 

ABAQUS wherein the stiffeners, plate and cohesive interface were connected by multi-point 

constraints which restrict the degrees of freedom of the plate nodes to that of the connected 

flange nodes. Naini and Ramesh (2016) carried out the impact analysis of laminated composite 

stiffened panel embedded with delamination. The behavior of the panel was investigated with 

help of Abaqus and in respect to the location of the delamination and its propagation employing 

virtual crack closure technique (VCCT). Riccio et al. (2016) simulated inter laminar damage 

growth specially delamination in stiffened panels using a linear numerical methodology 

implemented in a commercial finite element platform.  

 Kumar (2017) numerical investigated the effect of delamination location on crack growth 

and collapse behavior of laminated composite stiffened panel with method of Virtual Crack 

Closure Technique. The authors adopted cohesive zone model with cohesive elements or 

interface elements to model delamination in Abaqus. Milazzo (2017) used Ritz approach to 

investigate the buckling and postbuckling of stiffened composite panels with through-the 

thickness cracks and/or delaminations. Decomposition strategy was implemented to model 

delamination while a node-to-node contact algorithm was used to prevent cases of 

interpenetration that may occur depending on the kind of damage, load, and constraints. Shah 

and Panda (2017) investigated the skin-stiffener debonding in stiffened composite panel with 

functionally graded (FG) bimodular material property under thermomechanical coupled field 

using work strain energy release rate (SERR) as a fracture parameter. The authors used the 

virtual crack closure technique (VCCT) equation along the delamination front at each pair of 

nodes to evaluate SERR for suitable growth criteria. An extended layerwise/solid-element 

(XLW/SE) method was developed by Lu et al. (2017) to investigate the flexural analysis of 
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composite stiffened plates with/without delaminations and/or transverse crack. In order to model 

the strain discontinuity resulted from the interfaces between the layers and displacement 

discontinuity of delaminations, the weak discontinuous function and the strong discontinuous 

function were used in the displacements field, respectively. Dávila and Bisagni (2017) 

investigated experimentally the quasi-static and fatigue damage progression in single-hat stringer 

compression specimens with delamination where a Teflon film was inserted between one flange 

of the stringer and the skin to create a delamination and pre-test finite element analyses were 

conducted using the virtual crack closure technique to select the range of defect sizes to be 

considered and the load levels to be applied during the fatigue tests. 

 From the above discussion, it is evident that delamination in the skin of the stiffened 

plates/shells receive less attention of the investigators. Considering delamination in the skin of a 

rotating stiffened cylindrical will be a good problem for the research work.  

1.5.10 Other Aspects 

 The review of the literature further reveals that some of the investigators are 

concentrating on complicated aspects of the stiffened shell behavior. Study of static and dynamic 

instability characteristics of stiffened shell by Duffield and Willems (1972), Merritt and Willems 

(1973), Liao and Cheng (1994), Shrivastava et al.(2002, 2015) and Patel et al. (2006), 

respectively are some of notable works. First ply and progressive failure analysis of the 

composite stiffened shell/plate is another direction of work carried out by some of the 

investigators such as Kong et al. (1998), Ambur et al. (2004), Prusty (2005), Zhang et al. (2008), 

Anyfantis and Tsouvalis (2012) and Akterskaia et al. (2017), respectively. It may be found that 

extensive research work is also continuing in the fields of bucking analysis of stiffened structures 

with and without cutouts. Some of the outstanding works contributed by the investigators like Li 

and Wu (2015), Guo et al. (2016), Hao et al. (2017a, 2017b) and Tian et al. (2017) are still found 

in literature. These aspects are also to be studied with consideration of delamination and rotation 

in the twisted laminated stiffened shell.  

 It is, thus quite clear from the discussion that there lies a vast scope of research in the 

field of delaminated composite stiffened shell analysis. Furthermore, the study of composite 

stiffened shells is yet to reach the saturation. All the lacunae mentioned in the above discussion 

need due attention of the researchers. However, some of the areas pertaining to dynamic 
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behavior of laminated composite stiffened shell are to be taken up as the scope for future work, 

which have been outlined in the last chapter. 

1.5.11 Critical Observations 

The volume of literature that has accumulated on stiffened shell research when examined 

carefully shows that many important aspects have been explored and reported. It is also realized 

that there are some areas which need to be addressed and some other areas are to be studied yet 

more meticulously to fully understand the behaviour of stiffened shell forms. It is noted that 

many aspects of stiffened shell analysis and design need elaborate attention. 

It is found that although many researchers have reported the vibration characteristics of stiffened 

shell panels, corresponding information regarding the behaviour of rotating twisted stiffened 

shells with and without delamination is missing in the literature.  

The paper of Kolli and Chandrashekara (1996), Nayak and Bandyopadhya (2005) reported the 

finite element formulation of different stiffened shell forms with simply supported boundary 

conditions. The work of Prusty and Satsangi (2001a) seems to be the only paper on bending 

analysis of stiffened shell panels although transverse deflections are only reported. Excellent 

review papers published from time to time by authors like Sinha and Mukhopadhyay (1995a), 

Yang et al.(2000),Qatu (2002a,2002b), echo the fact that static analysis of stiffened shell panels 

in general and particularly doubly curved panels have not figured in the existing body of 

literature. Stiffened conoidal shells which is very important in industrial applications have not 

been studied for static characteristics.  

Among the vibration studies that have been carried out on stiffened shell configurations, 

cylindrical and spherical forms received maximum  attention. Some vibration studies on 

truncated stiffened conoids were reported by Nayak and Bandyopadhyay (2002a, 2002b) for 

simply supported and clamped boundary conditions. Free vibration reports on stiffened conoidal 

shells for other practical boundary conditions are missing in the literature. Results on natural 

frequencies of full conoidal shells also need to be included in the research report. Cutouts are 

often provided on shell surfaces for creating passages for cables, conduits, pipes and chimneys. 

Sometimes cutouts are used to alter the resonating frequency. Hence, there is scope of working 

on stiffened conoids with cutouts as practically margins of cutouts are to be stiffened.  

Forced vibration studies on stiffened shells appear at very few places like in the papers published 

by Sinha and Mukhopadhyay (1995b), Goswami and Mukhopadhyay (1955a) and 
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Mukhopadhyay and Goswami (1996). The above mentioned papers deals with cylindrical and 

spherical shells. Chakravorty et al. (1998) and Nayak and Bandyopadhyay (2006) reported 

limited studies on forced vibration of unstiffened and stiffened conoidals shells respectively. 

Although the work of Nayak and Bandyopadhyay (2006) was about stiffened shells but they 

reported transient deflections only.  

Thus, it is felt that there are many areas of stiffened shells which need elaborate attention as 

indicated above. With this finding the actual scope of the present study is furnished in the next 

chapter.      

1.6 RESEARCH GAPS IDENTIFIED  

 The present work is undertaken to fill in the following major research gaps broadly 

classified below as is evident from the literature review: 

a) Idealization of turbomachinery blade with cylindrical stiffened shells of low aspect ratio 

 Almost all research works till date has idealized the turbomachinery blades as twisted 

thin plates or shells wherein the strength and natural frequencies of the blades are too low. Hence 

an effort has been made to increase the failure strength and natural frequencies of the 

turbomachinery, impeller or fan blades by idealizing as cantilevered composite pretwisted 

rotating cylindrical stiffened shells with low aspect ratio in the present analysis. 

b) Effect of delamination 

 From the previous studies, it is observed that a few number of the works on debonding 

between skin and stinger based on facture mechanics are carried out on stiffened plate structures, 

Study related to delamination in stiffened shell with pretwist and rotation is found rare in 

literature. It is also predicted that there is a reduction in the natural frequencies of composite 

laminates due to the presence of delamination. Hence, the present study is intended to account 

for the effects of delamination on the free vibration and impact response of rotating pretwisted 

composite stiffened cylindrical shell structures. 

c) Impact on composite cylindrical stiffened shell 

 Impact of low-velocity foreign masses with underwater vehicles, spacecrafts, leading 

edge of an aircraft wing, automobile bodies/protruded sections, blade of steam turbines and jet 

engines etc. is quite common in actual practice. The literature review reveals that a fair amount 

of research work has been devoted in the study of the impact response of composite stiffened 
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plates and shells. However, the rotation and pretwist effects on the transient response of 

delaminated composite cylindrical stiffened shells under arbitrary impact of foreign masses have 

not been attempted yet. Thus, a comprehensive study of the dynamic response of rotating 

delaminated composite cylindrical stiffened shells with pretwist subjected to impact stresses will 

be helpful in predicting the failure and reliability.  

e) Multiple-impact on delaminated composite cylindrical stiffened shell 

 Most researchers till date have focused on single-site impact on composite plates and 

shell. However impact is never a localized phenomenon as in hailstorm or ballistic attacks. The 

superimposition of the contact stresses at different locations on the delaminated composite 

cylindrical stiffened shell makes the prediction of their transient response extremely complex. 

The present study aims to develop a numerical method capable of predicting the multiple-impact 

response of the pretwisted delaminated stiffened structure.  

f) Delayed multiple Impacts 

 The delayed impact response of delaminated composite cylindrical stiffened shell  based 

on the time-delay between the impactors has not been presented yet. The present work attempts 

to focus on the delayed impact response of delaminated composite stiffened cylindrical shell. 

1.7 SCOPE OF THE PRESENT INVESTIGATION 

A thorough review of the existing literature clearly suggests that though a plethora of 

research works on composite stiffened shells and pretwisted plates/shells have been presented 

but there is still a broad scope of further research especially in the field of dynamic analysis of 

rotating delaminated composite pretwisted stiffened cylindrical shells as well as their transient 

response under single or multiple impact of low-velocity masses. An analytical research effort is 

needed to be carried out to exploit the capability of the modern day high-speed computers in 

analyzing the response of composite stiffened cylindrical shells under impact loading. 

Accordingly, the present endeavor aims at investigating certain relevant problem areas so as to 

improve the understanding of free vibration and impact response of delaminated composite 

pretwisted stiffened shells employing finite element method. Present scope of the research aims 

to cover some of the lacuna as listed below keeping this objective in mind: 

1. An eight-noded isoparametric shell element is developed to accurately model the 

complex geometry of pretwisted cylindrical shell while a three noded isoparametric 
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beam element is considered to model the stiffener. The Gauss quadrature integration 

scheme is used to compute the mass and stiffness matrices of the shell and stiffener 

elements. The formulation is based on the kinematic of first-order shear deformation 

(FSDT) theory. The general dynamic equilibrium equation is derived employing 

Lagrange’s equation of motion. The finite element codes developed are capable of 

predicting the free vibration and transient response of delaminated composite pretwisted 

rotating stiffened cylindrical shells due to single and multiple low-velocity impacts. The 

computer codes developed are first validated against available published results to ensure 

their capability in performing further analysis accurately and reliably. The codes are then 

used for generating new numerical results and  graphical data are interpreted from the 

numerical results 

2. A pre-existing delamination of a definite size and at a particular location is assumed to be 

present and the free vibration characteristics of both stationary and rotating composite 

stiffened cylindrical shells will be investigated. Numerical studies on pretwisted 

composite stiffened cylindrical shells will be carried out for moderate rotational speeds 

for which the Coriolis effect will be neglected. Natural frequencies of delaminated 

composite pretwisted stiffened cyindrical shells will be obtained for different laminate 

configurations considering the combined effect of location/size of delamination, 

rotational speed, pretwist angle, and orientation of stiffener, thickness of stiffener and 

eccentricity of stiffener. Also, the free vibration behavior of long, intermediate and short 

stiffened cylindrical shells based on Aas-Jakobsen’s parameters is studied. 

3. Investigations will be carried out to study the single and multiple impact response of 

delaminated composite pretwisted stiffened cylindrical shells. The impact response will 

include the computation of contact force, shell/impactor displacements, impactor 

velocities, stress resultants and in-plane stresses at specified points of the cylindrical 

shells. The modified Hertzian contact laws that accounts for permanent indentation will 

be utilized to compute the contact force between the impactor and the delaminated 

stiffened shells. Graphical results will be presented to depict the influence of important 

parameters like twist angle, rotational speed, size and location of delamination, 

orientation of stiffener, thickness of stiffener, eccentricity of stiffener, time-delay 
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between subsequent impacts on the transient dynamic response of delaminated 

composite pretwisted stiffened cylindrical shell. 

4. The results will be discussed in detail considering the effect of important parameters on 

the dynamic response of delaminated composite pretwisted stiffened cylindrical shells. A 

set of conclusions will be drawn summarizing the salient findings presented in this work. 

The scope of the future research work in this area will also be identified. 

1.9 ORGANIZATION OF THE THESIS 

This thesis consists of five chapters. The first chapter presents a general introduction of the 

delaminated composite pretwisted stiffened cylindrical shells along with its importance in 

relation to bending, free vibration, single and multiple impact response and associated finite 

element techniques used in predicting them. A detailed review of the existing literature is 

presented in this chapter and the scope of the present work is outlined based on the same. An 

extensive literature review is carried out with an emphasis on the following aspects: 

a) Laminated plate theory, shallow shell theory and pretwisted plate/shell. 

b) Bending analysis of stiffened plate/shell. 

c) Free vibration of composite stiffened plate/shell. 

d) Transient response of stiffened shell. 

e) Delamination modeling in plate/shell. 

f) Delamination modeling in stiffened plate/shell. 

g) Other aspects 

h) Critical observations 

Chapter 2 presents the theoretical formulation which is used in the present analyses. 

Basic lamina stress-strain relations, constitutive equation of shell and stiffener are discussed 

followed by the derivation of geometric stiffness matrix for rotation. The finite element model is 

developed based on the Lagrange’s equation of motion. An eight-noded isoparametric shell 

element is combined with a three noded beam element to develop the present finite element 

formulation. The modified Hertzian contact law that accounts for permanent deformation is 

utilized to compute the contact force between the stiffened shell and the impactor. The Gaussian 

quadrature is used in the integration for calculating the element stiffness, mass matrices and the 

element force vectors. The standard eigenvalue problem are solved by the QR iteration algorithm 
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is discussed. Newmark’s time integration scheme used to solve the time dependent equations of 

the shell and the impactor/s is also reported. 

Chapter 3 presents both numerical and graphical results of the free vibration analyses of 

delaminated composite pretwisted stiffened cylindrical shells. The computer codes are validated 

by comparing the results with those available in the existing literature. A concise study of the 

influence of the important parameters on the free vibration response of long, intermediate and 

short stiffened cylindrical based on Aas-Jakobsen’s parameters are also presented in this chapter. 

Chapter 4 deals with the single and multi-point impact response of delaminated 

composite pretwisted composite stiffened cylindrical shells. To establish the validity of the 

present finite element formulation in predicting the impact response of composite plates and 

shells, the results are first validated with those of previous investigators. Graphical results are 

presented to study the effect of important parameters on the transient response. 

Significant conclusions drawn from the present investigations and the major contributions 

of the present research work are listed in Chapter 5. The major contributions of the present 

research work and the scope of the future research in the context of the present work and the 

related problem areas are also summarized.  

A list of the references that are cited in the present work is given in the end. A flowchart 

of the computational procedure adopted to compute the low velocity impact response of the 

stiffened panel is given in Appendix-I. 
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CHAPTER 2 
 

THEORETICAL FORMULATION 
 

2.1 GENERAL 

 This chapter presents the theoretical formulation and solution procedures for free and 

transient vibration analyses of the rotating delaminated twisted composite stiffened shell. In the 

present analysis the surface of the composite stiffened shell is discretized into a number of finite 

elements. Each element of the composite stiffened shell is further considered as a combination of 

shell and beam elements. Formulation of the general curved shell element, having all the three 

radii of curvature using eight noded isoparametric quadratic elements, is derived on the basis of 

modified Sander's thin shell theory, satisfying C
0
 continuity for the interpolation functions. The 

stiffeners are modeled as three noded curved beam elements having the same set of displacement 

functions as that of the shell excluding the one across the stiffener longitudinal axis. Suitable 

transformations account for the eccentricity and curvature of the stiffener as well as their 

positions anywhere parallel to the X- or Y-direction within the shell element. The stiffeners 

oriented along the X-direction are termed as x-stiffeners and those along the Y-direction are 

termed as y-stiffeners. Appropriate combinations of the element matrices of the shell and the 

beam elements; result in the overall element matrices of the stiffened shell element. A multi-

point constraint algorithm is used to model delamination at desired location of the shell, wherein 

the undelaminated region is represented by a single layer and delaminated region as two layers. 

The compatibility of deformation and equilibrium of stress resultants are ensured at the 

delamination crack front. The governing dynamic equilibrium equation is derived using 

Lagrange's equation of motion. Standard Eigenvalue problems have been solved by using QR 

iteration algorithm. In low velocity impact problem, the contact force is computed using 

modified Hertzian contact law, which accounts for permanent indentation. The time dependent 

equations of the stiffened shell and the striker are solved by Newmark's time integration 

algorithm. 

The mathematical formulation of the model is based on the following assumptions: 

1. The middle plane the cylindrical shell is taken as the reference plane. 
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2. The laminated composite shell and the stiffener are made of number of layers bonded 

together, wherein each layer is treated as homogeneous and orthotropic. 

3. The fibers are regularly spaced, perfectly aligned and perfectly bonded. 

4. The matrix is homogeneous, linearly elastic and free from voids. 

5. A two dimensional approach is employed to model the three dimensional shell and 

stiffener as one dimensional element. 

6. The transverse normal is inextensible. 

7. Normal to reference surface of the cylindrical shell before deformation remain straight 

but not necessarily normal after deformation. 

2.2 SHELL ELEMENT 

A doubly curved thin shallow shell of uniform thickness made of composite material is 

considered. The radii of principal curvature of the shell along the global Cartesian coordinates X 

and Y are Rx and Ry, respectively. The radius of the curvature of twist is Rxy. The projection of 

the shell on the XY plane is a rectangle of dimensions L and b which are parallel to X and Y axes 

respectively. The orientation of the stiffened shell in the global Cartesian coordinate system is 

shown in Fig. 2.1.  

  

(a) (b) 

Figure 2.1 Typical cantilevered laminated composite cylindrical stiffened shells in the global 

Cartesian coordinate system. (a) Untwisted stiffened shell (b) Twisted stiffened shell. 

 

The shell surface is discretized by curved quadratic elements, which are rectangles in plan. These 

rectangles are modeled as eight noded doubly curved isoparametric elements having four corner 

and four mid-side nodes as shown in Fig 2.2. 
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Figure 2.2 Curved isoparametric shell element with nodes  

  

2.2.1 Shape Functions 

For an isoparametric element the coordinates and displacements at any point within the element 

are represented by the coordinates and displacements of the nodes of the element and the shape 

functions. These are derived from an interpolation polynomial. In case of thin shell the final 

element is assumed to have mid-surface nodes only. Hence, the interpolation polynomial is a 

function of ξ and η and has the following from. 

 ( ) 2
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The shape functions derived from the interpolation polynomial are as 

 ,4/)1)(1)(1( −+++= iiiiiN ηηξξηηξξ
        

 i = 1, 2, 3, 4 

(2.2)  2/)1)(1( 2ηξξ −+= iiN ,  i = 5, 7
 

 2/)1)(1( 2ξηη −+= iiN  ,       i = 6, 8
 

where Ni denotes the shapes function at i th node having natural coordinates ξi and ηi. 

The correctness of the shape functions is checked from the relations  

 ∑ = ,1iN ∑ =∂∂ 0/ ξiN  and ∑ =∂∂ 0/ ηiN   (2.3) 

The coordinates of any point ( x,y ) within the element are obtained as 

 ∑= ii xNx and ∑= ii yNy , i = 1, …., 8 (2.4) 

where xi and yi are the coordinates of the i th node.  

2.2.2 Generalized Displacement Fields and Nodal Degrees of Freedom 

Any shell surface can be modeled by three-dimensional solid elements. When the thickness 

dimension is considerably smaller than the other dimensions, the nodes along the thickness 
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direction supply additional degrees of freedom than needed and hence are not preferred. When a 

two-dimensional element is obtained by condensing the thickness direction nodes, the 

displacements of adjacent thickness direction nodes must be ensured to be equal to avoid 

numerical difficulties. Thus five degrees of freedom including three translations (u, v, w) and two 

rotations (α, β) are attached to each node. The final element has mid-surface nodes only and a 

line in the thickness direction remains straight but not necessarily normal to the mid-surface after 

deformations. The generalized displacements at any point within the element can be interpolated 

from the nodal values as 
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Equation (2.5) can be written in a compact form  

 { } [ ]{ }edN=δ  (2.6) 

2.2.3 Strain-Displacement Equations 

According to the modified Sanders’ first approximation theory for thin shells (Sanders, 1959) the 

strain-displacement relationships are established as 

 [ ]T

yzxzxyyx γγγεε  
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where the first vector on the right hand side represents the mid-surface strains and the second 

vector represents changes of the curvatures of the shell surface due to loading and are 

respectively related to the degrees of freedom as 
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and 
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In the above relations Rx, Ry and Rxy are the three radii of curvature of the element. The surface 

equation of any shell form can be represented by the equation z = f (x, y). For shallow shells 

where, according to Vlasov (1958), the ratio of the rise to the shorter plan dimension is less than 

0.2, the surface curvatures can be approximately represented as, 
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The strain components of equations (2.8) and (2.9) are to be considered together for generalized 

representation of the three-dimensional strain field and can be expressed in the form of  

 { } [ ]{ }cdH=ε  (2.11) 

where { } [ ]T

yzxzxyyxxyyx
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Since the displacements are interpolated from the nodal values by the shape functions, the 

derivatives of the displacements are obtained with respect to the natural coordinates and then 

proper transformation technique is applied. Thus the vector {dc} is expressed in terms of natural 

coordinates as:  
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and [J] is Jacobian matrix expressed as 
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For thin shells in which, according to Gioncu (1979), the ratio of thickness to minimum radius of 

curvature is less than 0.005, the terms with first power of ζ in the Jacobian matrix may be 

neglected.  

From equation (2.15) it is evident that the vector {dn} can be obtained by multiplying the nodal 

displacement vector {de} by a matrix [Λ] containing the shape functions and their derivatives 

with respect to the natural coordinates. Thus   

 { } [ ]{ }en dd Λ=  (2.17) 

where [Λ] is 20 × 40 matrix and {de}is given by 

 T

e wvuwvud ][}{ 8888811111 βαβα LLL=  (2.18) 

Combining equations (2.11), (2.14) and (2.17), one has 

 { } [ ]{ } [ ][ ] { } [ ][ ] [ ]{ } [ ]{ }ennc dBdJHdJHdH =Λ=== −− 11ε  (2.19) 

where [B] is called the strain-displacement matrix and is expressed as  

 [ ] [ ][ ] [ ]Λ= −1
JHB   

Twist angle of the shell is defined in terms of length (L) and curvature of twist (Rxy) as 

 
  xyRL /tan −=Φ  (2.20) 

2.2.4 Force-Strain Relationships 

Force and moment resultants are obtained from the stresses as  
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where σx and σy are the normal stresses along X and Y directions, respectively and τxy, τxz and τyz 

are shear stresses in XY, XZ and YZ planes, respectively. Thickness of the shell is denoted by h.   

A macro-mechanical analysis is required to establish the relationship between the forces and 

strains. The shell thickness is assumed to be made of a composite laminate which, in turn, may 

consist of a number of thin laminae. The principal material axes are indicated by 1 and 2 and the 
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muduli of elasticity of a lamina along these two directions are E1 and E2, respectively and G12, 

G23 and G13 be the shear modulii of the lamina along the subscripted directions. 

 

Figure 2.3 Fiber orientation of a shell lamina 

Neglecting the normal stress perpendicular to the plane of the lamina, the stress-strain relations, 

in the principal material directions are given by 
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where,
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Appropriate transformation is required in order to obtain the elastic constant matrices 

corresponding to arbitrary principle axes (X-Y) with which the material principle axes make an 

angle θ as shown in Fig. 2.3. Thus the off-axis elastic constant matrix is obtained from the on-

axis elastic constant matrices. 
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where m=cos θ and n=sin θ 
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Similarly, the following off-axis elastic constant for the transverse shear stresses can be obtained. 
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The stress-strain relations of the lamina, with respect to the x, y and z axes are expressed as 
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where 
sk is the shear correction factor to account for parabolic variation of the transverse shear 

strains and is approximately taken as 5/6. 

Since the laminate consists of number of laminae, the total stress resultants for an nl-layered 

laminate are expressed as 
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Combining the above relations ( Eqs. 2.28, 2.29 and 2.30), the in-plane stress resultants {N}, the 

moments resultants {M}, and the transverse shear resultants {Q}, are related to the mid-plane 

strains and curvatures for a general laminated shell element is given by 
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in which, zk and zk-1, are the distances measured from the mid-surface of a laminate to the bottom 

of the kth and (k-1)th laminae kijQ )( is the element corresponding to ith row and jth column of 

the off-axis elastic constant matrix for the kth lamina. 

Equation (2.31) is expressed in compact form as 

 { } [ ]{ }εDF =  (2.32) 

2.2.5 Generalized Inertia Matrix 

The generalized inertia matrix per unit area includes the translatory and rotary inertia terms. 

Mass and moment of inertia are the measures of translatory and rotary inertial resistances, 

respectively and are given by the following equations.  

Mass per unit area is denoted by m and is given by 
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where ρ  is mass density of shell.  

Moment of inertia per unit area is denoted by I and is given by 
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Incorporating both the translatory and rotary inertia terms, the generalized inertia matrix [m] 

takes the following form, 
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2.3 STIFFENER ELEMENT  

Curved beams of rectangular sections are considered for the stiffeners with constant width and 

depth made of laminated composite linearly elastic material. Stiffeners are oriented along X-

and/or Y-directions. Stiffeners oriented along X- and Y-directions are called as the x- and y-

directional stiffeners, respectively. The radius of curvature of the x-directional stiffener is Rx and 

that of the y-directional stiffener is Ry. The following steps are involved for the formulation of 

element matrices of the beam element.  

An isoparametric curved three-noded beam element is chosen with two end nodes and one 

middle node to model the stiffeners. The isoparametric beam elements are oriented in natural 

coordinate system along ξ or η parallel to the global X or Y axes, respectively.  

2.3.1 Shape Functions 

The shape functions of three noded curved isoparametric beam elements for the x- and y-

directional stiffeners as shown in Fig. 2.4 are taken as considered by Deb and Booton (1988) and 

are expressed as follows: 

 

 

(a)  x-directional stiffener (b)  y-directional stiffener 

Figure 2.4 Three-noded isoparametric stiffener element 

For x-directional stiffeners, 
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For y-directional stiffeners, 
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Since, the generalized displacements and coordinates are interpolated from their nodal values in 

an isoparametric formulation, the X-coordinate for the x-directional stiffener and Y-coordinate 

for the y-directional stiffener of any point within an element are obtained as 

 ∑= i

sx

i xNx                                                   i = 1,2,3 (2.38) 

 ∑= i

sy

i yNy                                        i =1,2,3
 

(2.39) 

2.3.2 Generalized Displacement Fields and Nodal Degrees of Freedom 

In the beam elements, each node has four degrees of freedom, u
sx

, w
sx

, αsx
 and βsx

 for x-

directional stiffeners and v
sy

, w
sy

, αsy
 and βsy

 for y-directional stiffeners.  

 

EP' = O'P'β = OPβsx = yβsx 

Figure 2.5 Vertical displacement of x-directional stiffener on account of shell rotation. 

The generalized displacement field of the x-directional stiffeners is of the following form: 
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where U
sx

, V
sx

 and W
sx

 are the generalized displacements along X-, Y- and Z-directions at any 

point within the x-directional stiffener element, and u
sx 

and w
sx

 are those at the mid-plane of the 

x-directional stiffeners. αsx
 and βsx

 are the rotations of the normal to the undeformed mid-plane 
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of the x-directional stiffeners along X- and Y-directions, respectively. The vertical displacement 

of the x-directional stiffeners due to torsional rotation of the shell is shown in Fig. 2.5.The 

generalized displacement field is a function of х only. Hence derivatives of its components with 

respect to Y and Z axes do not exist. 

Similarly, the generalized displacement field of the y-directional stiffeners is expressed as 
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where U
sy

, V
sy

 and W
sy

 are the generalized displacements along X-, Y- and Z-directions at any 

point within the y-directional stiffener element, and v
sy 

and w
sy

 are those at the mid-plane of the 

y-directional stiffener. α 
sy

 and β 
sy

 are the rotations of the normal to the undeformed mid-plane 

of the y-directional stiffeners along X- and Y-directions, respectively. The generalized 

displacement field is function of y only. Hence derivatives of its components with respect to X 

and Z axes do not exist. 

The generalized displacement vector of the x-directional stiffener element is expressed in terms 

of the shape functions and nodal degrees freedom as 
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which can be written in a compact form as 

 { } [ ]{ }sx

e

sxsx dN=δ  (2.43) 

where [N
sx

] is the shape function matrix of the x-directional stiffener element. 

Similarly, the generalized displacement vector of the y-directional stiffener element is expressed 

in a compact form as 

 { } [ ]{ }sy

e

sysy dN=δ  (2.44) 

where { } [ ]Tsysysysysy wv βαδ =
 

(2.45) 

 { } [ ]Tsysysysysysysysysy

e wvwvd 33331111 ....... βαβα=  
(2.46) 

and [N
sy

] is the shape function matrix of the y-directional stiffener element. 
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2.3.3 Strain-Displacement Equations  

The strain-displacement equations of the x- or y-directional stiffeners can be derived from the 

generalized displacement fields of the respective stiffeners. The strain components of the x-

directional stiffeners considered are  
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The components of the above strain vector can be rearranged in terms of strain components of 

the stiffener mid-surface and changes of stiffener curvature due to loading to obtain the 

generalized strain vector so as to maintain compatibility with the force vector (given in the next 

section).  

Thus the generalized strain components of the x-directional stiffeners are given by  
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where subscript ( , ) denotes partial differentiation.  

Derivatives with respect to x cannot be obtained directly. Hence these are obtained from the 

derivatives with respect to ξ as follows. 
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Where sxJ  is the Jacobian of transformation for the x-stiffener and is given as          

 [ ]
ξ∂
∂

=
x

J
sx  (2.50) 

The strain-displacement relationships of the x-directional stiffener given in Eq. (2.48) is written 

in a compact form as 
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The strain components of the y-directional stiffener considered are 
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Rearranging the above the generalized strain components of the y-directional stiffener are given 

by 
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Derivatives with respect to y cannot be obtained directly. Hence these are obtained from the 

derivatives with respect to η as follows: 
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Where syJ  is the Jacobian of transformation for the y-stiffener and is given as  

 [ ]
η∂
∂

=
y

J
sy  (2.55) 

The strain-displacement relationships of the y-directional stiffeners given in Eq. (2.53) can be 

written in a compact form as 

 { } [ ]{ }sy

e

sysy dB=ε  (2.56) 

 2.3.4 Force-Strain Relationships   

The stress resultants of the x-and y-directional stiffeners obtained from the stresses developed in 

the cross-section of the respective stiffeners as shown in Fig. 2.6 are given below. 

For the x-directional stiffeners, 
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For the y-directional stiffeners, 
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where sx

xσ is the normal stress along X axis and 
sx

xyτ and sx

xzτ are shear stresses in YZ plane along 

Y and Z axes, respectively, of the x-directional stiffeners. Similarly, 
sy

yσ is the normal stress 

along Y axis and 
sy

yxτ and 
sy

yzτ are shear stresses in XZ plane along X and Z axes, respectively of 

the y-directional stiffeners. 

 

Figure 2.6 Stresses in x-directional stiffener cross-section. 

  

The stress-strain relations of the stiffeners are obtained by a macro-mechanical analysis as in the 

case of the laminated shells. The depth of the stiffeners is made of composite laminate consisting 

of a number of laminae. The principal material axes are indicated by 1 and 2 and moduli of 

Elasticity of a lamina along these two directions are E1 and E2 respectively as in case of 
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laminated shells. θ is the angle that the major material principal axis of a lamina of the x- or y- 

stiffeners makes with their longitudinal axes.  

In a similar way as in case of laminated shell the stress-strain relationships of a lamina of the x-

stiffener are obtained by omitting the normal stress and strain along y-axis and are given by 
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where 
sxQ11 , sxQ16

 , sxQ66
 and 

sxQ44 are the off-axis elastic constants of a lamina of the x-directional 

stiffener and are obtained in a similar manner as in case of laminated shell. sx

sk  is the shear 

correction factor to account for parabolic variation of the transverse strains and is approximately 

taken as 5/6. 

Since the laminate of the x-directional stiffener consists of a number of laminae, the total stress 

resultants for a nlx layered laminate are expressed as 
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The last integration term in the above equation is zero for a symmetric cross-section. However, it 

is generally treated as zero for any cross section. The third term is interpreted as the torsional 

rigidity of the x- directional stiffener cross-section and expressed approximately as 

( ) 3
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1
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sxsx bdQQ + , where std is the depth and stb is the width of the stiffeners. Hence the 

equation becomes 
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The last term of the Eq. (2.64) is zero for the reason mentioned earlier and it takes the form
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Now the force vector is related to the generalized strain components as 
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where 
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 (2.67) 

Or, }]{[}{ sxsxsx

e DF ε=  (2.68) 

In a similar manner, the force-strain relationships for the y-stiffener can be derived as 



64 

 

 

( )



































∂
∂

+

∂
∂
∂
∂

+
∂
∂





















+
=

























y

w

y

y

R

w

y

v

bAk

bdQQbDbB

bDbDbB

bBbBbA

Q

T

M

N

sy
sy

sy

sy

y

sysy

st

sysy

s

stst

sysy

st

sy

st

sy

st

sy

st

sy

st

sy

st

sy

st

sy

st

sy

sy

yz

sy

y

sy

y

sy

y

β

α

β

55

3

55662626

262222

262222

000

0
6

1

0

0

 (2.69) 
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(2.70) 

or }]{[}{ sysysy

e DF ε=  (2.71) 

2.3.5 Generalized Inertia Matrix 

The generalized inertia matrix per unit length of the x- or y- directional stiffeners includes both 

the translatory and rotary inertia terms. Mass and moment of inertia are the measures of 

translatory and rotary inertial resistances respectively and are given by the following equations.  

Mass per unit length of the x-stiffener is denoted by m and is given by 
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Mass moment of inertia per unit length is denoted by Imsx and is given by 
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Equivalent mass polar moment of inertia per unit length is denoted by Jmsxe and given by 
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where kρ  is the mass density of kth layer of x-directional stiffener stb and std are width and 

depth of the stiffeners, respectively. kz and 1−kz  are the distances measured from the mid-surface 

of stiffener laminate to the bottom of the kth and (k-1)th laminae. 
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Incorporating both the translatory and rotary inertia terms the generalized inertia matrix [m
sx

] of 

the x-directional stiffeners takes the following form, 
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In a similar manner, the generalized inertia matrix of the y-directional stiffeners is obtained and 

is given by  
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where 
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ρ is the mass density of y-directional stiffeners bst and dst are width and depth of the stiffeners, 

respectively. 

2.4 COMPATIBILITY BETWEEN SHELL AND STIFFENER  

In order to maintain compatibility between the shell and stiffener elements, the stiffener nodal 

degrees of freedom have to be transformed to shell degrees of freedom considering the 

eccentricity and curvature of the stiffener.  

Considering the effect of eccentricity and curvature the axial displacement of any point in the 

mid-surface of the x-stiffener 
sxu can be expressed in terms of the axial displacement u  of a 

point in the mid-surface of the shell as  
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e
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+= 1  (2.80) 

where 2/)( stdhe +=  
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Figure 2.7 Effect of curvature and eccentricity on axial displacement of stiffener. 

 

The points of the stiffener and the shell considered here are collinear in the Z-direction (Fig. 2.7). 

As the remaining degrees of freedom of the stiffener will be the same as those of the shell mid-

surface, the displacement vector of the x-stiffener can be related to that of the shell mid-surface 

as 
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or in compact form  

 { } [ ]{ }δδ sx

ce

sx
T=  (2.82) 

Moreover, as the stiffener element is considered within the shell element the displacements at the 

nodes of the stiffeners (slave nodes) are constrained to follow the displacements at the nodes of 

the shell element (master nodes).Thus axial displacement at the ith node of the stiffener 
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 Here 821 ...., iii NNN  represent the quadratic shape functions of shell evaluated at the ith nodal 

point of the stiffener. 

Considering all the displacements at the ith node of x-stiffener the above equation takes the 

following form 
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Thus the nodal degrees of freedom of the x-stiffener can be expressed in terms of the shell nodal 

degrees of freedom as 
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Here Nij means jth quadratic shape function of shell evaluated at the ith nodal point of the 

stiffener.    

The above equation can be written in a compact form as 

 { } [ ][ ]{ } [ ]{ }e

sx

e

sh

sx

sx

ce

sx

e dTdTTd ==  (2.86) 

 Using the above values of { }sx

ed  the displacement vector of the x-stiffener can be expressed in 

terms of the shell nodal degrees of freedom as 

 { } [ ][ ]{ }e

sxsxsx dTN=δ  (2.87) 

Similarly, the nodal degrees of freedom of the y-directional stiffeners are transformed to the shell 

nodal degrees of freedom as 
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Displacement vector of the y-stiffener can be expressed as 
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sysysy dTN=δ  (2.89) 

  



68 

 

2.5 MULTIPOINT CONSTRAINTS ALGORITHM FOR DELAMINATION 

A cross-sectional view of delamination crack front of a plate element is shown in Fig 2.8. The 

undelaminated region is modeled as element 1, where the delaminated region as element 2 and 3. 

The contact between the delaminated layers during deformation is not considered in the present 

formulation. The nodal displacement given by Gim (1994) of element 2 and 3 at the crack tip are 

expressed as: 
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where iu′ , iv′ , iw ′ are the mid-plane displacements and iz is the z coordinates of the mid-plane of 

element i .  

The transverse displacements and rotations of all the three elements at common node have the 

same values and are expressed as: 
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Figure 2.8 Shell elements at a delamination crack tip 

The in-plane displacement of all the three elements at the crack node is equal and as a result, the 

mid-plane displacements of elements 1, 2 and 3 are related as: 
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where 1u′ is the mid- plane displacement of element 1. Equations (2.90),(2.91) and (2.92) relating 

the nodal displacements and rotations of elements 1, 2 and 3 at the delamination crack tip, are 

multipoint constraint equations used in the finite element formulation to satisfy the compatibility 

of displacements and rotations. 

Mid-plane strains given by Gim (1994) between the element 2 and 3 are related as 
 

 { } { } { }κεε ii z+′=′
1                                  

( 3,2=i )  (2.93) 

where{ }κ is the curvature vector being identical at the crack tip for element 2 and 3. This 

equation can be considered as a special case for element 1, when 1z  is equal to zero. 

The in-plane stress resultants, { }N and the moment resultants{ }M of element 2 and 3 can be 

expressed as
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(2.95) 

where [ ]A , [ ]B and [ ]D are extension, bending-extension coupling and bending stiffness 

coefficients of the composite laminate, respectively and as follows (Gim, 1994) :  
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2.6 FORMULATING THE GENERAL DYNAMIC PROBLEM  

Hamilton’s principle applied to the dynamic analysis of elastic bodies' states that “among all 

admissible displacements which satisfy the specific boundary conditions, the actual solution 

makes the functional ∫ (T+W) dt stationary, where T and W are the kinetic energy and work done 

by conservative and non-conservative forces, respectively. The stationary value is actually a 

minimum”. 

2.6.1 Strain Energy of rotating stiffened shell  

In the case of a dynamic problem without damping, the conservative forces are the elastic forces 

developed within the deformed body and the non-conservative forces are the external forcing 

functions.  
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The work done U1 by conservative forces in rotating shell element having stiffeners in the X- and 

Y- directions is given by 

 Rotsysxsh UUUUU 11111 +++=  (2.97)  
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(2.100) 

The strain energy contribution resulting from the initial stresses generated due to rotation is 

expressed as 

 { } [ ]dvU
T

vol

Rot

01 σε∫ ′=  (2.101) 

ε ′and 0σ  are the nonlinear strain components and initial stress vector resulting from rotation.  

The non-linear strain components can be written as Cook (2007) 
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where 
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 (2.103) 

or { } [ ]{ }edG=θ  (2.104) 

 [G] represents the matrix of the derivatives of the shape functions. 
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Substituting the relevant strain-displacement relations for the shell in equation (2.98) one obtains 
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where the element elastic stiffness matrix is 
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Similarly, the Equation (2.99) can be written as 

 { } [ ] [ ][ ]{ }dxdBDBdU sx

e

sxsxTsxTsx

e

sx ∫=
2

1
1  (2.108) 

Using the relation between the elemental degrees of freedom of the shell and the x-stiffener one 

obtains 
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where [ ] [ ] [ ] [ ][ ][ ]∫= dxTBDBTK sxsxsxTsxTsxsx

e  is the stiffness matrix of the X-directional 

stiffener. 

Similarly for y-directional stiffener 
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where [ ] [ ] [ ] [ ][ ][ ]∫= dyTBDBTK sysysyTsyTsysy

e  is the stiffness matrix of the Y-directional 

stiffener. 

Using Eqs. (2.102) and (2.104), the Eq. (2.101) can be expressed as 
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Again,  
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where the matrix ][G consists of derivatives of shape functions and [ ]σM  denotes the matrix of 

initial stresses.  

The Equation (2.111) becomes 
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where the element geometric stiffness matrix is 

 [ ] [ ] [ ][ ]dxdyGMGK
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Total potential energy of the rotating shell containing both X-and Y-directional stiffener is 
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 2.6.2 Kinetic Energy of rotating stiffened shell  

Kinetic energy U 2 of vibration of an element is given by  

 sysxsh UUUU 2222 ++=  (2.116) 

Two coordinate system (X', Y', Z') and (x, y, z) are used for modeling a rotating shell as shown in 

Fig 2.9.  

Total kinetic energy of a rotating shell can be expressed as 
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v

sh dvVVU
rr

.
2

1
2 ρ  (2.117) 

where, V
r

is the absolute velocity vector of an arbitrary point on the shell with respect to inertial 

reference frame (X', Y', Z') and ρ is the mass density of the composite shell. It is assumed that the 

panel rotates about the inertial coordinate system (X', Y', Z') with an angular velocity component 

k ′Ω′=Ω about the Z' axis, wherein k' is the unit vector along Z' axis.   

The components of angular velocity with respect to the shell local coordinate system are given as 
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where 
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where Ω′ is the speed of rotation of the stiffened shell about z-axis of the inertial coordinate 

system(x', y', z'), λ is the precone angle and φ is the skew angle. The order of rotation is φ and λ.  

 

Figure 2.9 Rotational and translational offsets of rotating cylindrical shell about local and 

inertial frames of reference 

The fixed translation offsets expressed with reference to cylindrical stiffened shell coordinate 

systems are given as 

 { } { }[ ] [ ]Tx

T

yzyx TTzyxhhh θθ000 ,,,, =  (2.120) 

Unit vectors for the inertial reference system and local coordinate axes are (i', j', k')and (i, j, k), 

respectively. According to Chasle's theorem, 

 ( ) rXk
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rd
V

r
r

r
′Ω′+=  (2.121) 

where, r
r

is the position vector from the origin of the inertial reference frame to a point on the 

deformed cylindrical stiffened shell. Position vector and the angular velocity vector can be 

written as 
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 kjik zyx Ω′+Ω′+Ω′=′Ω′=Ω′
r

 
(2.123) 

where (x, y, z) are the coordinates of the point in the shell coordinate system (local coordinate 

axes), (hx, hy, hz) are the fixed translational offsets of the shell coordinate axes from the inertial 

axes expressed with reference to the shell coordinate system, (u, v, w) are the elastic deflections 

of a point and (
zyx Ω′Ω′Ω′ ,, ) are the component of angular velocity with respect to the shell 

coordinate system. The velocity vector is given by 
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where, dot (.) represents derivatives with respect to time and
2
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Computing 
2

V
r

and cancelling the terms which gives no contribution when Lagrange's equation 

of motion is applied and substituting the result in kinetic energy expression, we have, 
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where, [A1] and [A2] are expressed as, 
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The displacement vector at any point in the element can be written as 
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dNwvud == ,,  (2.128)

 



75 

 

where [N] stands for the shape function matrix and {de} stands for the element nodal 

displacement vector. Substituting the above relation, the expression for kinetic energy of an 

element 
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where, the element mass matrix of the shell is 
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The element Coriolis matrix (skew symmetric) is 

 [ ] [ ] [ ][ ]∫=
v

T

e dvNANC 1ρ  (2.131) 

The elemental rotational stiffness matrix (symmetric and positive definite) is 
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The element centrifugal force vector is 
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The kinetic energy of the stiffeners can be expressed as  
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where the dot (.) represents derivative with respect to time. 

Using the relation between { }sxδ  and { }ed
 

 { } [ ] [ ] [ ][ ][ ]{ }dxdTNmNTdU e

sxsxsxTsxTsxT

e

sx &&∫=
2

1
2  (2.136) 

 { } [ ]{ }e

sx

e

T

e

sx dMdU &&

2

1
2 =

 
(2.137) 

Similarly 
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The total kinetic energy of the rotating shell element containing both x- and y-directional 

stiffener is 
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On arrangement of terms the Eq.(2.140) can be rewrite as 
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2.6.3 Work done due to external load 

Work done U3 by surface tractions in an element is given by 

  { } [ ] dAqU
T

A

∫ ∫−= δ3

 
(2.142) 

where { } [ ]Tyxzyx qqqq µµ=
 

(2.143) 

in which qx, qy and qz are the uniformly distributed loads per unit area along X, Y and Z axes, 

respectively, and µx and µy are the moments per unit area along X and Y axes, respectively. In 

case of shells subjected to transverse loads only qx, qy, µx and µy vanish and qz remains, which is 

represented by the scalar notation p hereafter.  

From Equations (2.6) and (2.142), it is obtained that 
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where { } { } [ ] { }∫∫==
A

Tsh

ee dydxpNFF , the consistent element nodal load vector. 

2.6.4 Governing equation 

Hamilton’s principle may be used to derive Lagrange’s equation of motion given by 
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The equation can be written as, 
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 Substituting Equations (2.115), (2.141) and (2.144) in Equation (2.146) and solving one gets,  

 [ ]{ } [ ]{ } [ ] [ ] [ ]( ) { } { } { }eeeRoteeeeee FFdKKKdCdM +=−+++ Ωσ
&&&

 

(2.147) 

For moderate rotational speed, Coriolis matrix and rotational stiffness matrix are neglected and 

finally, the dynamic equilibrium equation reduces to 
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or [ ] [ ] [ ] [ ]sy

e

sx

e

sh

ee MMMM ++=  

          = mass matrix of the shell element  

             + mass matrix of the x-stiffener element 

             + mass matrix of the y-stiffener element   
 

(2.149) 

and [ ] [ ] [ ] [ ]sy

e
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e
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ee KKKK ++=  

       = Stiffness matrix of shell element  

         + Stiffness matrix of the x-stiffener element 

         + Stiffness matrix of y-stiffener element   
 

(2.150) 

Transforming the integrals to local natural coordinates of ξ, η of the element, the element 

matrices can be expressed as 
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The numerical integrations of the above equations are performed by using Gaussian quadrature 

of order (2×2) to avoid shear locking (Cook , 2007). 

Transforming the integrals of the x- stiffener element to local natural coordinateξ, the element 

matrices can be expressed as  
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In a similar manner, the element matrices of the y-directional stiffener element are expressed as  
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Numerical integrations of the above equations are performed by using 2 point Gaussian 

quadrature.  

The element mass and stiffness matrices of the stiffened shell are transformed to global axes 

system (X-Y-Z) without using the transformation matrices. This is so, because, the shell 

elements are rectangular and their local axes are parallel to the global axes X and Y respectively. 

The local axis Z
/
 is also nearly parallel to the global axis Z because the shell is shallow and hence 

does not have a very sharp curvature. These matrices and element load vectors are assembled 

with proper correspondence to the degrees of freedom for all nodes. Thus, the global stiffness 

[K] and mass [M] matrices and global load vectors {F(Ω)} and {F} of the stiffened shell are 

given by, 
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The dynamic equation of motion in the global form reduces to  

 [ ]{ } [ ] [ ] { } { } { }FFdKKdM +Ω=++ )()( σ
&&

 

(2.160) 

where {d} is a global displacement vector. 

][ σK  depends on initial stress distribution due to the rotation and is obtained by iterative 

procedure (Sreenivasamurthy and Ramamurti, 1981) upon solving 

 )}({}]){[]([ Ω=+ FdKK σ
 

(2.161) 

Initially, the stresses are taken equal to zero and 

 )}({}]{[ Ω= FdK
 

(2.162) 

gives a stress distribution 
0σ  ; then solution of 

 )}({}]){[]([ 0 Ω=+ FdKK
σ

 
(2.163) 

gives a new stress distribution 
1σ , and the stresses are found to converge within another two 

iterations. 

2.7 IMPOSITION OF BOUNDARY CONDITIONS AND SOLUTION 

PROCEDURE  

Imposing boundary conditions means the presence or absence of the generalized displacements 

u, v, w, α and β in the different nodes of the discretized structure. The zero displacement 

boundary conditions are incorporated by deleting the corresponding rows and columns from the 

global matrices and the load vector.  

The boundary condition adopted for the entire analysis of the cantilevered stiffened shell is 

at x=0              u=v=w=α=β=0
 

(2.164) 

Solution techniques of the static, free vibration and low velocity impact problems are elaborated 

in the following subsections.  

2.7.1 Formulating Static Problem 

If the inertia force term, the force resulting from initial stresses due to rotation and the force 

rotation of equation (2.160) are dropped and the displacement and external load vectors are 

assumed to be time independent, the following equation of static equilibrium is obtained,  

 [ ]{ } { }FdK =
 

(2.165) 
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The above equation is solved by the Gauss elimination technique (Bathe, 2006) and from the 

global nodal displacement vector {d} thus obtained, the element displacement vector { }ed  is 

known.  

Using { }ed  in equation (2. 19) the strains can be evaluated at the Gauss points, which when used 

in equation (2.32) the generalized force and moment resultants are obtained at the Gauss points. 

These values are extrapolated to the nodes by shape functions to obtain the nodal values. Since 

stresses are discontinuous at nodes due to C
0
 continuity of the shape functions, these are 

calculated taking the average value of stresses at that node from various elements associated with 

that node. 

2.7.2 Formulating Free Vibration Problem 

Natural frequencies and eigenvectors are obtained about the deformed configuration. For the 

static analysis, the time-dependent terms in Eq. (2.160) are neglected and the following form is 

obtained 

 [ ] [ ]( ){ } { })(Ω=+ FdKK staticσ
 

(2.166) 

where,{ }staticd  is the static equilibrium solution as a result of the centrifugal load. 

In case of the dynamic analyses, both the static as well as the time-dependent components are 

considered where the displacement vector {d} is expressed as the sum of a static and a dynamic 

term. Thus, 

 { } { } { }pstatic ddd +=
 

(2.167) 

where { }pd  is a small linear time-dependent perturbation about the static deflected 

position{ }staticd . 

The equation of motion for free vibration is given by 

 [ ]{ } [ ] [ ] { } 0)( =++ dKKdM σ
&&

 

(2.168) 

Assuming harmonic vibrations, { } { } ti nedd
ω= , we have 

 [ ] [ ]( ) [ ][ ]{ } 0
2 =−+ dMKK nωσ

 

(2.169) 

This is a standard eigenvalue problem, and is solved for the eigenvalues and eigenvectors by the 

QR iteration algorithm (Bathe, 2006). 

 [ ]{ } { }ddA λ=
 

(2.170) 
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where [ ] [ ] [ ]( ) [ ]MKKA
1−+= σ and 

2
/1 nωλ =  

2.7.3 Formulating low velocity Impact Problem 

Neglecting the effect of damping, the dynamic equilibrium equation is given by 

 [ ]{ } [ ] [ ] { } { } { }CFFdKKdM +Ω=++ )()( σ
&&

 

(2.171) 

where, { }d  and { }d&&  are the global displacement and acceleration vectors respectively, { })(ΩF is 

the nodal equivalent centrifugal forces and { }CF is the global contact force vector resulting from 

single or multi-site impact and is given by 

 { } { }T

CjCiC FFF 000000 LLL=
 

(2.172) 

Where, CiF  and CjF  are the contact forces at the nodes i and j where the impacts occur. 

[ ]σK depends on the initial stress distribution and is obtained by the iterative procedure upon 

solving 

 [ ] [ ] { } { })()( Ω=+ FdKK σ
 

(2.173) 

For impact, the equation of motion for each rigid impactor is given by 

 0=+ Cii Fwm &&

 

(2.174) 

where im  and iw&&  are the mass and acceleration of the impactor respectively. 

The local indentation at the indentation point is given by 

 Φ−= cos)( si wwtα
 

(2.175) 

where, Φ, sw and iw are the twist angle, displacements of the mid-plane of the cylindrical shell 

and the displacement of the spherical impactor at the impact point in the direction of impact, 

respectively. 

The contact forces based on modified Hertzian contact law during loading, unloading and 

reloading cycle are determined as (Sun and Chen, 1985) 
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where k  is the contact stiffness,α is the depth of indentation, mF  is the maximum contact force 

just before unloading, mα is the maximum indentation obtained at the end of  loading cycle 

and 0α is the permanent indentation in a loading/unloading cycle.  The contact stiffness k  of the 

cylindrical shell is determined using the following relation proposed by Yang and Sun (1982) 
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(2.179) 

where ir , iν  and iE  are the radius, Poisson's ratio and modulus of elasticity of the spherical 

impactor,respectively. 2E  is the modulus of elasticity of the cylindrical shell transverse to fibre 

direction. The permanent indentation 0α  is determined from the following equations (Sun and 

Chen, 1985) 

 00 =α                     when crm αα <  and
 

(2.180) 

 )(0 crmc ααβα −=    when crm αα ≥
 

(2.181) 

where cβ is a constant and crα is the critical indentation beyond which permanent indentation 

occurs. For graphite epoxy laminates, the values of crα  and cβ are 1.667 210 −× cm and 0.094, 

respectively (Sun and Chen, 1985). 

As the load vector { }CF of equation (2.171) is transient in character then the above equation 

represents the basic equation of forced vibration. The Equation (2.171) is regarded as a system of 

ordinary differential equations with constant coefficients and is made to be satisfied at discrete 

points of time. Newmark’s direct time integration scheme (Bathe, 2006) (the constant average-

acceleration method) is used to approximate the time derivatives. Use of this unconditionally 

stable scheme in equation (2.171) with time step ∆t yields for the (n +1)th time step at time t+∆t 

the following relation,  

For cylindrical shell: 

 [ ]{ } { } 11
ˆˆ

++ = nn FdK
 

(2.182) 

where [ ] [ ] [ ] [ ]MaKKK 0
ˆ ++= σ  

(2.183) 
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and { } { } { } [ ] { } { } { }( )nnnnCn dadadaMFFF &&&
21011 )(ˆ ++++Ω= ++  

(2.184) 

For Impactors: 

 ( ) 11
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where imak 0
ˆ = , the effective stiffness of the impactor and 

 ( ) ( ) ( )nininiinCnC wawawamFF )()()(ˆ
21011

&&& +++= ++
 

(2.186) 

with ( )2

0 /1 ta ∆′= β , taa ∆= 01 , 12/12 −′= βa
 

(2.187) 

The acceleration vector { }d&&  and the velocity vector { }d&  of the shell can be computed from the 

displacement vector { }d  as,  

 { } { } { }( ) { } { }nnnnn dadaddad &&&&&
21101 −−−= ++

 

(2.188) 

and { } { } { } { } 1431 ++ ++= nnnn dadadd &&&&&&
 

(2.189) 

while that of the impactor is 

 ( ) ninininini wawawwaw )()()()()( 21101
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(2.190) 

 ( ) ( ) ( ) ( )
1431 ++ ++=

nininini wawaww &&&&&&

 

(2.191) 

with ( ) ta ∆′−= α13 and ta ∆′=α4  (2.192) 

Values of α ′and β′ are taken as 0.5 and 0.25, respectively as proposed by Newmark assuming 

constant average acceleration. Equation (2.182) is analogous to equation (2.165) and is solved in 

the same way as equation (2.165) and the dynamic stresses are obtained at each time step. Time 

step for each impact case is chosen to satisfy the convergence of the time-based response. 
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CHAPTER 3 

 

FREE VIBRATION ANALYSIS OF PRETWISTED 

ROTATING DELAMINATED COMPOSITE 

STIFFENED CYLINDRICAL SHELLS 
 

 

3.1 GENERAL 
 

A cantilever pretwisted cylindrical shell has significant applications in turbomachinery, 

impeller and fan blades. Extensive use of cantilever composite shells are also found in 

mechanical, aerospace, automobile and marine industries owing to their light weight 

combined with high strength. In addition to this, the specific properties of composite 

materials can also be easily tailored by controlling the fiber orientation and stacking sequence 

of the constituent layers. Major cause of failure in turbomachinery blades is due to fatigue, 

which is a consequence of the resonant vibrations resulting in large operating stresses. 

Moreover, high rotational speeds in turbomachinery blades results in centrifugal forces of 

considerable magnitude, which manifest itself through geometric stiffness known as 

centrifugal stiffening and this, could be regarded as problem of initial stresses of the shell. In 

order to control the resonant vibrations and increase the overall stiffness, the composite shells 

are very often stiffened by adding stiffeners at suitable orientations. An in-depth 

understanding of the dynamic behavior of pretwisted cylindrical stiffened shells is extremely 

important from the design point of view in order to avoid harmful resonances and predict 

beforehand the probability of failure in these composite structures. A twisted stiffened shell 

structures pose geometrical complexities in most practical applications which sometimes 

make their behavior highly unpredictable in different service environments. In addition, 

certain dynamic parameters must always be taken into consideration when these structural 

elements are in rotation which results in initial stresses. However, the determination of the 

vibration response of stiffened shells is extremely difficult and hence requires the help of 

numerical techniques. Finite element method is an efficient tool available to the designers for 

the dynamic analysis of such type of applications provided accurate mathematical models are 

developed which can correctly predict the performance of such structures to a reasonable 

degree of accuracy. 

 Delamination or interlaminar debonding is one of the most commonly occurred 

damage mode in laminated composite structures and the failure of a delaminated composite 
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may become much more drastic because of initial stresses due to rotation. Generally, 

vibrations of the composite structures are closely related to their natural frequencies and 

hence the prior knowledge of the vibration characteristics of the stiffened shell with and 

without delamination is extremely helpful to prevent vibration induced failures. 

This chapter is thereby aimed at a finite-element based analysis to determine the natural 

frequencies of graphite-epoxy composite pretwisted rotating cylindrical stiffened shells 

withand without delamination. This chapter is presented under two headings i.e. free 

vibration of a generalized stiffened cylindrical shell and free vibration of long, intermediate 

and short cylindrical stiffened shells based on Aas-Jakobsen's parameters. Numerical results 

are obtained corresponding to various twist angles, rotational speeds, number of fiber-

orientation angles, position of stiffeners, eccentricity of stiffeners, location of delamination 

and percentage of delamination. 

3.2 CONVERGENCE AND VALIDATION   

 Mesh convergence study of a cylindrical shell stiffened eccentrically at the bottom is 

furnished in the Table 3.1, considering mesh sizesof 4× 4, 6× 6, 8× 8 and 10× 10. It is noticed 

that the results of 8× 8 and 10× 10 are close to each other and percentage of difference is less 

than unity. Hence, 8× 8 mesh size consisting of 64 elements and 225 nodes is considered for 

the full stiffened shell discretization.  

Table 3.1Convergence study for non-dimensional fundamental frequencies (ϖ =

2

11

2 / hELn ρω ) of eight layered symmetric cross ply and angle ply stiffened cylindrical 

shell.    ( 1/ =bL , 100/ =hb , 5.0/ =yRb , hbst 2=  and hdst 4= , E1=138.0 GPa, E2=8.96 

GPa, G12=G13=7.1 GPa, G23=2.84 GPa, ν12=0.3, 1== yx nn )  

Stacking 

sequence 
(4× 4) Mesh (6× 6) Mesh (8× 8) Mesh (10× 10) Mesh 

[45/-45/45/-45]s 2.77369 2.74317 2.73081 2.73002 

[0/90/0/90]s 2.31306 2.29573 2.29275 2.29200 

 Accuracy of the developed computer code for free vibration analysis of the rotating 

delaminated stiffened panel with pretwist, the following problems are taken up from the 

existing literature for the purpose of comparing the present results with those obtained by 

earlier investigators. 

1. Non-dimensional fundamental frequencies of an isotropic rotating cantilever plate, solved 

by Sreenivasamurthy and Ramamurthi (1981) and Karmakar and Kishimoto (2006). 
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2. Non-dimensional fundamental frequencies of three layer graphite-epoxy twisted plate, 

solved by Qatu and Leissa (1991). 

3. Natural frequencies (Hz) of simply supported antisymmetric cross-ply crossed stiffened 

plate with "eccentric at bottom" stiffeners, solved by Nayak and Bandyopadhyay (2005) and 

Das and Chakravorty (2011). 

4. Natural frequency (Hz) of cantilever cylindrical shell with eccentric orthogonal stiffeners, 

solved by Mustafa and Ali (1987) and Sinha and Mukhopadhyay (1994). 

5. First natural frequency of composite cantilever beam with delamination at different 

locations, solved by Krawczuk et al.(1997). 

6. Fundamental frequencies (Hz) of simply supported composite cylindrical shells with 

centrally located mid-surface delamination, solved by Parhi et al.(2001) and Acharyya et al. 

(2009). 

Table 3.2 Non-dimensional fundamental frequencies (ϖ = DhLn /
2 ρω ) of an isotropic 

rotating cantilever plate. ( bL / =1, Lh / =0.12, )1(12/ 23 ν−= EhD , ν=0.3, E is the Young's 

Modulus of Elasticity) 

Non-dimensional 

speed 0/ωΩ′=Ω  

Sreenivasamurthy and      

Ramamurthi (1985) 

Karmakar and 

Kishimoto (2006) 
Present FEM 

0.0 3.43685 3.41969 3.41748 

0.2 3.51858 3.49992 3.49764 

0.4 3.75280 3.72887 3.72640 

0.6 4.12875 4.07813 4.07538 

0.8 4.56786 4.51561 4.51250 

1.0 5.09167 5.01415 5.01066 

  

Table 3.3 Non-dimensional fundamental frequencies (ϖ = 2

11

2 / hELn ρω ) of three layer [

θθθ ,,− ] graphite-epoxy twisted plates. (L/b = 1,b/h = 20,Twist angle(φ ) = 30
0 ,

E11= 138.70 

GPa, E22 = 8.96 GPa, G12 = 7.1 Gpa, ν12= 0.3) 

θ  

(Deg.) 

Qatu and Leissa 

(1991) 
Present FEM 

0 0.9553 0.9431 

15 0.8759 0.8629 

30 0.6923 0.6812 

45 0.4831 0.4752 

60 0.3283 0.3245 

75 0.2582 0.2572 

90 0.2434 0.2431 
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 Table 3.2 presents non-dimensional fundamental frequencies of an isotropic rotating 

cantilever plate, and Table 3.3 furnishes the non-dimensional fundamental frequencies of a 

three layer graphite epoxy twisted plates with different fibre orientation. Table 3.4 shows the 

conformity of the present result with Nayak and Bandyopadhyay(2005)and Das and 

Chakravorty (2011), which comprises natural frequencies of antisymmetric cross-ply and 

crossed stiffened plate with "eccentric at bottom" stiffeners. Further, Table 3.5 ensures the 

correctness of the present result with Mustafa and Ali(1987) and Sinha and 

Mukhopadhyay(1994)for an isotropic orthogonally stiffened cylindrical cantilever shell. 

Table 3.4 Natural frequencies (Hz) of simply supported antisymmetric cross-ply(0
0
/90

0
) 

crossed stiffened plate with "eccentric at bottom" stiffeners(0
0
/90

0
) ( == bL 254 mm, h  

=12.7 mm, stb =6.35 mm, std =25.4 mm, 11E =144.8 GPa, 22E =9.67 GPa, 12G = 13G =4.14 GPa,

23G =3.45 GPa,ν =0.3, ρ=1389.23 kg/m
3
 and xn = 

yn =1, stiffeners are centrally placed) 

Mode Number 
Nayak and 

Bandyopadhyay(2005) 

Das and Chakravorty 

(2011) 
Present FEM 

1 1141.00 1123.17 1142.03 

2 2394.17 2367.77 2398.12 

3 2415.82 2407.57 2417.10 

4 2646.18 2656.00 2646.31 

 

Table 3.5 Natural frequency (Hz) of cantilever cylindrical shell with eccentric orthogonal 

stiffeners.( L=b=0.3048 m,  R=2L, h=3.175 mm, ρ=7800 kg/m
3
, E =209×10

9
 N/m

2
,ν=0.30, 

xn =3, 
yn =2, stiffeners divide the planform of the shell equally) 

Mode  

number 

Mustafa and Ali (1987) Sinha 

and 

Mukhopadhyay 

(1994) 

Present FEM Eight-node 

element 

Nine-node 

element 

1 116 115 116 117.98 

2 162 160 154 156.03 

3 318 313 314 322.71 

4 488 479 499 454.36 

 For delamination modeling, the results obtained for the fundamental frequency of a 

composite cantilever beam by varying the relative position of delamination along the span are 

well confirmed with that of Krawczuk et al. (1997) and  is illustrated in Figure 3.1 while the 

fundamental frequency of simply supported composite cylindrical shell with different 

percentage of delamination reported by Parhi et al. (2001) and Acharyya et al. (2009) is 
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shown in Table 3.5. The ability of the present formulation in respect of rotation, twist angle, 

stiffeners and delamination is well established. Thus, it is evident that this model can 

successfully analyze free vibration problems of delaminated rotating stiffened shell with 

pretwist. 
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Figure 3.1The influence of relative position of delamination on the first natural 

frequencyof composite[0
0
/0

0
/0

0
/0

0
/0

0
/0

0
] cantilever beam. ( 1E =57.864GPa, 2E =4.2742 

GPa, 12ν =0.32, 231312 GGG == =1.583 GPa, ρ = 1380 kg/m
3
 , L =600 mm, b =50 mm, h

=25 mm, a=37.5 mm, h'/h=0.5, Relative position of delamination=d/L) 

Table 3.6 Fundamental frequencies (Hz) of composite ([0
0
/90

0
]2) cylindrical shells for 

different extents of centrally located mid-surface delamination for simply supported boundary 

conditions. E11=172.5 GPa, E22=6.9 GPa, G12=G13=3.45 GPa, G23=1.38 GPa, ρ =1600 kg/m
3
, 

v12=0.25, L=b=0.5 m, c=d, L/h=100, lamination: (0
0
/90

0
)2. 

R/L C/L Parhi et al.(2001) 
Acharyya et al. 

(2009) 
Present FEM 

5.0 0 129.04 128.99 129.03 

 0.5 (25%) 104.56 104.51 104.55 

 0.75 (56.25%) 98.24 98.19 98.24 

10.0 0 103.03 103.04 103.02 

 0.5 (25%) 69.60 69.61 69.60 

 0.75 (56.25%) 59.88 59.92 59.92 
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3.3 FREE VIBRATION OF A GENERALIZED DELAMINATED 

STIFFENED CYLINDRICAL SHELL 

 Parametric studies are carried out in respect of number of stiffeners in x- and y-

directions, location of delamination, fibre orientation, stiffener depth to shell thickness ratio, 

twist angle and rotational speed to investigate the effect on natural frequencies of stiffened 

shells. The stiffened shells with two different angle of twist namely 15
0
 and 30

0
 in addition to 

untwisted one are considered for the present study. The non-dimensional natural frequencies 

for the stiffened cylindrical shells ( 0=xR ) having square plan form, thicknessratio (

100/ =hb ) and curvature ratio ( 5.0/ =yRb ) are obtained corresponding to different 

location of delamination along the thickness and span of the stiffened shell. The non-

dimensional frequencies of the stiffened shell are also presented corresponding to different 

non-dimensional rotational speeds ( nω/Ω′=Ω =0.00, 0.50 and 1.00).The graphite-epoxy 

composite is considered for the analysis, whose material properties are as follows(Qatu and 

Leissa, 1991):
1E =138.0 GPa, 

2E =8.96 GPa, 
12G = 13G =7.1 GPa, 23G =2.84 GPa, 

12ν =0.30  

 As far as delamination is concerned, the width of delamination is always assumed 

same as that of the shell as earlier considered by Krawczuk et al. (1997) and Shen and Grady 

(1992). A number of problems have been considered by the authors to check the effect of the 

non- dimensional frequencies (ϖ = 2

1

2 / hELn ρω ) of cantilever stiffened cylindrical shells 

with the following variations: 

1. Un-stiffened shell (A), shell with one x-directional stiffener (B), shell with one y-

directional stiffener (C) and shell with one stiffener in each direction i.e. crossed stiffened (D) 

are taken into consideration. 

2. Position of delamination is kept varying along the length and across the thickness for a 

typical shell with different stiffener arrangements such as B, C, D for different twist angles. 

3. The stiffener depth to shell thickness ratio has been varied for three types of delaminated 

stiffened structures (B,C and D) for various twist angles.   

4. A typical shell with a particular stiffener arrangement subjected to various non-

dimensional rotational speeds is studied by varying stacking sequence and twist angles. The 

fibreorientations of the shell and of stiffeners are varied from 0
0
 to 90

0
 with an increment of 

15
0
 for the particular lamination. 

 



90 

 

3.3.1 Effect of delamination on un-stiffened shell, stiffened shell and twisted stiffened 

shell 

 Figure 3.2 presents the variation of non-dimensional fundamental frequency (NDFF) 

with fibre orientation angle of eight layered s]///[ θθθθ −−  symmetric untwisted shell, 

crossed stiffened shell(without delamination) and crossed stiffened shell with a delamination 

of 33% at the mid-plane of the shell.It is evident that addition of stiffener increases both 

stiffness and mass of the shell, but as stiffness is more significant than mass, the fundamental 

frequency increases by considerable amount. Percentage increases in non-dimensional 

fundamental frequency due to addition of   one crossed stiffener are 22.75, 27.59, 37.39, 

31.26, 13.81, 25.62 and 48.11 for fibre orientation of 0
0
, 15

0
, 30

0
, 45

0
, 60

0
, 75

0
 and 90

0
 

respectively. It reveals that percentage increase in NDFF of the shell increases with variation 

of fiber angle from 0
0
 to 30

0
 and  60

0
 to 90

0
 but reduces within the range 30

0
 to 60

0
 

irrespective of delamination. It is further noted that appearance of delamination on the shell 

reduces the NDFF of the unstiffened shell and crossed stiffened structure to a significant 

amountbecause of the reduction of elastic stiffness of the structure. In unstiffened shell the 

decrease of frequency due to delamination is found for all the angles of fibre orientation but 

in cross stiffened shell the reduction is found insignificant at θ= 60
0
 and 75

0
. The frequency 

drop is maximum at the fiber orientation 45
0 

and 30
0
 for delaminated unstiffened and crossed 

stiffened shell, respectively. The NDFF is obtained maximum at 
030=θ  and minimum at

090=θ for crossed stiffened shell irrespective of presence of delamination. 
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Figure 3.2  Effect of fiber orientation on non-dimensional fundamental frequency for 

crossed stiffened shell without delamination (WD), delaminated stiffened shell(D), 

undelaminated unstiffened shell (WA) and delaminated unstiffened shell(A). 1/ =bL ,

100/ =hb , 5.0/ =yRb , hbst 2=  and hdst 4= ,Φ =0
0
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Figure 3.3 Effect of percentage of delamination at the mid plane on NDFF of [45/-

45/45/-45]s laminated stiffened shell along the length. 1/ =bL , 100/ =hb ,
5.0/ =yRb

, 

hbst 2=
 and

hdst 4=
 

 Figure 3.3 shows the variation of non-dimensional fundamental frequency (NDFF) 

with percentage of delamination present in a symmetric angle ply bare and cross stiffened 

shell. Here four cases are considered such as untwisted unstiffened shell, twisted unstiffened 

shell, untwisted crossed stiffened shell, and twisted crossed stiffened shell to study the effect 

of percentage of delamination present in the shell on natural frequency. Obviously, 

appearance of delamination in the shell reduces the value of natural frequency due to 

reduction of elastic stiffness, which reflects in the Figure 3.3 for all the cases. Higher is the 

percentage of delamination, lower is the fundamental frequency. Increasing the twist angle 

leads to reduction in the value of fundamental frequency irrespective of the presence of 

delamination for both stiffened and unstiffened shells. The drop of non-dimensional 

fundamental frequency in case of twisted stiffened shell is marginal for the increase in 

percentage of delamination. The most interesting point observed from this analysis is that in 

stiffened shell, the value of NDFF corresponding to 80% delamination is still more than that 

of the value of bare shell without delamination. 
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3.3.2 Effect of delamination along the span of the laminated shell 

 The non-dimensional fundamental frequencies of the four models (A,B,C,D) with 

varying relative position of delamination along the span of the cantilever for untwisted and 

twisted symmetric cross-ply composite ([0/90/0/90]s) is illustrated in Figure 3.4.  
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Figure 3.4 Variation of non-dimensional fundamental frequency of symmetric cross ply 

composite ([0/90/0/90]s) stiffened shell  with relative position of delamination along the 

span( Ld / ). 1/ =bL , 100/ =hb , 5.0/ =yRb , hbst 2=  and hdst 4=  

Delamination of 33.3%( 33.0/ =La 3) is considered at the mid-plane of the shell. NDFF are 

observed to decrease with the increase of twist angle for both shell and stiffened shell. 

Delamination located near the fixed end of the cantilever have  lower frequency than that 

located towards the free end for unstiffened shell and y-directional stiffened shell as 

corroborate by Krawczuk et al. (1997). But for x- directional and crossed stiffened shell, this 

trend is found up to the mid span and  then decreases gradually for twist angle 0
0
 and 15

0
 

.This can be due to the fact that the effect of mass for x-stiffener is more towards the free end 

compared to y-stiffener. However, for 30
0
 of twist angle, x-directional and crossed stiffened 

shell NDFF increases as delamination shifts from fixed to free end but the increase is 
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marginal. At =Φ 0
0
, the performance of y-stiffener is better than x-stiffener but in twisted 

shell x-stiffener provides higher value of fundamental frequency compared to y-stiffener.      

3.3.3 Effect of delamination along the thickness of the laminated stiffened shell 

 Figure 3.5 furnishes the non-dimensional fundamental frequency of a symmetric 

angle ply composite ([45/-45/45/-45]s) for various relative position of delamination across the 

thickness of the shell. A delamination of 33.3% of the length of the shell is considered at mid 

span( Ld / =0.5).   
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Figure 3.5 Variation of non-dimensional fundamental frequency by varying relative 

position of delamination across the thickness. 1/ =bL , 100/ =hb , 5.0/ =yRb , hbst 2=  ,

hdst 4= , 333.0/ =La 5.0/, =Ld  

 

For all the models, the fundamental frequency attains a minimum value at the mid-plane(

hh /′ =0.5) irrespective of angle of twist and maximum with no delamination( hh /′ =0.0,1.0). 

As delamination moves from top ply to mid-plane, there is a reduction in the value of 

fundamental frequency and, thereafter, it increases till the bottom ply. Increase in twist angle 

reduces the percentage of decrease/increase in fundamental frequency as the case may be. 
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Response curves of model B and D at higher angle of twist shows marginal variation in 

fundamental frequency for different relative position of delamination. At Φ =30
0
, the 

frequency response curves of x-directional  and cross stiffened shell are very close to each 

other, the same trend is also noticed for y- directional stiffened and bare shell. Hence, for 

higher angle twisted shell x- directional stiffener is preferable than others. It is observed in 

both untwisted and twisted shell that higher value of fundamental frequency is obtained with 

x- stiffeners compared to y-stiffeners because it renders high elastic stiffness to the shell.    

3.3.4 Effect of stiffener depth to shell thickness  

 Figure 3.6 shows the effect of the stiffener depth on non-dimensional fundamental 

frequency of delaminated eccentric stiffened cylindrical shell for model B,C and D. It is 

observed that NDFF value initially increases but then attains a saturation at hdst / =4 and 

remains almost constant for all models (B, C and D) corresponding to untwisted stiffened 

shell. For twisted angle 15
0
 and 30

0
, the fundamental frequency increases with increase in 

hdst / ratio for model B and D but model C exhibits the same trend both for untwisted and 

twisted shell.  

 It is very interesting to note that the NDFF increases with stiffener depth for model B 

and D but for set up C it remains almost constant for twisted shells. In the range of hdst /

from 0 to 4, the NDFF is less for higher angle of twist but the reverse trend is observed when 

hdst / >4.0 for model B. The same observation is also obtained for the model D but the value 

of hdst /  about which the trend is reversed is 4.5. This may be due to increase in stiffness by 

the x- directional stiffener particularly at larger cross-sectional area to overcome the 

combined effect of delamination and twist. In general, it is observed that increase in twist 

angle reduces the effect of delamination but when dst/h< 4.0, the area of the beam is not 

sufficient to overcome the effect of twist and delamination.For model C, higher is the angle 

of twist, lower is the NDFF. On comparing model B with D, it is noted that beyond the value 

of hdst / is equal to 4.5, higher values of fundamental frequency are achieved by the latter for 

any value of twist angle, although increase of twist angle usually leads to decrease in the 

fundamental frequency. Further, it is noted that in untwisted case curved y- stiffener renders 

considerably greater elastic stiffness to the shell as compared to x- stiffener, whereas for 

twisted shell higher stiffness is provided by x- stiffener.   



95 

 

0 2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
o

n
-d

im
en

si
o

n
al

 f
u

n
d

am
en

ta
l 

fr
eq

u
en

cy
(ϖ

)

Stiffener depth to shell thickness ration(dst/h)

 Φ=00

 Φ=150

 Φ=300

n
x
=1(model-B)

 

0 2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

3.0

N
o

n
-d

im
en

si
o

n
al

 f
u

n
d

am
en

ta
l 

fr
eq

u
en

cy
(ϖ

)

Stiffener depth to shell thickness ration(dst/h)

 Φ=00

 Φ=150

 Φ=300

n
y
=1(model-C)

 

0 2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

N
o
n
-d

im
en

si
o
n
al

 f
u
n
d
am

en
ta

l 
fr

eq
u
en

cy
(ϖ

)

Stiffener depth to shell thickness ration(dst/h)

 Φ=00

 Φ=150

 Φ=300

n
x
=n

y
=1(model-D)

 

Figure 3.6 Variation of non-dimensional fundamental frequency with stiffener depth to 

shell thickness ratio of delaminated stiffened composite([0/90/0/90]s) cylindrical shell, 

1/ =bL , 100/ =hb , ,5.0/ =yRb ,2hbst = 5.0/,666.0/ == LdLa 5.0/ =′ hh  

3.3.5 Effect of stacking sequence, angle of twist, and rotation  

 The variation of non-dimensional fundamental frequency of composite cylindrical 

stiffened shell with one eccentric stiffener in each direction at bottom with a mid-plane 

delamination of 33.3% centered at a relative distance, Ld / =0.5 from the fixed end of the 

cantilever is shown in the Table 3.7. The eight layered [ ]sθθθθ −− /// delaminated stiffened 

shell considered is allowed to rotate at 50% (Ω=0.5) and 100%(Ω=1.0) of its natural 

frequency.  

 Non-rotating un-twisted cantilever stiffened shell and its delaminated cases shows that 

maximum value of NDFF is obtained at fibre angle 30
0
 and minimum value at θ =90

0
.The 

value of NDFF increases from 0
0
 to 30

0
 of fibre angle and then gradually decreases to 

minimum. For twist angle 15
0 

and 30
0
, maximum value is obtained at fibre angle 15

0
 and 0

0
 

respectively, whereas minimum is being attained when the fibres are parallel to the fixed 
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edge (θ=90
0
). Increasing twist angle for a particular fibre angle reduces the NDFF value 

Table 3.7 Variation of non-dimensional fundamental frequency of delaminated angle ply 

symmetrical composite ( [ ]sθθθθ −− /// ) cylindrical stiffened shells for various fibre 

orientations and twist angles at different rotational speeds. bL / =1, =hb / 100, =yRb / 0.5, 

=La / 0.333, =Ld / 0.5, =′ hh / 0.5, == yx nn 1, hbst 2= , hd st 4= ,eccentric stiffener at 

bottom.  

Φ  θ  

Stiffened 

shell 

Delaminated  Stiffened Shell 

Ω=0.0 Ω=0.5 Ω=1.0 

NDFF NDFF NDFF NDFF 

0
0
 

0 2.4036 2.2806 2.6242 3.3062 

15 2.7405 2.5427 2.8804 3.4684 

30 3.0480 2.7256 3.0561 3.2777 

45 2.7432 2.6080 2.8641 3.1043 

60 1.9978 1.9796 2.1862 2.6482 

75 1.6329 1.6258 1.7925 2.1693 

90 1.5168 1.4394 1.6058 1.9260 

15
0
 

0 2.2306 2.0874 2.3346 2.9605 

15 2.2544 2.1149 2.3558 2.9750 

30 2.1504 2.0331 2.2501 2.8220 

45 1.7731 1.6837 1.8532 2.3037 

60 1.3474 1.2887 1.4166 1.7551 

75 1.0508 1.0104 1.1104 1.3758 

90 0.9288 0.8959 0.9831 1.2173 

30
0
 

0 2.2430 2.1823 2.3067 2.8564 

15 2.1600 2.1026 2.2214 2.7863 

30 1.8625 1.8124 1.9173 2.4512 

45 1.4266 1.3882 1.4737 1.9004 

60 1.0328 1.0074 1.0765 1.3903 

75 0.7951 0.7774 0.8304 1.0699 

90 0.7224 0.7079 0.7520 0.9661 

 

except at 
00=θ  wherein 30

0
 angle of twist shows a higher value compared to 15

0
 angle of 

twist. The percentage difference between maximum and minimum frequency values of 
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undelaminated stiffened shell are 50.23, 58.8 and 67.79 and for delaminated 47.18, 57.64 and 

67.56 for Φ=0
0
, 15

0
 and 30

0
, respectively. But these percentages are reduced in case of 

delaminated stiffened shell. Figure 3.7 shows that the variation of relative 

frequency(Delaminated frequency/undelaminated frequency) with fiber angles .It depicts that 

the fluctuation is  more for untwisted stiffened shell wherein the relative frequency is almost 

constant atΦ=30
0
. Increase in twist angle reduces the fluctuation of relative frequency and 

makes it steady. For Φ=15
0
, the relative frequency rises gradually with fibre orientation. 
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Figure 3.7 Variation of relative frequency with fiber angle orientation. Relative 

Frequency=Delaminated frequency/undelaminated frequency. 

  

 The non-dimensional fundamental frequency always increases with increase in 

rotational speed of the delaminated stiffened cantilever shell irrespective of twist angle and 

fiber orientation as observed earlier by Sreenivasamurthy andRamamurti (1981). The 

centrifugal force due to rotation increases the stiffening effect which in turn increases the 

value of fundamental frequency, which can be clearly observed from the Figure 3.8, whereas 

the non-dimensional fundamental frequency curves show a specific pattern in opposition to 

the variation in fibre angles. The shell with two stiffeners in x-and y-direction have the 

maximum rotating frequency as compared to one stiffener in each direction in twisted shell, 

whereas for untwisted shell the reverse trend is observed at =θ 60
0
 and 75

0
. The stiffening 

effect of two stiffeners in each direction is found more than that of one stiffener except at 

=θ 60
0
 and 75

0
 of the delaminated untwisted shell. Maximum value of rotating frequency is 

obtained at =θ 0
0
 and minimum at =θ 90

0
.   
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Figure 3.8 Variation of NDFF with fibre angle orientation at stationary (Ω =0.0) and 

rotating (Ω =0.5 and 1.0) conditions with one and two stiffener in each directions. ,1/ =bL

,100/ =hb ,5.0/ =yRb ,2hbst = ,4hdst = ,333.0/ =La 5.0/ =Ld , 5.0/ =′ hh
 

3.3.6. Mode shapes 

 In Table 3.8, surface and contour plot for the first four mode shapes of eight layered 

graphite epoxy square cylindrical shells and stiffened cylindrical shells without delamination 

are depicted for stacking sequence s]45/45/45/45[ −− . It is observed that the symmetrical 

mode shapes are found in all modes of vibration of the un-stiffened shell. The four mode 

shapes of the un-stiffened shell are first torsion mode (1T), first span-wise bending 

mode(1B), first cord wise bending mode(1C) and finally second torsional mode(2T). In case 

of the stiffened shell, the four mode shapes are 1B, 1T, 1C, and 2T. Due to the addition of 

stiffener, the first mode of the shell is converted to bending mode because of the decrease of 

torsional rigidity. 

 A set of mid surface contour plot for first four mode shapes of the delaminated 

stiffened shell for different twist angles and rotational speeds are illustrated in Table 3.9. For 
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untwisted(Φ=0
0
 ) stationary stiffened shell, first mode is the first twisting mode(1T) and 

second mode confirms first  span wise bending mode(1B) while third and fourth mode 

reveals first cord wise bending(1C) and second torsion(2T) respectively. Introduction of 

rotation in untwisted stiffened shell induces torsion along with bending in all mode shapes. 

For twisted stiffened stationary shells(Φ=15
0
,30

0
), first span wise bending(1B) is observed in 

the fundamental mode. The second mode is first twisting mode(1T) for the stationary 

stiffened shell of twist angle Φ=15
0
 while the second mode of 30

0
 twisted stationary 

stiffened shell is the coupled bending and twisting mode. The third and fourth modes are 

combination of bending and torsion for twisted stiffened shells )0.0( =Ω .The first span wise 

bending modes(1B) of the twisted stiffened shell is not much influenced by rotation while the 

dominance of torsion mode is clearly observed with increase in the rotational speed in 

second, third, and fourth modes of the twisted shell.  

Table 3.8 Effect of stiffener on First four mode shapes of eight layered symmetric angle ply

s]45/45/45/45[ −− cylindrical shell, == yx nn 1, hbst 2= , hdst 4=
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Table 3.9 Effect of twist angle and rotation on first four mode shapes of eight-layered 

symmetric  mid-plane delaminated angle ply composite( s]45/45/45/45[ −− ) stiffened 

cylindrical shell, =La / 0.333, =Ld / 0.5, == yx nn 1, hbst 2= , hdst 4= . 

Φ  Ω Mode-1 Mode-2 Mode-3 Mode-4 

0
0
 

0.0 

    

0.5 

    

1.0 

    

15
0
 

0.0 

    

0.5 

    

1.0 

    

30
0
 

0.0 

    

0.5 

    

1.0 
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3.4 FREE VIBRATION OF LONG, INTERMEDIATE AND SHORT   

CYLINDRICAL STIFFENED SHELLS 

 The present analysis is based on long, intermediate and short cylindrical stiffened 

shells. The long, intermediate and short shells are categorized by Aas-Jakobsen's parameters(

Γ,Λ ) are defined as (Karmakar et al. , 2005 and Chakravorty and Bandyopathyay, 1994): 

 









=Γ

24

6412

hL

Rπ
and 









Γ
=Λ

22

22

L

Rπ
 (3.1) 

The dimensions of the shells considered for the present analysis are as follows: 

1. Long shell (Γ<7, Λ <0.12): L=1.0 m,b =0.5 m, h =0.005 m, R =0.5 m, Γ=5.40, Λ

=0.084. 

2. Intermediate shell (7<Γ<10, 0.12<Λ <0.15): L=0.8 m, b =0.5 m, h =0.005 m, R =0.8 m, 

Γ=8.60, Λ =0.1334. 

3. Short shell(Γ>10, Λ >0.15): L=0.6 m, b =0.5 m, h =0.005 m, R =0.9 m, Γ=10.84, Λ

=0.188. 

Following material properties of graphite-epoxy composite are considered for the parametric 

analysis(Qatu and Leissa, 1991).  

1E =138.0 GPa, 2E = 8.96 GPa, 1312 GG = = 7.1 GPa, 23G = 2.84 GPa, 12ν = 0.3 

For all the examples considered, the stiffeners are of rectangular in cross-section and follow 

the nodal lines. Unless and otherwise specified, the stiffeners have same ply orientation and 

number of layers as that of the shell. The thickness of plies in the laminate is equal (thickness 

of laminate /number of plies). The stiffeners are placed in such a way that it divides the 

planform of shell equally. The stacking sequences of the laminates are always expressed from 

the top ply to bottom ply along the z-axis. The delamination in the shell is always considered 

through the complete width of the shell. The cantilever stiffened shells are always considered 

to rotate about z- axis. The boundary conditions adopted for the cantilever stiffened shells are 

expressed as  

 At x = 0,   u = v = w = α = β = 0 (3.2) 

Following examples are considered by the authors to study the effect of delamination, twist 

angle, number of  layers , eccentricity of stiffeners, stacking sequence and rotation on non-

dimensional fundamental frequencies ( 2

1

2 / hEbn ρωϖ = ) of the long, intermediate and 

short  cylindrical stiffened shells. 
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1. The effect of delamination on the fundamental frequency of both un-stiffened and stiffened 

long, intermediate and short shells are presented by varying its position across the thickness 

at different twist angles.  

2. Three models considered for analysis: Model-A: long shells with three stiffeners in each 

direction, Model-B:  Intermediate shells with three stiffeners in each direction and Model-C: 

Short shells with three stiffeners in each direction. Effect of eccentricity of stiffeners on 

fundamental frequencies of delaminated Model- A, B, and C composed of both angle ply and 

cross-ply at various twist angles are presented. 

3. Effect of twist angle and rotation on non-dimensional fundamental frequencies of Model- 

A, B, and C have been furnished.  

4. Effect of the number of layers of ply in long, intermediate, and short stiffened shells 

composed of both cross ply and angle ply on fundamental frequency have been investigated. 

5. Mode shapes of both un-stiffened and stiffened long cylindrical shell of a symmetric cross-

ply laminate are presented to show the effect of rotation and twist angle. 

3.4.1 Effect of delamination 

Figure 3.9 shows the variation of fundamental frequencies of eight layered 50% delaminated 

( 5.0/ =Ld ) cross-ply un-stiffened/stiffened cylindrical shells at twist angles of 0
0
 and 15

0
 

by varying the relative position of delamination( hh /′ ) across the thickness. It reveals that 

delamination reduces the fundamental frequency of the shell because of the decrease in 

elastic stiffness. But the addition of stiffeners increases the elastic stiffness thereby minimizes 

the effect of delamination to some extent as observed from the Figure 4(b) and (d). It reveals 

that minimum fundamental frequencies are obtained at =′ hh / 0.5(delamination in between 

fourth and fifth layer) in all cases considered irrespective of twist angle. It may be noted that 

increase in twist angle increases the effect of delamination in un-stiffened shell whereas the 

same is reduced in the case of stiffened shell. It is to be noted that lower value of frequency is 

always obtained at all the positions of delamination ( hh /′ ) in long shells with stiffener while 

the higher value of the same is always observed in the short shells with or without stiffeners. 

At =Φ 15
0
, lower value of frequency is obtained in the un-stiffened intermediate shell. Thus 

an increase in twist angle improves the performance of un-stiffened long shell over the 

intermediate shell.  The reduction of the fundamental frequency is more remarkable in the 

short shell as compared to long and intermediate shells with and without stiffeners at all twist 

angles.   
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3.4.2 Effect of eccentricity of stiffeners 

General studies of the three different types of stiffeners (eccentric at the top, eccentric at the 

bottom and concentric) with three stiffeners in each direction are furnished in the Table 3.10. 

This analysis is carried out both for untwisted and twisted long, intermediate and short shells 

with cross ply and angle ply laminates. As expected the maximum fundamental frequency is 

obtained in the short stiffened shells while minimum in the long stiffened shells. It reveals 

that eccentric type (both top and bottom) stiffeners have higher frequency values than the 

concentric one except at Ф=0
0
 of the long shell (angle ply), wherein concentric stiffeners 
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Figure 3.9 Variation of fundamental frequency with relative position of delamination across 

the thickness of un-stiffened  and stiffened composite([0/90/0/90]s) cylindrical shells at Φ=0
0
 

and 15
0
, hbst 2=  , hdst 4= , 50.0/ =La 5.0/, =Ld  , xn = 

yn =1, ρ=22080 kg/m
3
, LS: Long 

Shell, IS: Intermediate Shell, SS: Short Shell 
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have a higher value of frequency than eccentric at the bottom. Eccentric stiffener gives higher 

fundamental frequencies due to the fact that first and second moment of area of the stiffeners 

Table 3.10 Fundamental frequencies )( nω of graphite-epoxy composite (angle-ply [45/-45/-

45/45] and cross-ply [0/90/90/0]) delaminated cylindrical shells with three different types of 

stiffeners. hbst 2=  , hdst 4= , 50.0/ =La 5.0/, =Ld , xn = 
yn =3,ρ=22,080 kg/m

3
. 

increases with eccentricity, thereby increases the stiffness without increasing the mass. 

Comparing between the two eccentric kinds, eccentric at the top provides higher values of the 

fundamental frequency. The increase in twist angle reduces the fundamental frequency as 

normally expected. From the Table 3.9, it is observed that compared to the untwisted case, 

percentage of decrease of fundamental frequency for a given twist angle of 15
0
 in the long, 

intermediate and short shell of cross-ply laminate with eccentric at top stiffeners are 12.40, 

13.12, and 10.95, with eccentric bottom stiffeners are 9.79, 10.38, and 4.39, and with 

concentric stiffeners are 22.88, 34.78, and 30.03, respectively. The percentage of the decrease 

due to 15
0
 twist angle in the case of angle-ply laminates with eccentric top stiffeners are 

27.24, 28.33, and 33.13, while with eccentric bottom stiffeners, these values are 28.81, 27.04, 

and 30.22, but with concentric stiffeners these are 39.52, 50.37, and 65.40 for long, 

intermediate, and short shells, respectively. Hence, the observation made here is that cross-

ply laminates are preferably suitable for twisted stiffened shells than angle ply because of the 

less percentage of decrease in fundamental frequencies. In the case of untwisted stiffened 

shells, angle-ply laminates show better performances than cross-ply for long and short shells, 

while the use of cross-ply is beneficial in intermediate shells. It is also observed that for the 

Shell 

type 

Twist 

angle    

(Ф) 

Eccentric at top Eccentric at bottom Concentric 

Cross-ply 
Angle-

ply 
Cross-ply 

Angle-

ply 
Cross-ply 

Angle-

ply 

Long 

(A) 

0 67.2041 73.84112 58.5489 63.888 57.3976 64.16858 

15 59.7850 58.03164 53.3261 49.59684 46.7079 45.99072 

30 49.3829 43.9063 45.6075 37.29379 35.2949 30.35583 

Inter 

(B) 

0 82.0161 81.18147 73.2946 67.19441 69.6070 65.90301 

15 72.4418 63.25742 66.4006 52.88882 51.6418 43.8244 

30 62.8471 49.42301 59.4087 42.92528 40.7651 28.12739 

Short 

(C) 

0 126.0694 129.3994 111.8239 108.5053 101.8717 102.8382 

15 113.6170 97.19132 107.1126 83.32453 78.3388 62.17428 

30 102.1756 79.04906 99.0094 70.88367 65.8384 41.71002 
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high value of the angle of twist (Ф=30
0
), short shells are preferred because of the decrease of 

fundamental frequencies due to twist are less than that of long and intermediate shells. 

3.4.3 Effect of twist angle and rotation  

Effect of rotational speed on the non-dimensional fundamental frequencies (NDFF) of the 

mid-plane delaminated long, intermediate and short stiffened shells at different twist angles 

are shown in Table 3.11. It reveals that for untwisted rotating delaminated stiffened shells, 

the NDFF are observed to attain maximum value in short stiffened shells, while minimum 

values are attained in long shells. The increase in twist angle is found to reduce the 

fundamental frequency in all the shells as corroborated by Qatu and Leissa(1991). The 

percentage decrease of stationary non-dimensional fundamental frequencies for twist angle of 

15
0
, compared to untwist cases of delaminated long, intermediate and short stiffened shells 

having eccentric top stiffeners are 21.41,  22.08 and 24.89 but with eccentric bottom 

stiffeners, the values are 22.37, 21.29 and 23.21 while with concentric stiffeners these are 

28.33, 33.50 and 39.54, respectively. A similar observation for twist angle of 30
0
 is also 

observed, and thus, the study reveals that the percentage reduction in fundamental frequency 

due to twist angle is observed maximum always in short stiffened shells and minimum in 

most of the cases for long shells except with eccentric bottom stiffener. Considering the fact 

that the percentage decrease in fundamental frequency is found to be maximum in concentric 

stiffeners and minimum in eccentric stiffeners, it can be said that eccentric top stiffeners will 

be favorable by the designers. 

Effect of centrifugal stiffening is found in all types of shell irrespective of the type of 

stiffeners and twist angles. Percentage of increase in non-dimensional fundamental 

frequencies at low speed (Ω =0.5) and high speed (Ω =1.0) at different twist angles of this 

results are also presented in Figure 3.10. The percentage of increase in rotating NDFF at low 

speed of untwisted (Ф=0
0
) stiffened shells is found to be maximum at 7.32 (Intermediate 

shell with eccentric bottom stiffeners) whereas for twist angle 15
0
 and 30

0
 the values are 

8.96(short shell with eccentric top stiffeners) and 12.67(short shell with eccentric top 

stiffeners), respectively. However, for high speed the maximum rise in rotating frequency at 

twist angles 0
0
,15

0
 and 30

0
 are 25.82 (long shell with concentric stiffeners), 29.03 (long shell 

with concentric stiffeners) and 35.79 (short shell with eccentric top stiffeners), respectively. It 

may be noted that at low/high speeds the percentage of increase in frequency rises rapidly 

with twist angle in shells with eccentric top stiffeners but the same value decreases with 

increase in twist angle, and it is observed in shells with eccentric bottom stiffeners except in 
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intermediate and short shell at high speed. In concentric stiffened shells, the gain in rotating 

fundamental frequency increases with twist angle at low/high speed but for the long shells 

rise of the curve is poor towards higher twist angles. 

Table 3.11 Non-dimensional fundamental frequency(NDFF) of delaminated four layered 

angle ply [45/-45/-45/45] stiffened long, intermediate and short shells at rotating state for 

different twist angles. hbst 2=  , hdst 4= , 50.0/ =La 5.0/, =Ld  , xn = 
yn =3. 

Shell 

Type 

Twist 

Angle    

(Ф) 

Eccentric top Eccentric bottom Concentric 

Ω=0 Ω=0.5 Ω=1.0 Ω=0 Ω=0.5 Ω=1.0 Ω=0 Ω=0.5 Ω=1.0 

LONG 

(A) 

0 1.4768 1.5687 1.8220 1.2778 1.3668 1.5640 1.2834 1.3730 1.6147 

15 1.1606 1.2572 1.4805 0.9919 1.0517 1.2105 0.9198 0.9958 1.1868 

30 0.8781 0.9818 1.1803 0.7459 0.7789 0.9067 0.6071 0.6583 0.7873 

INTER 

(B) 

0 1.6236 1.7331 2.0255 1.3439 1.4423 1.6617 1.3181 1.4035 1.6294 

15 1.2651 1.3753 1.6197 1.0578 1.1263 1.3146 0.8765 0.9404 1.1031 

30 0.9885 1.1110 1.3360 0.8585 0.8964 1.0892 0.5625 0.6078 0.7206 

SHORT 

(C) 

0 2.5880 2.7590 3.2176 2.1701 2.3205 2.6496 2.0568 2.1858 2.5192 

15 1.9438 2.1181 2.4997 1.6665 1.7767 2.0849 1.2435 1.3319 1.5581 

30 1.5810 1.7813 2.1468 1.4177 1.4747 1.8069 0.8342 0.9005 1.0690 
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Figure 3.10 Percentage increase in rotating frequencies with respect to twist angles of 

composite ([45/-45/-45/45]) stiffened shells at Ω =0.5 and Ω =1.0. hbst 2=  , hdst 4= ,

50.0/ =La 5.0/, =Ld  , xn = 
yn =3. Note: LS: Long shell, IS: Intermediate shell, SS: Short 

shell, ET: Eccentric at top, EB: Eccentric at Bottom, CO: Concentric 
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3.4.4 Effect of number of layers in the laminate   

 A comparative study is presented considering 4-, 6-, 8-, 10- and 12-layered composite 

stiffened shells for different twist angles composed of cross-ply (0/90) and angle-ply(-45/45) 

laminates. Crossed stiffened shells ( 1== yx nn , eccentric top) are considered with a 

delamination of 50% ( 50.0/ =La ) at the mid-plane of the shell. The values of non-

dimensional fundamental frequency (NDFF) of both un-delaminated and delaminated cases 

are furnished in graphical form in Figure 3.11 (a) and (b). 

 The short stiffened shell with angle-ply laminates for the higher number of layers has 

high-frequency values than others. Considering untwisted and un-delaminated stiffened 

shells, the value of fundamental frequency increases with increase in the number of layers in 

long, intermediate and short stiffened shells with cross-ply or angle-ply but the value of 

fundamental frequency is very close to each other in cross ply laminates at n=6 and 8. The 

increase in fundamental frequency is very rapid in long stiffened shell with angle ply 

laminates. In the case of the intermediate shell with angle-ply, it is observed that NDFF value 

increases up to n=6 and, thereafter, it almost remains constant. The presence of delamination 

in the three shells reduces the fundamental frequency to a great extent in both cross-ply and 

angle-ply laminates. It evident that the effect of delamination on the non-dimensional 

fundamental frequency decreases with an increase in the number of layers in angle-ply 

laminates though it is found to be almost uniform in cross-ply laminates irrespective of the 

number of layers. 

 It is found that increase in twist angle in all the three types of stiffened shells 

decreases the fundamental frequency. It is also observed that increase in twist angle improves 

the performance of cross-ply over angle ply laminates in terms of increase in NDFF in 

general for lower number of layers. At Φ=30
0
, the  value of the fundamental frequency of 

cross-ply laminates are much more than angle-ply laminates in intermediate and short 

stiffened shells for any number of layers. The dominance of cross-ply over angle-ply 

laminates is also observed at Φ=15
0
 in all types of the shell with the lower number of layers. 

In addition to this, the value of non-dimensional frequencies of the twisted stiffened shells 

with angle-ply rises with the increase in the number of layers but the value fluctuates incase 

of cross-ply laminates. 

 Figure 3.12 shows the percentage drop in fundamental frequency due to 50% mid-

plane delamination at various twist angles in long, intermediate and short stiffened cylindrical 

shell. Maximum drop in fundamental frequency is observed always in angle ply laminates at
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Φ=0
0
, n=4 for all the three types of shells. The minimum drop is also found in angle ply at 

Φ=0
0
, n=12 except short shell, wherein cross-ply laminates attains minimum frequency drop 

at Φ=30
0
, n=12. The percentage reduction in frequency is maximum in untwisted shell as 

compared to twisted shells incase of the cross-ply laminates for any number of layers. The 

maximum percentage decrease in non-dimensional fundamental frequency for cross-ply 

laminated is found 7.10%  in intermediate stiffened shell at Φ=0
0
, n=4 while for angle ply it 

is noticed 26.77 % in short stiffened shell at Φ=0
0
, n=4. Further , it may be noted that 

percentage decrease in fundamental frequency due to delamination reduces as twist angle 

increases in all the cases except at n=10,12 for long, n=8,10,12 for intermediate and n=12 for 

short shell in the case of angle-ply laminates. From the previous study, it is evident that short 

stiffened shells are highly efficient in increasing fundamental frequency but the decrease in 

fundamental frequency due to delamination in this shell is found to be maximum as compared 

to long and intermediate shells.  

3.4.5 Mode shapes 

Effect of twist angle and rotational speed on the mode shapes of long un-stiffened and 

stiffened cylindrical shell with delamination are furnished in Table 3.12. Dark lines in the 

figures are nodal line with zero displacements while the solid and dashed lines represent 

positive and negative displacements, respectively. The first four mode shapes of the 

stationary untwisted long cylindrical shell are, in order, the first torsional mode(1T), the first 

spanwise bending mode(1B), the first chordwise bending(1C) and finally second torsional 

mode(2T). It is noticed that at stationary condition the mode shapes of the untwisted 

delaminated shell are symmetric about the x-axis. As the rotational speed increases, the 

symmetry of the mode shapes completely vanishes and abrupt changes in contour lines is 

noticed especially when Ω=1.0. The first four mode shapes of the stationary stiffened 

untwisted long cylindrical shell are 1T, 1B, 1C and 2T. Due to stiffening effect of the 

stiffeners, the symmetry of the mode shapes is maintained at low speeds (Ω=0.5) but at high 

speed (Ω=1.0) the symmetry of mode shapes are disturbed. It may be observed that due to the 

rotation, the third mode of the stationary stiffened shell becomes the fourth mode at high 

speed (Ω=1.0) in the case of the untwisted stiffened shell. When the un-stiffened and 

stiffened shell have a twist of 30
0
, the first mode does not remain the torsional mode as in 

untwisted cases but it changes to first bending mode. However, an increase in twist angle in 

cylindrical stiffened shells also demolishes the symmetry of mode shapes by reducing the 

elastic stiffness of the structures. 
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Table 3.12 Effect of rotation and twist angle on first four mode shapes of symmetric 

delaminated cross-ply ]0/90/90/0[  un-stiffened and stiffened cylindrical long shell =La /

0.333, =Ld / 0.5, == yx nn 1, hbst 2= , hdst 4= . 

Φ  
Ω 

(ϖ ) 
Mode-1 Mode-2 Mode-3 Mode-4 

0
0
 UNSTIFFENED LONG CYLINDRICAL SHELL 

 
0.0 

(0.7801) 

    

 
0.5 

(0.9070) 

    

 
1.0 

(1.1837) 

    
0

0
 STIFFENED LONG CYLINDRICAL SHELL 

 
0.0 

(0.9452) 

    

 
0.5 

(1.0860) 

    

 
1.0 

(1.3917) 
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Table 3.12Continued 

Φ  
Ω 

(ϖ ) 
Mode-1 Mode-2 Mode-3 Mode-4 

30
0
 UNSTIFFENED LONG TWISTED CYLINDRICAL SHELL 

 
0.0 

(0.3759) 

    

 
0.5 

(0.4272) 

    

 
1.0 

(0.5516) 

    

30
0
 STIFFENED LONG TWISTED CYLINDRICAL SHELL 

 
0.0 

(0.6897) 

    

 
0.5 

(0.7945) 

    

 
1.0 

(1.0125) 
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CHAPTER 4 

 

TRANSIENT RESPONSE OF DELAMINATED 

COMPOSITE PRETWISTED STIFFENED SHELLS 

UNDER LOW VELOCITY IMPACT 

 

4.1 GENERAL 
 

 Composite materials have little or no plastic deformation when receiving load 

exceeding the elastic deformation energy and hence, they are immediately damaged and their 

mechanical property is rapidly degraded. Such a composite structure has so weak 

characteristic to compressive strength that decreases strength of material when impact occurs, 

and it would lead to lifetime decrease and cause unexpected problems. The most severe type 

of loading on a composite structure is impact by a foreign object during manufacture, 

maintenance, transportation and service operation of different components and is generally 

found in aircraft wings, fan blades in jet engine and protruded section in automobiles. Impact 

of masses moving at relatively low velocities (less than 10 m/s) with underwater vehicles, 

windmill blades, automobile or aircraft bodies, steam turbine blades or spaceships is quite 

common in actual practice.Turbomachinery blades are under a preload resulting from the 

centrifugal forces and as a consequence, the initial stresses may aggravate the damage due to 

impact especially in the presence of delaminations. An impact of a specific energy may cause 

these cracks to grow beyond a critical limit thereby leading to premature failure of the 

stiffened shells. In most practical applications as in hailstorm or ballistic attacks, impact on 

composite laminates is never a localized phenomenon and the loading and unloading cycles 

of multiple impactors can greatly influence the contact force and displacement. Therefore, an 

organized analytic method to predict the dynamic response of delaminated composite 

stiffened cylindrical shells under single/multiple impactsis needed to establish a design 

method to make the composite structures more reliable and safer. 

 In this chapter, transient response of delaminated composite stiffened cylindrical 

shells subjected to low velocity single impact or multiple impact is presented. Dynamic 

response of specific problems of delaminated composite stiffened cylindrical shells is 

investigated with the following objectives: 

1. Convergence study of the present finite element code developed is carried out for low 

velocity impact analysis of stiffened shells with cantilevered boundary condition. 
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2. The impact response of some benchmark problems in the literature is compared with 

those obtained by the author to establish the validity of the present code. 

3. An extensive parametric study of transient response characteristics of several 

additional examples of delaminated stiffened cylindrical shells with pretwist is carried 

out with a view to arriving at some meaningful conclusions. 

The detailed response characteristics of stiffened panels are reported under two different 

sections. Impact response of the stiffened cylindrical shell with delamination is presented in 

section 4.3 while the multiple impact response of the delaminated panel is furnished in 

section 4.4. 

4.2 CONVERGENCE AND VALIDATION 

 The convergence of the present finite element formulation is studied with respect to 

time step for cantilevered cylindrical stiffened shell with one central eccentric bottom 

stiffener along each orthogonal (x-/y-) direction. The contact force and shell displacement at 

the centre of the delaminated twisted panel is presented in Fig 4.1. Previous study for free 

vibration analysis revealed that the results are found to be converged at the mesh sizes of 8×

8. Hence, mesh size of 8×8 is used to check the time convergence study of the stiffened panel 

subjected to low velocity impact.Contact force history and central vertical displacement of 

the shell are illustrated in Fig 4.1 corresponding to time step 0.5 μs, 1.0 μs, 1.5 μs and 2.0 μs, 

respectively. It is evident that the response of both contact force and shell displacement 

corresponding to time step 1μs is acceptable because there is no significant variation of the 

parameters with respect to time steps. Hence, the time step of 1 μs is considered for further 

study with mesh size 8×8 for full stiffened shells with cantilevered boundary condition.  

 The validity of the present formulation is established by comparing the present results 

of transient dynamic response of specific problems with those available in literature. The 

accuracy of the formulation with respect to stiffener, pretwist, delamination and rotation have 

already furnished in Chapter-3. The size of delamination is assumed to remain same during 

the transient state (very small duration) of the impact loading. Hence the growth of the 

delamination area is not considered in the present study. The width of delamination is also 

equal to the width of the shell.In order to establish the accuracy of the code in respect of low 

velocity impact formulation, the following examples are taken from the existing literature for 

comparison: 

1. Fully clamped square laminated composite (0
0
/90

0
/0

0
) plate impacted by a striker with 

initial velocity of 22.6 m/s solved by Chun and Lam (1998). 
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2. Simply supported square laminated composite ([0
0
/90

0
/0

0
/90

0
/0

0
]s) plate impacted by 

a striker with initial velocity of 3 m/s solved by Sun and Chen (1985). 

3. A composite([0
0
/90

0
/90

0
/0

0
]) beam impacted simultaneously at two different locations 

by two strikers with initial velocity of 2 m/s each solved by Lam and Sathiyamoorthy 

(1999). 
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Figure 4.1 Convergence of transient response with respect to different time steps for 

cantilevered delaminated composite ([0/90/0/90/0]s)cylindrical crossed stiffened shell under 

low velocity impact. L= 0.5m, b= 0.3 m, h=0.005m, bst=2h, dst=4h, nx= 

ny=1,a/L=0.5,d/L=0.5, Φ =30
0
, vi=3 m/s, Ei=210 GPa, ri=6.35 mm, iρ =7960 kg/m

3
, iν =0.3. 

 Fig. 4.2 shows contact force and in-plane stress histories of a fully clamped square 

laminated composite (0
0
/90

0
/0

0
) square plate obtained by Chun and Lam(1998) are compared 

with the results obtained by employing the present formulation. The time step chosen for time 

integration is 2μsec. The present results are in good agreement with the literature. Contact 

force and central deflection histories of a symmetrical laminated cross ply square plate under 

simply supported boundary condition obtained employing the present formulation are 

compared with those obtained by Sun and Chen (1985) and is shown in Fig 4.3. Minor 

variation of the result with those of Sun and Chen is due to the fact that the present analysis is 

carried out using the full plate while they have considered a quarter plates with symmetric 

boundary conditions. In addition, the number of nodes, the order of numerical integration and 

the convergence time steps considered are different in each case. Since, the results of 

dynamic response of shell structures with multiple low velocity impacts are not available in 

the literature; the results of the present formulation shown in Fig 4.4 are compared with the 

results of Lam and Sathiyamoorthy (1999), wherein a symmetric composite [0
0
/90

0
/90

0
/0

0
] 

beam is impacted at two different locations. Contact force and shell displacement results 

show slight variation with those obtained by Lam and Sathiyamoorthy (1999), which is due 
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to the fact that they have used energy approach to obtain the results. Hence, the formulation 

of the present code can accurately predict the transient response of the delaminated stiffened 

shell with pretwist subjected to low velocity impact.  
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Figure 4.2 Contact force and in-plane stress history of a clamped square composite plate, 

impacted at the center of the plate. 1E = 142.73 GPa, 2E = 13.79 GPa, 12G = 4.64 GPa, 12ν = 

0.30, ρ = 1.61 × 10
3
kg/m

3
, L= b= 0.14 m, h= 3.81 × 10

−3
m, mass of striker = 0.014175 kg, 

velocity of striker = 22.6 m/s, contact stiffness ( Ck = 1×10
8
N/m

1.5
) 
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Figure 4.3 Impact responses of a cross ply ([0/90/0/90/0]s) composite plate impacted 

centrally by spherical steel ball under simply supported boundary conditions. =L 20 cm, =b

20 cm, =h 0.269 cm, =1E 120 GPa, =2E 7.9 GPa, =12G =23G =13G 5.5 GPa, =12ν 0.30, 

=ρ 1.58× 10
-5 

N-sec
2
/cm

4
, =iV 300 cm/sec, =iρ  7.96× 10

-5
 N-sec

2
/cm

4
. (a) Contact force 

history (b) Central deflections. 
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Figure 4.4 Contact force and beam displacement histories of a cantilever composite 

([0
0
/90

0
/90

0
/0

0
]) beam at locations A and B. L= 0.3 m, b=0.01m, h=0.01m, ���= ���= 0.01m, 

��� = ���=2.0 m/s, 1E = 144.80 GPa, 2E = 9.65 GPa, 12G = 13G =4.14 GPa, 23G =3.45 GPa, 12ν = 

0.30, ρ = 1389.23kg/m
3
. A (L/6, b/2), B (5L/6,b/2) 
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4.3 RESPONSE OF PRETWISTED DELAMINATED STIFFENED 

SHELL  

 Stiffeners of rectangular cross-section are considered for the analysis wherein they 

have the same stacking sequence as that of the shell. Delamination crack front always 

stretches across the full width of the shell. Delaminated stiffened shell is always assumed to 

be impacted at the center by a spherical impactor. The contact between the delaminated 

layers during impact is not considered in the present study. The value of mass density and 

Young's modulus of the spherical impactor are 7960 kg/m
3
 and 210 GPa, respectively. 

Parametric studies are carried out to investigate dynamic impact responses of the stiffened 

cylindrical shell due to variation of stiffener orientation and eccentricity, delamination 

location, twist angles, stiffener width to shell thickness ratio and diameter of the impactor. 

Transient response, which includes the histories of contact force, shell displacement, 

moments, and shell velocities are always evaluated at the center of the shell. In some cases 

the in-plane stresses are evaluated at a particular location of the graphite epoxy composite 

stiffened cylindrical shell fixed at one end having the following material (Sun and Chen, 

1985) and geometric properties. 

E1=120 GPa, E2= 7.9 GPa, ν12=0.30, G12=G23=G13=5.5GPa, ρ=1580kg/m
3
 

L=0.5 m, b=0.3 m, h=0.005 m, Ry=2.0 m. 

In general, the occurrence of high value of stress may be expected in the zone, which is away 

from the stiffener. Hence, a point (L/2, b/4,h/2) at the top surface, which was earlier 

considered by Chun and Lam (1998) is chosen to compute the values of the impact induced 

in-plane stresses. The boundary condition of the stiffened shell for the entire analysis is given 

by 

At x=0, u = v = w = α = β = 0 (4.1) 

4.3.1 Effect of stiffener orientation 

 Transient impact response of 50% mid-plane delaminated composite ([0/90/0/90/0]s) 

un-stiffened and stiffened cylindrical shell are shown in Fig 4.5. A comparative study 

between un-stiffened shell, shell with one x-directional stiffener and shell with one y-

directional stiffener are carried out wherein the striker is impacted at the centre of the shell 

with an initial velocity of 5 m/s. In general, adding stiffener increases the elastic stiffness 

which in turn increases the contact force response as compared to the un-stiffened shell. 

Contact force of the stiffened shells are much higher than the un-stiffened shell but the results 

of both x- and y-directional stiffened shells are found close to each other. However, the 

maximum value of contact force is observed in y-directional stiffened cylindrical shell. 
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Figure 4.5Effect of adding stiffener along x- and y-direction on the transient impact responses of 

the delaminated composite cylindrical shell, a/L=0.50, d/L=0.5, bst=h, dst=2h, di=1.27 cm,vi =5 

m/s. (a) Time history of contact force; (b) Time history of shell displacement/thickness; (c) Time 

history of impactor velocity; (d) Time history of impactor displacement; (e) Time history of 

σx;(f) Time history of σy. 
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Normalized shell displacement is found maximum in the un-stiffened shell while minimum in 

stiffened shells. Impactor velocity is found to reduce rapidly in stiffened shell as compared to 

the un-stiffened shell. After the completion of the unloading cycle, the impactor is observed 

to have a constant velocity in all cases. Velocity of the impactor in the case of the un-

stiffened shell is noticed to decrease in two stages because of the reloading taking place 

between 120µsec to 230µsec. Impactor displacement increases continuously until the 

completion of loading cycle and then decreases but the rate of decrease in displacement of the 

impactor in stiffened shell is found faster than that of the un-stiffened shell. The in-plane 

dynamic stresses σx, and σy are determined at (L/2, b/4, h/2), which is the mid-point of the 

normal line from the impact point to the x-axis and on the upper surface of the shell. The 

values of normal stress σx are found greater than σy in all the cases considered. Addition of x- 

and y-directional stiffener induces greater magnitude of σx andσy during loading cycle while 

reduces the magnitude of σyduring unloading cycle. The maximum value of σx reduces to 

65.98% and 45.58% of the maximum value of σx when compared with the un-stiffened shell 

for x-directional and y-directional stiffeners, respectively. The maximum value of σy is found 

to increase with y-directional stiffener while it diminishes with x-directional stiffener 

compared to the maximum value of σy of the un-stiffened shell. Hence, the use of x-

directional stiffener is found advantageous than y- stiffener. The magnified deformation of 

the mid-plane of the un-stiffend (nx=ny=0)/stiffened shell (nx=1, ny=1 and nx=ny=1) are 

illustrated in Figure 4.16 corresponding to the instant of attaining the peak value of contact 

force.   

4.3.2 Effect of delamination across the thickness 

 Dynamic impact response of composite ([0/90/0/90/0]s) stiffened shell containing 

75% mid-span delamination located at three different positions (h'/h=0.1, 0.5, 0.8) across the 

thickness have been shown in Fig 4.6. Cylindrical shell is appended by one x- directional 

stiffener (nx=1) along the centreline. Contact force history reveals that the peak value of 

contact force obtained is 1261.71 N corresponding to h'/h=0.1 while minimum value is 

obtained for h'/h=0.5. Contact force decreases when delamination moves from top surface to 

mid-plan and thereafter again increases till the bottom ply. However, the variation of 

delamination across the thickness has the sharp distinction in the normalized displacement, 

impactor velocity and impactor displacement of the cantilever stiffened shell. During loading 

cycle, the normalized displacement for h'/h=0.1, 0.5 and 0.8 have no variation thereafter 

significant variation is observed. Normalized displacement is found maximum in the mid-

plane (h'/h=0.5) delaminated stiffened shell while minimum for h'/h=0.1. 
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Figure 4.6 Dynamic impact response of delaminated composite([0/90/0/90/0]s) stiffened 

cylindrical shell for various position of delamination across the thickness, nx=1, a/L=0.75, d/L 

= 0.5, bst = h, dst = 2h, vi = 5 m/s, di = 1.27 cm. (a) Time history of contact force; (b) Time 

history of shell displacement/thickness; (c) Time history of impactor velocity;  (d) Time 

history of impactor velocity; (e) Time history of σx;(f) Time history of σy. 
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It reveals that the displacement response of the stiffened shell increases as delamination 

moves from top ply to middle ply and thereafter again decreases towards the bottom ply. It is 

evident that the impactor displacement and velocity of all the three case are identical during 

loading while in un-loading cycle, both the velocity and displacement of the impactor are 

found to be maximum for h'/h= 0.5. Dynamic stresses (σx andσy) are obtained on the top 

surface of the stiffened shell corresponding to point (L/2,b/4, h/2) wherein it is observed that 

both the stresses increases during loading cycle and σy is found greater than σx irrespective of 

the position of delamination. It may be noted that maximum value of σx and σy  are obtained 

corresponding to h'/h =0.5 and gradually decreases as delamination moves away from mid 

plane and found minimum at h'/h =0.1. Mid-plane delamination induces high value of in-

plane dynamic stresses, which is undesirable. Hence, mid-plane delamination is found to be 

risky for the stiffened shell panel.  

4.3.3 Effect of Eccentricity of stiffeners 

Fig 4.7 illustrates the effect of eccentricity of the stiffeners on the dynamic response of 

delaminated composite ([0/90/0/90/0]s) stiffened cylindrical shell wherein eccentric bottom, 

concentric and eccentric top stiffeners are considered for the analysis. It is already observed 

by Nayak and Bandyopadhyay (2005) that the effect of eccentricity can be judged when the 

shell is appended with more than three numbers of stiffeners. Hence the analysis has been 

carried out with three numbers of stiffeners in each direction. Contact force histories have the 

marginal variation with the eccentricity of stiffeners, however, the maximum contact force is 

found in eccentric top and bottom stiffeners. Normalized displacement and velocity of the 

concentric stiffened shell are identified maximum followed by the eccentric bottom and 

eccentric top stiffeners. But the normalized displacement and velocity response curves of the 

eccentric bottom and top stiffened shell are very close to each other. Moreover, it is evident 

that during loading cycle the displacement of shells are identical in all the cases while the 

deviation of the response curves starts immediately during the commencement of the 

unloading cycle. Eccentric stiffener renders more elastic stiffness than that of concentric one 

because of the high value of the first and second moment of area. The normal stresses σx 

andσy are computed at the top surface of the shell (L/2, b/4, h/2) and are presented in Fig 4.7 

(e) and (f) wherein the opposite nature of the stresses corresponding to eccentrically top and 

eccentrically bottom is observed. From failure point of view, the concentric stiffeners are 

found more suitable than eccentric stiffeners because of the lowest value of in-plane stress 

but the fabrication of concentric stiffener is tough compared to eccentric stiffeners.  



123 

 

50 100 150 200

0

200

400

600

800

1000

 

C
o

n
ta

ct
 f

o
rc

e(
N

)

Time (µsec)

 B

 C

 T

 

0 100 200 300 400

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Time (µsec)

 

S
h

el
l 

D
is

p
la

ce
m

en
t/

T
h

ic
k

n
es

s

 B

 C

 T

 

(a) (b) 

0 100 200 300 400

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

 

S
h
el

l 
V

el
o
ci

ty
 (

m
/s

)

Time (µsec)

 B

 C

 T

 

0 25 50 75 100 125 150 175 200

-0.2

-0.1

0.0

0.1

0.2

 

Im
p

ac
to

r 
D

is
p

la
ce

m
en

t 
(m

m
)

Time (µsec)

 B

 C

 T

 

(c) (d) 

0 100 200 300 400

-15

-10

-5

0

5

10

 

σ
X
 (

M
P

a)

Time (µsec)

 B

 C

 T

 

0 100 200 300 400

-10

-5

0

5

10

 

σ
Y
 (

M
P

a)

Time (µsec)

 B

 C

 T

 

(g) (h) 

Figure 4.7 Effects of eccentricity of stiffeners on the transient response of the composite 

([0/90/0/90/0]s)stiffened cylindrical shell, nx=ny=3, d/L=0.5, a/L=0.5, bst=2h, dst= 4h,di=1.27 

cm, vi =3 m/s.(a) Time history of contact force; (b) Time history of  shell 

displacement/thickness; (c) Time history of shell velocity; (d) Time history of impactor 

displacement; (e) Time history of σx; (f) Time history of σy . Note: B: Eccentric bottom, C: 

Concentric, T: Eccentric top. 
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4.3.4 Effect of stiffener depth to shell thickness ratio 

Fig 4.8shows the transient response of delaminated composite ([0/90/0/90/0]s) stiffened 

cylindrical shell with the variation of stiffener depth to shell thickness ratio wherein 50% 

mid-plane delamination is considered at the mid-span. Four cases are considered such as dst/h 

=1.0, 2.0, 3.0 and 4.0 and the impactor is striking at the center of the shell with an initial 

velocity of 3 m/s. As expected, the maximum value of contact force is observed for dst/h =4.0 

followed by dst/h =3.0 and 2.0 while the minimum value of contact force is found for dst/h 

=1.0.This is due to the fact that with the increase of stiffener depth overall structural stiffness 

increases. Further, it may be noted that the period of loading and unloading cycle for dst/h 

=4.0, 3.0 and 2.0 are completed earlier compared to dst/h =1.0. It is observed that increase in 

dst/h reduces the target displacement wherein maximum and minimum normalized 

displacement are obtained for dst/h=1.0 and 4.0, respectively. Impactor displacement and 

velocity for all the four cases show a similar trend wherein both impactor displacement and 

velocity decreases at a rapid rate for higher dst/h. Impactor displacement and velocity are 

maximum for dst/h=1.0 followed by dst/h=2.0,3.0 and 4.0 wherein the impactor velocity is 

decreasing continuously till the end of loading and unloading cycle and then remains 

constant. Impactor displacement is observed to increase gradually until the end of loading 

cycle and thereafter it decreases. The in-plane normal stresses σx andσy are computed at the 

top surface of the shell (L/2, b/4, h/2) and are presented in Fig 4.8 (e) and (f). It is evident that 

increase in dst/h ratio leads to reduce the value of in-plane normal stresses.  Finally, the study 

reveals that increase in dst/h ratio results in higher value of contact force, which in turn 

reduces the target point displacement, velocity, stress resultants, impactor velocity, impactor 

displacement and stresses.  

4.3.5 Effect of initial twist 

Dynamic response of composite ([0/90/0]s) stiffened cylindrical shell containing 75% 

delamination (a/L=0.75) located at 0.5L from the fixed end have been presented in Fig 4.9 

corresponding to twist angle 0
0
, 30

0
 and 45

0
, respectively wherein the delaminated stiffened 

shell is impacted at the center of the shell by the striker with an initial velocity of 7 m/s. The 

low-velocity impact responses of the twisted stiffened shells are compared with that of the 

untwisted stiffened shell. It is evident that the contact force increases with increase in twist 

angles wherein maximum contact force is obtained at Φ=45
0
 and minimum at Φ =0

0
. The 

normalized shell displacement, impactor velocity and impactor displacement decreases with 

increase in twist angle, which may be due to the coupling in twisted laminate  
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Figure 4.8 Effect of stiffener depth to shell thickness ratio on the transient response of the 

composite([0/90/0/90/0]s) stiffened cylindrical shell, nx =1, d/L=0.5, a/L =0.5, bst=2h, di=1.27 

cm, vi =3 m/s.(a) Time history of  contact force; (b) Time history of  shell 

displacement/thickness; (c) Time history of  impactor velocity; (d) Time history of  impactor 

displacement; (e) Time history of  σx; (f) Time history of  σy. 
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Figure 4.9 Effect of twist angle on the dynamic impact response of the delaminated 

composite([0/90/0]S) stiffened cylindrical shell, nx =1, a/L=0.75, d/L =0.5, bst =h, dst =2h, 

di=1.27 cm, vi =7 m/s.(a) Time history of  contact force; (b) Time history of  shell 

displacement/thickness; (c) Time history of  impactor velocity; (d) Time history of  impactor 

displacement; (d) Time history of  σx;(f) Time history of  σy. 
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leads to greater structural stiffness thus increases the contact force and reduces the other 

parameters. Time histories of the normalized displacement of the three cases during loading 

cycle shows insignificant variation but thereafter large difference between them is identified 

with the increase in time wherein the trend of variation is similar. Impactor velocity in all the 

cases is decreasing with time and at the end of unloading cycles attains constant values 

wherein the rate of decrease in striker velocity is found maximum at higher twist angle. No 

significant deviation in the time histories of impactor displacement is observed during the 

loading cycle, on the other hand at the beginning of unloading cycle the magnitude starts 

decreasing and deviation of the curves show higher rate for larger twist angle. Time histories 

of the in-plane stresses (σx and σy) of the twisted and untwisted stiffened shell at (L/2, b/2, 

h/2) are also presented, wherein it is evident that the increase in twist angle reduces the value 

of stresses in conformity with the displacement.  

4.3.6 Effect of diameter of impactor 

Dynamic response of the twisted composite ([0/90/0]S) cylindrical stiffened shell having 75% 

mid-plane delamination (a/L=0.75) with changes in diameter of the impactor is shown in the 

Fig 4.10. Three cases have been considered wherein the impactors strike the stiffened shell at 

the centre with a fixed initial velocity of 7 m/s. Diameters of the impactors assumed in the 

three cases are 1cm, 2cm and 3 cm, respectively. The maximum value of contact force is 

found with the impactor having diameter 3cm while the minimum is observed corresponding 

to diameter 1cm. Further, it may be noted that in all the cases considered in the present study, 

increase in contact force reduces the contact period but in this particular case both contact 

force and contact period increases simultaneously with increase in diameter of the impactor. 

Reloading is observed at 200μsec corresponding to di =2 cm for a small period of time. Time 

period of unloading cycle is extended with the increase in diameter of the impactor while 

maximum contact duration of unloading cycle is identified for di =3 followed by di =2 and di 

=1. Similarly, there is the corresponding increase in shell displacement are found with 

increase in the diameter of the impactor due to increase in inertia of the impactor. Time 

histories of shell displacement/thickness are found to be maximum for di =3 cm followed by 

di =2 cm and the minimum is observed for di =1cm.Gradually decrease in impactor velocity is 

observed with large diameter whereas rapid drop of the impactor velocity is observed with 

small diameter. Displacement of the impactor is found to increase continuously for di=3 cm 

within the time frame of analysis while in the other cases the drop in impactor displacement 

is observed. The in-plane dynamic stresses σx and σy  at (L/2, b/4, h/2) are also furnished in 
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Fig4.13 (e) and (f).Both the stresses are found to increase with increase in diameter of the 

impactor. 
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Figure 4.10 Transient impact response of the delaminated twisted composite([0/90/0]S) 

stiffened cylindrical shell for various impactor diameters, nx =1, d/L=0.75, a/L =0.5, bst =h, dst 

=2h, Φ =30
0
, vi =7 m/s.(a) Time history of  contact force; (b) Time history of  shell 

displacement/thickness; (c) Time history of  impactor velocity; (d) Time history of  impactor 

displacement; (e) Time history of  σx;(f) Time history of  σy. 
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4.4 RESPONSE OF DELAMINATED STIFFENED SHELL UNDER 

MULTIPLE IMPACT 

Graphite epoxy composite laminated stiffened cylindrical shell is impacted by two spherical 

rigid impactorsat two different locations simultaneously or with a time lag between the two 

impacts is presented. The material properties of the stiffened shell and the impactor 

areremaining same as in the previous cases.   The delamination is always considered to be 

stretched across the full width of the shell. Stiffeners of rectangular section are always placed 

along the mesh lines and have the same ply orientation as that of the composite shell. The 

geometry of stiffened shell and impactor is also same as the previous case unless until it is 

specified. Two spherical impactor are always assumed to strike at center[C (L/2, b/2)] and at 

the free end [F(L, b/2)], respectively. The in-plane stresses (�	and �
) are computed at the 

top surface. The parameters such as stiffener orientation, twist angle, percentage of 

delamination, stiffener depth to shell thickness ratio and delayed impact are varied to 

examine the effects on the transient response of the structure. 

4.4.1 Effect of stiffener 

 Fig 4.11 shows the variation contact force, shell displacement, and in-plane stresses 

(�	and �
) at the impacted points (C and F) of the stiffened shells with stiffeners orientated 

in x- and y-directions. Here two configuration of the undelaminated stiffened panel are 

considered wherein one panel is stiffened with an x-directional stiffener while the other with 

a y-directional stiffener. It is evident that contact force at the center(C) is found maximum 

while minimum at the free end (F) in both the stiffened panels. At C and F maximum contact 

force is observed with the panel having x-directional stiffener while the variation of contact 

force at the center is found insignificant with respect to orientation of the stiffeners. The 

distinct variation of the contact force at the free end is depicted with respect to x- and y-

directional stiffeners. It is evident that maximum contact force is obtained with x-directional 

stiffener irrespective of the impacted points. It may be observed that the time period of 

loading and unloading are found maximum at the free end of the stiffened shell. The shell 

displacement curve shows maximum deflection at the free end in the two types of stiffened 

structures. The displacement at the free end of the y-directional stiffened shell is found more 

than that of the x-directional stiffened shell. However, the nature of �	is found tensile at the 

center of both x- and y-directional stiffened shells and compressive at the free end. The value 

of �	is found maximum at C in the x-directional stiffened shell. In x-directional stiffened 

shell, the value of �
is found minimum at both the locations compared to y-directional 
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stiffened shell. From the above discussion it reveals that an x-directional stiffener renders 

maximum stiffness to the shell than a y-stiffener and the value of impact induced stress,�	 is 

obtained maximum. 
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Figure 4.11 Effect of orientation of stiffener on the transient response of the undelaminated 

untwisted composite stiffened cylindrical shell vc=vf=3 m/s, bst=dst=h. 

4.4.2 Effect of twist angle 

 Effect of pretwist angle of the composite stiffened panel on its transient response due 

to simultaneous impact of two spherical balls at the center (C) and free end (F) is depicted in 

Fig 4.12 wherein three values of twist angles are considered such as 0
0
, 15

0
 and 30

0
, 

respectively. In each case, a delamination of 50% (a/L=0.50) located at the mid span is 

considered.It is evident that increase in twist angle, increases the contact force at the two 

locations while the duration of loading and unloading remains unchanged. Contact force is 

observed maximum at location C as compared to free end though the impact velocity of 

impactor at the two locations is same. However, the shell displacements at the impacted 

points are found to be reduced with increase in twist angle but the degree of reduction in shell 

displacement is marginal with change in twist angle. As expected, the shell displacement is 
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obtained maximum at the free end (F) irrespective of delamination and twist angle. The 

decrease in shell displacement at the two locations due to rise in twist angle is due to decrease 

in structural stiffness. It is earlier reported by Qatu and Leissa (1991) that the natural 

frequency of the twisted plate decreases with increase in twist angle. Hence, the present 

results exhibit the same tendency of reducing structural stiffness at higher twist angle. Higher 

twist angle reduces the magnitude of both �	and �
 while the maximum value of in-plane 

stresses are obtained at the center corresponding to untwisted stiffened shell. The nature of 

stress �	 is found compressive at F while tensile at the center C within the period of loading 

and unloading. The value of �
 is found significantly smaller than �	  at both the locations 

irrespective of twist angle. 
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Figure 4.12 Effect of twist angle on the transient response of the delaminated composite 

stiffened cylindrical shell vc=vf=3 m/s, nx=1, a/L=0.50, d/L= 0.5, h'/h=0.5. , bst=dst=h. 

4.4.3 Effect of delamination 

 Presence of delamination reduces the strength of the shell while the size of 

delamination has adverse effect on the dynamic characteristics of the shell. Effect of 

percentage of delamination (PD) on the dynamic response of a twisted cylindrical shell with 

one x-directional stiffener subjected to transverse impact at two different locations 
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simultaneously is illustrated in Fig 4.13. Comparison studies between two cases are presented 

here with delamination of 0 % and 75% located at the mid span of the shell. It reveals that the 

peak value of contact force is obtained highest in undelaminated case (PD= 0%) while lowest 

value of the same is identified for delaminated case at the center due to degradation in elastic 

stiffness. The increase in percentage of delamination reduces the contact force thereby 

increases the shell displacement, which in turn increases the value of impact induced in-plane 

stress particularly at C. Contact force is found identical at the free end in both the cases while 

the shell displacement curves shows similar trend up to 100 μs and thereafter deviation in the 

nature of the curves are observed.  At the free end, all the parameters have shown almost 

identical response, which is due to the fact that the point F is located out of delamination 

zone. Delamination effect is found prominent at the center(C) of the shell because it is within 

the delamination zone. Delamination in the stiffened shell is found to intensify the magnitude 

of  �	 and �
 at the center while its effect at the free end is found insignificant. 
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Figure4.13 Effect of percentage of delamination on the transient response of the composite 

stiffened cylindrical shell. nx=1, vc=vf=3m/s, Φ=30
0
,d/L=0.5, bst=dst=h. 
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4.4.4 Effect of stiffener depth to shell thickness ratio 

 The effect of stiffener depth to shell thickness ratio (dst/h) on transient response of the 

delaminated twisted stiffened shell subjected to simultaneous impact at two locations is 

presented in the Fig 4.14. The twisted stiffened shell contains a 50 % mid-plane 

delamination.  
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Figure 4.14 Effect of stiffener depth to shell thickness ratio on the transient response of the 

delaminated composite stiffened cylindrical shell vc=vf= 5 m/s, nx=1, a/L=0.50, d/L=0.5, 

h'/h=0.5, Φ=15
0
. 

Simultaneous impact at the two locations take place on three different models wherein the 

depth of the stiffener have three different values such as dst/h=1.0, 2.0 and 3.0, respectively. 

Increase in the values of dst/h, intensifies the contact force at both the location of the twisted 

stiffened shell while reduces the value of shell displacement at C and F. The maximum value 

of contact force is identified at the center C corresponding to dst/h =3.0 while the minimum 

value at the free end F corresponding to dst/h=1.0. The shell displacement is found greater at 

the free end (F) corresponding to dst/h=1.0 than that of the other values of dst/h while shell 

displacement at center (C) corresponding to dst/h=3.0 is found the smallest one. The 

magnitude of stress �	 is found to reduce at the location C and F with increase in the value of 

dst/h within time step of 100μs thereafter anomalous behavior is observed. The magnitude of 
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the stress �
 is found much less than that of �	 wherein the nature is found tensile at the 

center(C) for all the values of dst/h within the time step of 100μs but the nature changes from 

tensile to compressive at (F) with increase in the value of dst/h from 1.0 to 3.0. At F, the 

nature of stress  �
is tensile corresponding to dst/h =1.0 while further increase in dst/h the 

stress at F becomes compressive.  

4.4.5 Effect of delayed impact 

 Transient response of the delaminated twisted composite stiffened shell impacted by 

two masses at different time and location is illustrated in Fig4.15. Twisted delaminated 

cylindrical stiffened shell is first impacted at location C and then the second impactor strikes 

at location F after a definite time (td) of the first impact.  
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Figure 4.15 Effect of delay impact on the transient response of the delaminated composite 

stiffened cylindrical shell. vc=vf= 4 m/s, nx=1, a/L=0.50,d/L=0.5, h'/h=0.5, Φ=15
0
. , 

bst=dst=h. 

Initial velocity of the two impactors is 4 m/s. Three cases have been considered in the present 

study wherein the first case, both the impactor strikes simultaneously, in second case the 

second impactor strikes after 25μs of the first impact and in the third case, the second 

impactors strike after 60μs of the first impact. A time delay of 25 μs and 60 μs is considered 
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in the second and third case i.e. the instant when the first impactor is approaching maximum 

indentation and the first impact is about to complete the unloading cycle, respectively. In all 

the three cases, the contact force, shell displacement and in-plane stresses (�	and�
) 

response at location C i.e. the first impact is almost obtained identical but it is noted that the 

response at location F is different and depends upon the time of delay. It is evident that the 

contact force at location (F) is found greater in the second case than the first case while the 

contact force at F in the third case is the smallest one. Hence, it may be noted that the contact 

force at F increases with increase in time delay till the completion of loading cycle of the first 

impact, thereafter it decreases with increase in time of delay. Shell displacement response 

depicts that the displacement at F decreases in the second case and increases in the third case. 

Response of stress �	 have similar trend as that of the shell displacement while �
 is found 

increasing with time delay and attained maximum in the third case corresponding to td=60 μs. 

Hence, it can be understood that the transient response of the stiffened shell in delayed impact 

at any location completely depends on the response of the first impact. 
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(a) Unstiffened shell (t=36μsec) (b) Stiffened shell (nx=1) (t=42μsec) 

 
 

(c) Stiffened shell (ny=1) (t=42μsec) (d) Stiffened shell (nx=ny=1) (t=46μsec) 

Figure 4.16 The magnified deformation configuration of the mid-plane of the delaminated 

composite shells with and without stiffener at the times corresponding to their peak value of 

contact forces. Stiffeners are placed eccentrically at bottom. a/L=0.50, d/L=0.5, bst=h, dst=2h, 

vi =5 m/s 
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CHAPTER 5 

 

CONCLUSIONS 
  

 

5.1 GENERAL 

 The results of the dynamic behavior of delaminated pretwisted composite cylindrical 

stiffened shells within the scope of the present investigation are summarized in this chapter. 

The computer codes are developed based on the present finite element formulation to 

generate numerical results for free vibration and transient response under low velocity impact 

of the delaminated composite pretwisted stiffened cylindrical shells. The convergence of the 

finite element solution is obtained by varying mesh sizes and time steps as in the case of 

transient response. The present study is carried out to investigate the effect of various 

triggering parameters on vibratory characteristics and transient response of the delaminated 

pretwisted composite shallow stiffened cylindrical shells subjected to low velocity impact. 

The results of the problem, presented and discussed in the previous Chapter 3 and Chapter 4 

for free vibration and transient dynamic response analyses subjected to low velocity normal 

impact, respectively, are computed with two specific objectives in mind, viz. first to establish 

the validity of the formulation proposed herein and secondly, to arrive at some pertinent 

characteristics of delaminated stiffened shells. Important conclusions drawn from the present 

investigation and discussion in Chapters 3 and 4 are summarized in Section 5.2.  These 

results could be served as reference solutions for future investigators. Important information 

documented in the present report is not claimed to be complete in all respects and accordingly 

further extension of the same and the scope for future research has been suggested in the 

section 5.4. 

5.2 CONCLUSIONS 

Major conclusions drawn from free vibration and transient responses of the delaminated 

stiffened shells are furnished below.  

5.2.1 FREE VIBRATION ANALYSIS 

1. In untwisted angle ply composite stiffened shell, the x-directional stiffener is found to 

render maximum stiffness than the curved y-directional stiffener whereas in cross-ply 

laminate, y-directional stiffener is proved to be providing maximum stiffness. But in 
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the twisted shell, x-directional stiffeners are found advantageous than y-directional 

stiffener incase of both cross-ply and angle-ply laminates. 

2. Numerical examples illustrate that not only the size but also the location of 

delamination has momentous effect on the natural frequency of the stiffened shell. 

The effect of delamination in the shell cannot be eliminated but the results show that 

its effect can be reduced to a great extent with adding up stiffeners. Moreover, it is 

evident that at θ = 60
0
 and 75

0
 the effect of delamination in stiffened shell is 

insignificant.  

 Delamination located near the fixed end of the cantilever has lower frequency 

than that located towards the free end for unstiffened shell and y-directional stiffened 

shell. But for x-directional and cross stiffened shell, this trend is found up to the mid 

span and then decreases gradually. Considering position of delamination along 

thickness direction, the fundamental frequency attains minimum value at the mid-

plane (h'/h=0.5) irrespective of the angle of twist. 

3. Thickness of the x- directional stiffeners has a strong influence in increasing the 

fundamental frequency of the twisted stiffened shell. In untwisted stiffened shells and 

twisted shells with y-directional stiffener, the rate of increase of fundamental 

frequency gradually decreases with the increase in the value of thickness of stiffener.  

4. Eccentric stiffeners are proved to be more efficient in increasing the fundamental 

frequency than concentric one. Eccentric top stiffeners provide higher value of 

fundamental frequency than eccentric bottom irrespective of twist angles and 

rotational speeds. The decrease in fundamental frequency as a result of twist angle is 

also found to be minimum in all types of shells when integrated with eccentric top 

stiffener.  

5. Among the three types of shells (long, intermediate and short), short cantilever 

stiffened shell is always found to provide higher value of fundamental frequencies 

irrespective of twist angle and delamination. In contrast, the effect of delamination in 

reducing fundamental frequency are found to be more pronounced in case of short 

shells.  

6. Increase in the number of layers in angle ply and cross-ply laminates increases the 

non-dimensional fundamental frequency in untwisted shells whereas fluctuation in the 

values of fundamental frequency is observed in twisted cross-ply laminates. 

Comparing between cross ply and angle ply laminates in the three types of shells; 
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angle-ply is found highly efficient for untwisted cases while cross-ply laminates are 

more suitable for twisted shells. 

7. Effect of delamination on fundamental frequency is found to be maximum with less 

number of layers while it is minimum for higher number of layers in angle-ply 

laminates, but it remains almost identical for any number of layers in cross-ply 

laminates.  

8. Influence of delamination in stiffened shell in terms of reduction in fundamental 

frequencies reduces with increase of twist angle.  

9. Increase in the rotational speed of the stiffened shells leads to an increase in 

fundamental frequencies as observed for all the cases of stiffener arrangement due to 

centrifugal stiffening irrespective of delamination and twist angle. However, the 

rotating effect on the fundamental frequencies is found to be more pronounced in 

twisted shells with eccentric top stiffeners in all types of shells considered. 

10.  The Fundamental mode shape illustrates that the symmetry mode are disappears with 

increase of initial twist and rotational speed. On the other hand, fundamental mode of 

the twisted stiffened shell is found insensitive to rotational speed.  

5.2.2 TRANSIENT RESPONSE DUE TO LOW VELOCITY IMPACT 

5.2.2.1 IMPACT BY SINGLE MASS 

1. With the addition of stiffener the contact force increases, while there is a decrease in 

shell displacement resulting from the increase in elastic stiffness of the cylindrical 

shell. Contact duration between the impactor and shell are reduced due to addition of 

stiffener. Maximum contact force is found in case of y-directional stiffened shell as 

compared to x-directional stiffened shell. The x-directional stiffener is found 

advantageous than y-directional stiffener because of reduced the value of in-plane 

stresses. 

2. The effect of delamination on contact force response of stiffened twisted cylindrical 

shell is found to be insignificant but the presence of delamination is manifested only 

in the displacement histories. Delamination at the mid-plane (h'/h=0.5) minimizes the 

contact force while maximizes the values of impact induced stresses (σx and σy). 

Thus, from design point of view, delamination at the mid-plane (h'/h=0.5) is observed 

to be unsafe.  

3. Eccentricity of stiffener has marginal effect on the history of contact force, impactor 

displacement and velocity. However, the lower contact force is observed in concentric 
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stiffened shell. Eccentric top and bottom stiffeners produce stresses of opposite 

nature, which is an important finding for the design engineers to select the stiffener as 

per the limiting value of stresses corresponding to particular loading condition and 

depending on the material of the structure. From failure point of view, concentric 

stiffeners are more suitable than eccentric because the values of induced stresses are 

marginally low.   

4. Increase in twist angle intensifies the contact force while minimizes the shell 

displacement, in-plane stress, impactor displacement, and impactor velocity. 

However, a rapid drop in impactor velocity and displacement is observed with 

increase in twist angle.    

5. A larger value of dst/h intensifies the contact force and reduces the shell displacement 

and in-plane normal stresses. The rate of decrease in in-plane stresses are reduced 

with increase in thickness of the stiffener. The rapid drop in velocity and displacement 

of the impactor is also observed at the higher value of dst/h. 

6. Impactor velocity has a significant effect on the contact force, moment resultants and 

displacement, which have rising trend with the increase of impactor's initial velocity. 

Contact duration between the impactor and stiffened shell are reduced with increase in 

initial velocity of impactor. 

7. Increase in diameter of impactor not only increases the contact force but also enlarges 

the contact period and also increases the induced stresses. Reloading also takes place 

depending upon the mass of the impactor depending on its diameter and mass density.   

5.2.2.1 IMPACT BY MULTIPLE MASSES 

1. It is observed that x-directional stiffener induces greater value of σx while y- 

directional stiffener induces greater value of σy at both the impact locations compared 

to single impact.  

2. Increase in percentage of delamination reduces the contact force sharply for multiple 

impacts while increasing the value of shell displacements which in turn increases the 

value of impact induced in-plane stresses particularly within the area of delamination. 

3. Increase in stiffener depth to shell thickness ratio reduces the value of simultaneous 

impact induced stresses σx at center consistently as in the case of single impact but for 

multiple impact the variation of σy is unpredictable at the free end wherein the nature 

of stress changes.   

4. On the time delayed case, the impact response depends upon the loading and 

unloading cycle of the previous impacts. It is observed that if time delay is much less 



141 

 

than the loading unloading time period of the first impact then the contact force at the 

second impactor position increases appreciably in comparison with zero time delay. 

5.3 CONTRIBUTIONS OF THE PRESENT WORK 

1. The advantage of use of this formulation over the available commercial packages is 

that there is no further increase in the total number of degrees of freedom for stiffener 

thereby increase computational efficiency and reduce computational time. 

2. It is recommended that x-directional eccentric top stiffeners have better performance.  

3. Based on the analysis of the delaminated stiffened shell, it is recommended that the 

fiber orientation of both the shell and stiffener should be kept within the range of 60 

to 70 degree to minimize effect of delamination. 

4. Delamination at the mid-plane of the stiffened shell minimizes the contact force while 

maximizes the values of impact induced stresses (σx and σy). Thus, from design point 

of view, delamination at the mid-plane is observed to be unsafe.  

5. The stresses produced by eccentric stiffeners is an important finding for the design 

engineers to select the stiffener as per the limiting value of stresses corresponding to 

particular loading condition and depending on the material of the structure.  

5.4 SCOPE OF FUTURE WORK  

 In view of the technical importance and need for in-depth investigations of the 

composite pretwisted cylindrical stiffened shells in relation to analysis, design, modeling and 

construction, it can be said that only a few aspects have been attempted in the context of the 

present work. Some of the possible areas for further research including those found necessary 

during the course of the present investigation are summarized below: 

1. In this present investigation, the linear analyses have been carried out. The 

investigation may be extended to carry out the analysis of laminated twisted stiffened 

shells with geometric and material non-linearity. 

2. Experimental investigation of the present work may be carried out to validate the 

findings using the proposed finite element formulation. 

3. First ply failure and progressive failure analysis of the rotating pretwisted laminated 

stiffened shell may be carried out to understand the philosophy of the failure process 

in the entire structure. 

4. Environmental effect on the composite materials is severe. A sudden change in 

temperature and moisture causes additional stresses and deformations on the 

structures. So, the present work can be extended to include such hygrothermal effect. 



142 

 

5. Effort may be made to carry out the present investigation considering reinforcement 

of carbon nanotubes (CNTs) and graphene sheets because of their remarkable 

mechanical, electrical and thermal properties. 

 The above extension plans are merely the suggestive but not exhaustive topics to be 

taken up for extensive investigation so that the designers acquire a thorough and 

comprehensive knowledge of the behavior of rotating pretwisted stiffened shell with which a 

full exploitation of these advanced materials can be made successfully. 
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Appendix-I:  Flowchart for the computational procedure 
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Compute velocity and acceleration of the stiffened shell 
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Compute the local indentation and contact force, Φ−= cos)(
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