Intelligent Social Chatbot — Classifying
Intents and Identifying Entities for
Generating Response

Thesis Submitted in partial fulfillment of the requirements for the degree of

Master of Engineering
In

Computer Science & Engineering

Submitted By

Aritra Nayak

Examination Roll number: M4CSE19012

Class Roll No.: 001710502004
Registration number: 140744 of 2017-2018
Session: 2017 - 2019

Under the esteemed guidance of

Dr. Dipankar Das

Dept. of Computer Science & Engineering

Jadavpur University, Kolkata-700 032

Faculty Council of Engineering and Technology
JADAVPUR UNIVERSITY, KOLKATA — 700032

Certificate of Recommendation

This is to certify that Aritra Nayak (University Registration No.: 140744 of 2017-2018,
Examination Roll No.: M4CSE19012) has completed his master’s thesis entitled
“Intelligent Social Chatbot — Classifying Intents and Identifying Entities
for Generating Response”, under the supervision and guidance of Asst. Professor
Dr. Dipankar Das, Jadavpur University, Kolkata. We are satisfied with his work,
which is being presented for the partial fulfillment of the degree of Master of
Engineering in Computer Science & Engineering, Jadavpur University, Kolkata -
700032.

Prof. (Dr.) Dipankar Das

Faculty in Charge of Thesis

Prof. (Dr.) Mahantapas Kundu Prof. (Dr.) Chiranjib Bhattacharjee

HOD, Dept. of Computer Science € Dean, Faculty Council of Engineering and

Engineering, Jadavpur University, Technology, Jadavpur University,

Kolkata — 700 032 Kolkata — 700 032

Faculty Council of Engineering and Technology
JADAVPUR UNIVERSITY, KOLKATA — 700032

Certificate of Approval

This is to certify that the thesis entitled “Intelligent Social Chatbot — Classifying
Intents and Identifying Entities for Generating Response” is a bona fide
record of work carried out by Aritra Nayak (University Registration No.: 140744 of
2017-2018, Examination Roll No.: M4CSE19012) in partial fulfillment of the
requirements for the award of the degree of Master Of Engineering in Computer
Science and Engineering in the Department of Computer Science and Engineering,
Jadavpur University and presented in a manner satisfactory to warrant its acceptance
as a prerequisite to the degree for which it has been submitted. It is understood that
by this approval the undersigned do not necessarily endorse or approve any statement
made, the opinion expressed or conclusion drawn therein but approve the thesis only
for the purpose for which it has been submitted.

Final Examination for Evaluation of the Thesis

Signature of Examiners

' Only in case the thesis is approved.

Declaration of Originality and Compliance of Academic Ethics

I hereby declare that this thesis contains literature survey and original research work
by the undersigned candidate, as part of her Master of Engineering in Computer
Science & Engineering.

All information in this document has been obtained and presented in accordance with
academic rules and ethical conduct.

I also declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

Name (Block Letters): ARITRA NAYAK

Exam Roll Number: M4CSE19012

Thesis Title: Intelligent Social Chatbot — Classifying
Intents and Identifying Entities for Generating

Response

Signature with date:

Acknowledgement

I would like to express my deepest and sincerest gratitude to my thesis guide cum
advisor, (Prof.) Dr. Dipankar Das, for his solicitous guidance towards my research
study. His knowledge and commitment to the project have been an endless source of
inspiration to me. Also I would like to thank several Open Source Courses which
helped me a lot in gaining knowledge on various related topics which played an
important part throughout my thesis work.

Finally, I would like to thank my family members, friends for their unconditional
support.

Abstract

The focus of the present thesis is to classify user input based on their intents for the
development of an intelligent chatbot. In addition, it also aims to understand the
entities of such intents so that they can be further employed for generating response to
the user. In order to develop a chatbot especially for railway domain, a proper labeled
dataset (user query versus intent class) is needed. Thus, a chatbot framework is
prepared using one of the most widely used global chat systems (like Facebook
messenger, Google assistant, telegram etc. along with a global server like heroku,
dialogflow system of Google and a database management system (e.g., MySQL
Workbench). The dataset is developed to train the intent classification model and can
be used later developing dialogue management tracker system. Two frameworks have
been used to develop the intent classification model, Convolution Neural Network
(CNN) and Long and Short Term Memory (LSTM). A comparative study of both is
discussed here. After intent classification model, an Entity Recognition model has been
proposed with the help of spaCy libraries to detect all the entities from user inputs.
Later, those intent values have been used to provide a response to the user by utilizing

a railway based API.

Contents

Chapters Page No.
Chapter 1: Introduction 2-11
1.1 | NLP — Dialogue and Discourse Processing 2-3
1.2 | Motivation 3
1.3 | Chatbot 4
1.3.1 | What is a chatbot ? 4
1.3.2 | Types of a chatbot 4
1.3.3 | How NLP helps to build a chatbot 5)
1.3.4 | Applications of chatbot 6
1.4 | Challenges in chatbot 6-8
1.4.1 | Context in chatbots 6-7
1.4.2 | User’s limited attention 7
1.4.3 | Chatbot Testing 7-8
1.4.4 | Viability of Data]
1.5 | Objectives 8
1.6 | Contributions 9
1.7 | Thesis Overview 9-11
1.7.1 | Overall Architecture 9-11
1.7.2 | Dataset Collection 11
1.7.3 | Intent Classification 11
1.7.4 | Entity Recognition and Response Generation 11
Chapter 2: Related Works 12-16
2.1 | Previous Contributions 12
211\ What is Turing Test? 13
2.1.2 | What Is Loebner Prize ? 13

Chapters Page No.

2.1.3 1 Official List of Winners of Loebner Prize 14-16

2.2 | Winning chatbots and Comparative Analysis 16
Chapter 3: Dataset Collection 17-35
3.1 | Existing Datasets 17-19

3.2 | Taxonomy of Intents and Entities 20

3.2.1 | Retrieval-based models 20

3.2.2 | Generative models 20

3.3 | Closed Domain vs. Open Domain 21

34| Restrictions of Previous Datasets 21
3.5 | Data Collection Framework 22-35

3.4 | Corpus Statistics 35
Chapter 4: Intent Classification 36-60
4.1 | Pre-Requisite 36-37
4.1.1 | Data Preparation 36-37

4.1.2 | Defining Model 37

4.1.3 | Making Predictions 37
42 | ONN based Intent Classification 38-49
421 Experiments & Results(CNN) 46-49
4.3 | LSTM based Intent Classification 49-59
4.3.1 | Experiments & Results(LSTM) 57-59

4.4 | Comparative Analysis 59
Chapter 5: Entity Recognition and Response Generation 60-69
5.1 | Entity Recognition 60-61
5.2 | spaCy framework and its application 62-65
53 Experiments and Results on Entity Recognition on 6566

Test Data

Chapters Page No.
5.4 | Response Generation 67-68
Chapter 6: Conclusion and Future Work 69-73
6.1 Conclusion 69
6.2 Future Work 70
6.3 References 71-73

Chapter 1:

Introduction

Instant messaging applications, which were started in early 90’s, became so popular as
they great ways to communicate one to one basis with few taps of our fingers. Soon
this informal way of communication was known as chats. From ICQ to AOL, Yahoo
Messenger to GTalk and WeChat to WhatsApp, Facebook messenger to Telegram,
Hike to Viber — instant messaging has toured a great journey on its own. Since last 25
years, chat services have become better and efficient with allowing us to send not just
text messages but sharing images, videos, locations, doc files, etc. Chatbot
Development is definitely going to help businesses to prosper as the potential
customers are going to get much relevant information on their hands in no time.
Repetitive questions, important information about any organization, business can be
communicated to end users very easily with the help of chatbot development. Using
chatbot, we can also reduce the manual intervention thus easing any business process

in an organization.

1.1 NLP — Dialogue and Discourse Processing

Every time user types something to a chatbot, the chatbot needs to get the intent of
the input strings, then after the identification of the intent, chatbot needs to respond
back. Before responding back there are several steps that occur in the backend. For
example, Natural Language Processing is what allows chatbots to understand your
messages and respond appropriately. When you send a message with “Hello”, it is the
NLP that lets the chatbot know that you've posted a standard greeting, which in turn
allows the chatbot to leverage its Al capabilities to come up with a fitting response. In
this case, the chatbot will likely respond with a return greeting. Without Natural
Language Processing, a chatbot can’t meaningfully differentiate between the responses
“Hello” and “Goodbye”. To a chatbot without NLP, “Hello” and “Goodbye” will both
be nothing more than text-based user inputs. Natural Language Processing (NLP)
helps provide context and meaning to text-based user inputs so that AI can come up

with the best response. During the conversation, sometimes it happens so, that chatbot
needs to refer to a previous input of the user to provide a correct response to the
current input of the user. Dialogue processing comes into play in this regards. If we
can assign a specific session to each intent, and if we can remember the parameters or
entities associated with that intent, we can use it later for dialogue tracker system
development.

1.2 Motivation

Chatbots are the future of our today’s messaging apps. Now-a-days, a robotic
conversational agent is able to communicate with people helping them in a number of
ways easing their lifestyle, is what chatbot development was started for. With the help
of Al, human computer interaction is now in a different level and chatbots are leading
its way to near future where we will be talking to bots, which will solve our day to day
issues with few taps of our fingers. In our modern days. Users exhibit different ranges
of motivations and patterns of use. An enormous variation in chatbot alternatives can
also be seen by exploring Facebook Messenger, which now has over 200,000 chatbots.
One type of chatbots help user accomplishing quick and specific tasks like checking
weather outside, organizing scheduled meetings, ordering food, flight booking. Another
stream of chatbots help organizing web contents and then providing user those

contents in a group wise manner according to user specific need.

For example, Microsoft launched Heston Bot[36], which focuses on food and cooking
opportunities as well as fashion. The global clothing company H&M launched a
chatbot to provide shopping suggestions based on photos from wusers’ personal
wardrobes. Another stream of chatbots supports more long-term relationships and
activities such as charitable giving, civic engagement, work, fitness, and personal
health. So, in these circumstances, we can expect that the ways in which people will
interact with conversational user interfaces in the future will change, resulting in new
user behaviors as well as new social norms and user expectations. Here, as the work
done, is a part of building a bot which will be able to provide information on trains, it
will be very helpful in current condition of our country where many people carry
smartphones in their pocket, but lack proper knowledge on trains. The main important
lesson learned up to current scenario is that chatbots are not a one-solution-fits-all
technology. People have multiple motivations, and the purposes for using a chatbot
can vary enormously. As such, there is a need for an appropriate range of use cases in
the chatbot context.

1.3 Chat-bot

A computer program designed to simulate interactive human-like conversation with
human users, especially over the Internet.

1.3.1 What is a Chat-bot?

A chatbot is a conversational agent that exploits NLP /ML technologies to engage

users in a natural language conversation to:

e Accomplish a task: Like information seeking (when is the next train to
Vizag?) or servicing a request (book me a ticket to a movie).
e Engage and entertain the user in some creative ways: Like “tell me a

joke” or “say something interesting about an actor.”

1.3.2 Types of Chat-bot (based on their goal)

= Normal chitchat: Social “hi hello” conversation. Ex: Natasha of hike, though
Natasha provides many relevant day to day information regarding sports,

politics, tech news etc.

= Task Completion: Ex — Play a song, adding some items to cart, paying

monthly bills etc.
* Question-Answering: Like IBM Watson.

* Recommendation system: Ex — Any bot working in a food joints, any

shopping malls etc.

No one had ever thought to use chat for the business purpose preciously, just because
they were supposed to be informal communications. But in developing countries like
India, people started using WhatsApp chats to order products and for getting services
locally. This inspired Facebook to introduce chatbots in Messenger, which meant that
to talk to the customer representative of the company you need not hold the line for
minutes. This is the most favorable advantage of the chatbot Development.

The chatbot is an Al based chat option, by which businesses can now make their own
chat representative for the Messenger to tackle the most reasonable queries by the
customers. Chatbot development creates chatbots which is nothing but an austere
software that interprets anything you type or say and accordingly respond by
answering or executing the command. Most popular example of a bot in chatbot

development currently is Apple’s Siri. But Facebook has taken a leap from these
personal bots by amalgamating two most popular technologies — instant messaging and
artificial-intelligence.

1.3.3 How NLP helps to build a chatbot

Natural Language Processing (NLP) is concerned with how technology can
meaningfully interpret and act on human language inputs. NLP allows technology such
as Amazon’s Alexa to understand what you're saying and how to react to it. Without
NLP, Al that requires language inputs is relatively useless.

Natural Language Processing is what allows chatbots to understand your messages and
respond appropriately. When you send a message with “Hello”, it is the NLP that lets
the chatbot know that you’ve posted a standard greeting, which in turn allows the
chatbot to leverage its Al capabilities to come up with a fitting response. In this case,
the chatbot will likely respond with a return greeting.

Without Natural Language Processing, a chatbot can’t meaningfully differentiate
between the responses “Hello” and “Goodbye”. To a chatbot without NLP, “Hello”
and “Goodbye” will both be nothing more than text-based user inputs. Natural
Language Processing (NLP) helps provide context and meaning to text-based user
inputs so that Al can come up with the best response.

Advanced NLP can even understand the intent of your messages. For example, are you
asking a question or making a statement. While this may seem trivial, it can have a
profound impact on a chatbot’s ability to carry on a successful conversation with a

user.

One of the most significant challenges when it comes to chatbots is the fact that users
have a blank palette regarding what they can say to the chatbot. While you can try to
predict what users will and will not say, there are bound to be conversations that you

would never imagine in your wildest dreams.

While Natural Language Processing (NLP) certainly can’t work miracles and ensure a
chatbot appropriately responds to every message, it is powerful enough to make-or-
break a chatbot’s success. Don’t underestimate this critical and often overlooked
aspect of chatbots.

1.3.4 Applications of chatbot

In recent days, chatbots are being implemented in many sectors be it in technical
websites, be it any customer service centric companies’ websites, or be it any android
apps where one can book a train, do recharges, bill payments etc. It is ideal to have a

chatbot if your business falls into any of the following categories:

* Serving many requests that are similar to each other
= Sells products that need low involvement

= [s in a highly competitive niche

» for Better Customer Experience

» for Conversational Commerce

= for Personal Assistance

= for Data Gathering and Analysis

1.4 Challenges in Chatbot

We are seeing revolution in chatbot development in the way customers interact with
business now-a-days. According to recent research, “47% of consumers are open to
buying items through a chatbot”. Thus, most of the customer-centric organisations
have implemented their business process in augmenting or building these virtual agents
and are attaching it to their websites. But the path towards this much spread adoption
of chatbots in every field of our lives is not at all picture perfect. There are many
pitfalls and roadblocks to overcome. So, they tend to overlook few critical aspects
during chatbot development. Here are 4 big challenges that companies face while
building their bots:

1.4.1 Context in chatbots:

The key to an intelligent chatbot is its proper association with its context of user input
and meaningful responses to the user, as conversation without any context would be
useless. The challenge is for companies is to develop and maintain the memory of bots
that can offer user specific responses. That’s when NLP comes into the picture and
overcome the challenge of understanding the depth of conversation; up-to an extent.
NLU, an underlying concept of NLP, try to read the databases and data sets when

bots are structured, in predefined sequential order and then converts it into a language
that users understand.

However, in real life, humans do not interact in a defined pre-specified order, as a
result intelligent slot filling, which stores the preferences of the regular users is the
alternative to maintain the memory of a bot effectively. This can ensures that our
virtual agents are not interacting in the same old predefined order but in a more
personalized fashion. Example:

User: Can you please tell me which flights from London are expected this evening
after six?

Bot: Sure, let me check

Bot: Here are the flights:
EK 201, EK 522

User: and which one’s tomorrow morning before twelve?

Bot: Sorry, can you please say your query again?

1.4.2 User’s limited attention:

Users, now, have very short time for their queries to be answered and expect fast
replies. It’s quite challenging for tech companies to develop chatbots, which holds
user’s attention till the end of conversation.

Building conversational UI is therefore important in exhibiting human like
conversations and better customer experiences. It initiates interactions to be more
social than being monotonous as well as technological in nature. The conversations as
a result, should be natural, creative and emotional in order for your chatbot to be
successful. In some cases, however a machine wouldn’t always render the same
empathy that a human could and this is when a human replacement should take care
of the user’s request.

1.4.3 Chatbot Testing:

Chatbot testing is another main challenge where most of the hardles lie. Chatbots are
continuously evolving to more intelligent ones due to its upgradation in natural
language models. Thus, it is more important to test chatbot’s accuracy. It will depend
on what type of method you want to examine.

e First method involves automated testing of chatbots. There are many
automation testing platforms like Zypnos, TestyourBot, Bot Testing, Dimon
etc. These platforms allow detailed reports of the results and coding of test

scripts, which could be run for all the test cases.

e The other method involves testing of conversational logic i.e. manual testing
executed by a closed group of testers. They act as users and check the bot for
all the unexpected slots possible. This method can be time consuming and
partially accurate. However, it has its own benefits that outrage automation, by

checking the logic against human conversations.

1.4.4 Viability of Data

There is no point of having lots of data, intelligent slot filling or technologically
advanced chatbot- if it actually doesn't deliver the USP of your organisation. It is vital
for a chatbot to not only be enriched with meaningful data that is matching our work
that needed to be done by our bot, It is also to be equipped to deliver the brand
identity to our target audience. In order to check the viability of our virtual agents we

should consider asking ourselves the following:

e Are our virtual agents delivering to the right audience?
e Does it offer business goals uniquely?
e How is it different from other chatbots?

1.5 Objectives

The main objective here is to build some models which will help in partial
development of the intelligent chatbot that will help commuters of India who travels in
trains. The chatbot will be able to provide all train related live informations to users.
For that, we aim for developing a dataset for training the stepping stone of the project
which is intent classification model, then using the parameter values of every user
input we will develop the dialogue manager. With the help of a entity recognizer we
will also be able to generate proper response to the user. So, at first, taking user’s
input into consideration, the chatbot will try to understand its intent and will be

providing response depending on user’s need.

1.6 Contributions

Our contributions towards building an information providing intelligent chatbot are

building the below models:

= Data Collection Framework

» Intent Classification Model

= Named Entity recognition model for slot filling
= Response Generation using web API

1.7 Thesis Overview

Dataset collection framework, intent classification model based on CNN and LSTM,
Entity Recognizer model and response generation utilizing railway based API are the

overview of the entire work done here.

1.7.1 Overall Architecture

The ML driven model learns the actions based on the training data provided (unlike a
traditional state machine based architecture that is based on coding all the possible if-
else conditions for each possible state of the conversation.) Here is a high level

overview of such an architecture for a chat-bot.

Chat bot architecture

NLU component

Hello (extract intent and ——intent and entities
entities) 1
Hi <name>, how can |
help you?
Tracker <> Slots
what is the weather looking like
2
fomoriow; Dialogue Mgmt (model predicts Database request /
its going to be mostly next_action based on previous URL request
cloudy with little rain X actions,action results, slots)
next action—J
how about day after?
its going to be sunny b Message
Generator (use
: pre-defined <—next action
O H i templates with
e [placeholders)

First, let’s see what all things it is needed to determine an appropriate response at any

given moment of the conversational flow?

We need to know the user’s intent—these are called as intents. Few examples of
intents are— ‘request weather’, ‘request restaurant’ etc., The intent in the above
example is ‘request weather’.

Here we need to know the specific intents of the request, for example—the information
we get asking questions like when? where? how many? to the user input etc., that
correspond to extracting the information from the user request about date, time,
location, number respectively. Here date, time, location, number are the entities.
Quoting the above weather example, the entities can be ‘date-time’ (user provided
information) and location (note—Ilocation need not be an explicit input provided by
the user and will be determined from the user location as default, if nothing is
specified). The intent and the entities together will help to make a corresponding API
call to a weather service and retrieve the results, as we will see later.

Now refer to the above figure, and the box that represents the NLU component
(Natural Language Understanding) helps in extracting the intent and entities from the

user request.
NLU component constitutes —

A supervised intent classification model that is trained on varieties of sentences as
input and intents as target. Typically, a linear SVM will be enough as an intent

classification model.

Entity extraction model-—This can be a pre-trained model like Stanford NLP library
(OR) it can be trained using some probabilistic models like CRF (conditional random
fields).

3. Now, since this is a conversational AI bot, we need to keep track of the
conversations happened thus far, to predict an appropriate response. For this purpose,
I need a dictionary object that can be persisted with information about the current
intent, current entities, persisted information that user would have provided to bot’s
previous questions, bot’s previous action, results of the API call (if any). This
information will constitute our input X, the feature vector. The target y, that the
dialogue model is going to be trained upon will be ‘next action’ (The next action can
simply be a one-hot encoded vector corresponding to each actions that we define in our

training data).

Then, that brings me to the next question—how do we get the training values for my

feature vector, input X7

10

Getting the information regarding the intent and entities is straightforward as I have
seen from the NLU component.

Getting the remaining values (information that user would have provided to bot’s
previous questions, bot’s previous action, results of the APT call etc.,) is little bit tricky
and here is where the dialogue manager component takes over. These feature values
will need to be extracted from the training data that the user will define in the form
of sample conversations between the user and the bot. These sample
conversations should be prepared in such a fashion that they capture most of the
possible conversational flows while pretending to be both a user and a bot.

1.7.2 Dataset Collection

For this, a data collection framework has been generated using Facebook Messenger,
Dialogflow, Heroku server and my SQL Workbench which helps to build a labeled
dataset.

1.7.3 Intent Classification

Using the labeled data that we have got from the data collection framework, we
trained two intent classification models, based on CNN and LSTM respectively. Using
basic CNN and LSTM model, two intent classification models have been introduced
which will be able to classify user input based on their intent, thus embarking the first
step of the chatbot development.

1.7.4 Entity Recognition Model and Response Generation

After getting the right intent of a user input, chatbot does need the entity parameter
values (sometimes called ‘slot” values) of that intent. What are intents and its entity
values are already discussed above. To get the proper values of each entity of the
intent, we need a proper entity recognition model. Here we have used an entity
recognition model provided by SPACY and using it, we are able to get out the entity
parameters values. Then, using the entity values, chatbot will be able to generate the
appropriate response to the user. The entity values are also very important for
developing the dialogue tracker system. As discussed above, context monitoring is a
major challenge in modern day’s chatbot systems. So, entuty recognition model plays
an important developing a personalized chatbot.

11

Chapter 2:

Here we will discuss some research works that have been done over recent years.

Related Work

2.1 Previous Contributions

Starting in 1966 with the introduction of the ELIZA chatbot, a great deal of effort has
been devoted towards the goal of developing a chatbot system that would be able to
pass the Turing Test. These efforts have resulted in the creation of a variety of
technologies and have taken a variety of approaches. Now I will discuss and compare
the different technologies used in the chatbots which have won the Loebner Prize

Competition, the first formal instantiation of the Turing Test.

The very first known chatbot was Eliza, which was developed in 1966. Its goal was to
behave as a Rogerian psychologist. It used simple pattern matching and mostly
returned users sentences in a form of questions. Its conversational ability was not very
good, but it was enough to confuse people at a time when they were not used to
interact with computers and to start the development of other chatbot systems. The
very first online implementation of Eliza was done by the researches at Jozef Stefan

Institute in Ljubljana, Slovenia and is still availablel for testing.

The first such a system that was actually evaluated using some sort of Turing Test
was PARRY (Colby, 1975). Parry was designed to talk as a paranoid person. Its
transcripts were given to psychiatrists together with transcripts from real paranoia
patients for comparison. The psychiatrists were able to make the correct identification
only 48% of the time.

Here in most of the bots, pre-specified responses were taken into consideration. Most of
them were able to give a specified set of responses stored in a database. But in today’s
Al world, we want a chatbot that will try to be more human like.

12

2.1.1 What is Turing Test?

e Alan Turing proposed the Turing Test as a replacement for the question “Can

machines think?”

¢ Turing's aim is to provide a method to assess whether or not a machine can
think.

® Also known as the Imitation Game.

e (Conversation with a chatbot should be indistinguishable compare to a

conversation with human.

® The test: A man (A), a woman (B) and an interrogator (C) chat. The objective
of the interrogator is to determine which of the other two is the woman. If a
machine (bot) chats instead of A or B and fools the interrogator, it has passed

the Turing test.

2.1.2 What Is Loebner Prize?
= The Loebner Prize is an annual competition in artificial intelligence that awards
prizes to the computer programs considered by the judges to be the most
human-like.
= Based on standard Turing Test.

In each round, a human judge simultaneously holds textual conversations with a
computer program and a human being via computer.

13

2.1.3 Official List of Winners of Loebner Prize

Year Chatbot Technologies Language Trick

1991 PC Therapist III parsing, pattern matching, non sequitur, canned responses
(Weintraub, 1986) word vocabulary,
remembers sentences
1992 PC Professor
(Weintraub, 1986)

1993 PC Politician
(Weintraub, 1986)

1994 TIPS (Whalen, Pattern matching, database = Model of personal history
1994; Hutchens, like system
1997)

1995 PC Therapist Same as in 1991 Same as in 1991

(Weintraub, 1986)

1996 HeX (Hutchens, Pattern matching, Markov database of trick sentences,
1997) chain models to construct Model of personal history, not
some replies repeating itself
1997 CONVERSE Statistical parser, pattern Proactivity
(Levy, 1997) matching, modular with

weighted modules, WordNet
synonyms, list of proper
names, ontology, database
for storing facts

1998 Albert One Pattern matching, Proactive monologues
(Garner, 1995) hierarchical composition of
other chat bots (Eliza,
Fred,Sextalk)

14

Year Chatbot Technologies Language Trick

1999 Albert One Pattern matching, hierarchical composition p - 1
roactive monologu
(Garner, 1995) of other chat bots (Eliza, Fred,Sextalk) v SRR
2000 A.LICE AIML (Artificial Intelligence Mark-up Language — advanced
(Wallace, 2003) pattern matching)

2001 ALICE
(Wallace, 2003)

2002 Ella (Copple, Pattern matching, phrase normalization, Monologues, not
2009) abbreviation expansion, WordNet repeating itself,
identify gibberish,
play knock-knock

jokes
2003 Jabberwock Parser, pattern matching — simpler than AIML, Markov Chains,
(Pirner, 2003) Context free grammar (CFG)
2004 A.LICE Same as in 2000
(Wallace, 2003)
2005 George Based on Jabberwacky chatbot. No pattern matching or scripts.
(Carpenter, 2006) Huge database of people“s responses.
2006 Joan (Carpenter,
2006)
2007 UlrtraHAL by Combination of VB code and pattern matching scripts
Robert Medeksza*
2008 Elbot (Roberts, Commercial NLI system
2007)*
2009 Do-Much-More Commercial property of Intelligent Toys Ltd.

(Levy, 2009)*

15

Year

2010

2011

2012

2013

2014

2015

2016

2017

Chatbot

Suzette (Wilcox, 2011)

Rosette (Wilcox, 2011)

Chip Vivant (Embar, 2011)

Mitsuku(Steve Worswick)

Rose(Bruce Wilcox)

Rose(Bruce Wilcox)

Mitsuku(Steve Worswick)

Mitsuku(Steve Worswick)

Technologies Language Trick

ChatScript (AIML successor. Concepts,
triples, variables)

Not publicly disclosed. Common ontology
and Al, responses taken from ChatScript
(but not in ChatScript format or engine).

Based On AIML technology

Same as Rosette(2011), but an improved
version.

---Same as above---

Based On AIML technology

---Same as above---

Note: The winners marked with asterisk (*) are commercial programs and thus their

technologies and internal structure is not publicly available.

2.2

Regardless of the fact that none of the existing chatbots were able to pass the Turing
Test, each there is a winner of the Loebner Prize Competition that appears most
human from all the competing chatbots. The list of each year’s winners together with
the used technologies can be seen on the Table 1. We tried to separate the technology
part into the technical approaches and algorithms and the language and approach
tricks used to confuse judges on the Turing Test. The technologies are explained in the
following chapters in more detail. The winners marked with asterisk (*) are
commercial programs and thus their technologies and internal structure is not publicly

available.

16

Winning chatbots and Comparative Analysis

Chapter 3: Dataset Collection

Here we have built a framework wusing facebook messenger, dialogflow,heroku
server/ngrok server,dbms system by which we have collected the dataset required for
training our intent classification model and entity recognition model for generating

proper responses.

3.1 Existing Datasets

3.1.1 Reddit Dataset:

https://www.reddit.com/r/datasets/comments/3bxlg7/i have every publicly availa
ble reddit comment/?sh=69e4fee7&st=j9udbxta

The dataset is ~1.7 billion JSON objects complete with the comment, score, author,
subreddit, position in comment tree and other fields that are available through
Reddit's API. It's now a torrent. This can give me an opportunity to
examine the data. The file is structured with JSON blocks delimited by

new lines (\n).

Example JSON Block:

n.n non

{"gilded":0,"author_flair_text":"Male","author_flair css_class":"male", "retrieved on":1
425124228, "ups":3,"subreddit_id":"t5 2s30g","edited":false,"controversiality":0,"parent
id":"t1_cnapnOk","subreddit":"AskMen","body":"l can't agree with passing the blame,
but I'm glad to hear it's at least helping you with the anxiety. I went the other
direction and started taking responsibility for everything. I had to realize that people
make mistakes including myself and it's gonna be alright. I don't have to be shackled
to my mistakes and I don't have to be afraid of making them.
""created utc':"1420070668","downs":0,"score":3,"author":"TheDukeofEtown","archived
":false,"distinguished":null,"id":"cnasd6x","score _hidden":false,"name":"t1 cnasd6x","link
_id":"t3_2qyhmp'}

17

https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_available_reddit_comment/?sh=69e4fee7&st=j9udbxta
https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_available_reddit_comment/?sh=69e4fee7&st=j9udbxta

3.1.2 rDany Chat Dataset :

https://www.kaggle.com/eibriel /rdany-conversations

Context: It is a virtual companion conversation dataset, capable of holding long and
interesting conversations. But the lack of a good technique, and good datasets
apparently is holding the advances of Al in that sense. Chatbots don't have
personality, nor context awareness, and datasets used to train them are just pair of
question/answers, or IT conversations. This dataset is being built using rDany bot for
Telegram, Kik and Messenger.

This bot have a personality: Candid, True, Fun, Optimistic, Empathic, Gender
neutral, Likes art

And knows a very limited word, its room, Wikipedia, and a schematic view of the
world. And speaks Spanish (native), English (with some errors), and other languages
(using automatic translation). You can learn more about it on rDany's Telegram
channel: https://t.me/rDany

3.1.3 Ubuntu Dialogue Corpus — (26 million turns from natural two person
dialogues)

https://www.kaggle.com /rtatman/ubuntu-dialogue-corpus

This corpus of naturally-occurring dialogues can be helpful for building and evaluating

dialogue systems.

The new Ubuntu Dialogue Corpus consists of almost one million two-person
conversations extracted from the Ubuntu chat logs, used to receive technical support
for various Ubuntu-related problems. The conversations have an average of 8 turns
each, with a minimum of 3 turns. All conversations are carried out in text form (not

audio).

The full dataset contains 930,000 dialogues and over 100,000,000 words and is
available here. This dataset contains a sample of this dataset spread across .csv files.
This dataset contains more than 269 million words of text, spread out over 26 million

turns.

Folder : The folder that a dialogue comes from. Each file contains dialogues from one
folder .

dialoguelD : An ID number for a specific dialogue. Dialogue ID’s are reused across
folders.

Date : A timestamp of the time this line of dialogue was sent.

18

https://www.kaggle.com/eibriel/rdany-conversations
https://t.me/rDany
https://www.kaggle.com/rtatman/ubuntu-dialogue-corpus
http://dataset.cs.mcgill.ca/ubuntu-corpus-1.0/

e From : The user who sent that line of dialogue.

e To : The user to whom they were replying. On the first turn of a dialogue, this field is
blank.

e Text : The text of that turn of dialogue, separated by double quotes (“). Line breaks
(\n) have been removed.

3.1.4 Deep NLP dataset in NLP

https://www.kaggle.com/samdeeplearning /deepnlp

Contains:

= Sheet 1.csv contains 80 user responses, in the response text column, to a
therapy chatbot. Bot said: 'Describe a time when you have acted as a resource
for someone else'. User responded. If a response is 'not flagged', the user can
continue talking to the bot. If it is 'flagged’, the user is referred to help.

= Sheet 2.csv contains 125 resumes, in the resume text column. Resumes were
queried from Indeed.com with keyword 'data scientist', location 'Vermont'. If a
resume is 'not flagged', the applicant can submit a modified resume version at a
later date. If it is 'flagged’, the applicant is invited to interview.

We can do:

= Classify new resumes/responses as flagged or not flagged.

» There are two sets of data here - resumes and responses. Split the data into a
train set and a test set to test the accuracy of your classifier. Bonus points for
using the same classifier for both problems.

19

https://www.kaggle.com/samdeeplearning/deepnlp

3.2 Taxonomy of Models in Chatbot

3.2.1 Retrieval-based models (easier)

It uses a repository of predefined responses and some kind of heuristic to pick an
appropriate response based on the input and context. The heuristic could be as simple
as a rule-based expression match, or as complex as an ensemble of Machine Learning
classifiers. These systems don’t generate any new text, they just pick a response from a
fixed set.

3.2.2 Generative models (harder)

It doesn’t rely on pre-defined responses. They generate new responses from scratch.
Generative models are typically based on Machine Translation techniques, but instead
of translating from one language to another, we “translate” from an input to an output
(response).

Both approaches have some obvious pros and cons. Due to the repository of
handcrafted responses, retrieval-based methods don’t make grammatical mistakes.
However, they may be unable to handle unseen cases for which no appropriate
predefined response exists. For the same reasons, these models can’t refer back to
contextual entity information like names mentioned earlier in the conversation.
Generative models are “smarter”. They can refer back to entities in the input and give
the impression that you're talking to a human. However, these models are hard to
train, are quite likely to make grammatical mistakes (especially on longer sentences),
and typically require huge amounts of training data.

Deep Learning techniques can be used for both retrieval-based or generative models,
but research seems to be moving into the generative direction. Deep Learning
architectures like Sequence to Sequence are uniquely suited for generating text and

researchers are hoping to make rapid progress in this area. However, we're still at the
early stages of building generative models that work reasonably well. Production
systems are more likely to be retrieval-based for now.

20

http://arxiv.org/abs/1409.3215

3.3 Closed Domain vs. Open Domain

In an open domain (harder) settings, the user can take the conversation with
chatbot anywhere,any time in any context. There isn’t necessarily a well-defined goal
or intention of the chatbot to accomplish. Conversations on social media sites like
Twitter and Reddit are typically open domain — they can go into all kinds of
directions. The infinite number of topics and the fact that a certain amount of world
knowledge is required to create reasonable responses makes this a hard problem.

In a closed domain (easier) settings, the space of possible inputs and outputs is
somewhat limited because the system is trying to achieve a very specific goal.
Technical Customer Support or Shopping Assistants are examples of closed domain
problems. These systems don’t need to be able to talk about politics, they just need to
fulfill their specific task as efficiently as possible. Sure, users can still take the
conversation anywhere they want, but the system isn’t required to handle all these
cases — and the users don’t expect it to.

3.4 Restrictions of Previous Datasets

As we have seen, all the previously discussed labeled datasets and all the available
open source datasets are not suitable for our specific chatbot that are destined to
provide information on trains to daily commuters. For intent classification model, a
proper labeled dataset is needed for training the model. From a train related queryof
user, we are only able to get the slot values that will be helpful while building the
entity recognition model, dialogue tracker model as well as for response generation
part.

21

3.5 Data Collection Framework

For this We have developed a framework of Chabot using Facebook messenger
application(we can use any popular messaging platform), Google’s Dialogflow System,
Heroku Server, MySQL Workbench and node.js for the coding part. As we have
needed the labeled data from train information perspective, a Chabot was needed.
Many chatbots leverage Natural Language Processing (NLP) to interpret the intent of
a customer’s input, allowing the bot to give an accurate response. Implementing NLP
in our bot can be pretty difficult, but there are several platforms that make it much
easier. The steps that I followed to develop this Chabot are as follows :

Note : For this process, we need to have, facebook application(in mobile or PC),
Node.js, MySQL Workbench pre-installed in PC, a properly running server.

® we installed Node.js and npm in our system.

o We created a server that will be provided as a webhook when setting up the
bot. For server I used heroku. One can use the free ngrok server, but it has
limitation on time of use. The webhook provides the core of your chatbot
experience as it is how your bot gets notified of the various interactions and
events that happen, including when someone sends a message.

e We created a new directory for the bot we will build, call it sample-bot or
whatever you like. Inside the newly created directory, run the following
command in the terminal to initialize the project with a package.json file.

npm init

o We filled out the necessary information in the prompt that follows, then create
an src folder at the root of your project directory.

e We then, setup Ezpress as our web server and body-parser to parse incoming
request bodies. We installed them as dependencies first:

npm install body-parser express

22

o We created an indez.js file in the src directory and paste in the following code

to setup Express on port 5000. We can also choose another port if 5000 is

already in use on our machine.

const express = require

const bodyParser = require('body-parser’

const app = express

app.use(bodyParser.json

app-use(bodyParser.urlencor

app.listen(5008

o We saved the file and run node src/index.js from

directory to start the server.

e [f everything goes correct and the dependencies are
see the following message printed out in our terminal.

'express’

extended

true

=> console.log('Express ser

ver is listening on p

2
rt
un
[an]

the root of your project

installed properly, we can

Set up Facebook verification endpoint

During setting up a webhook for our chatbot, Facebook requires a verification

step to ensure that the webhook is working genuinely. This is how it works:

1. We create a token which is simply a random string of our choice and hardcode it to

our webhook.

2. We provide this token when subscribing our webhook to receive events for our bot.
3. Facebook sends a GET request to our webhook with the token we have provided in

the previous step in the hub.verify parameter of the request.

23

Our webhook will verify that the token is correct and send the appropriate
response back to Facebook.
Finally, Messenger will subscribe the webhook to the bot.

o We create a file called verify-webhook.js in the src directory and paste in the

following code:

const verifyllebhook = (req, res) =»
let VERIFY_TOKEN = "pusher-bot’
let mode = req.query| "hub.mode’

let token = req.query|["hub.verif

let challenge = req.query["hub.challenge

if (mode && token === VERIFY_TOKEN
res.status(200).send(challenge
else

res.sendStatus (403

module.exports = verifylWebhook

e Here the token is set to pusher-bot in this example. We can set it to anything
we like, but we need to make sure to take note of it as we will need it later
when setting up our app on Facebook Messenger. Next, set up the endpoint
that will receive events from the Facebook messenger. Add the following code to

your index.js file:

const verifyWebhook = regquire(’./verify-webhook’

app.get('/", verifyllebhook

Set up a Facebook application

o We set up a facebook page and a particular facebook app that uses messenger

services, then connect between them.

a d gra] F

Create a New

App ID

Cancel Create App ID

24

Once done, we go to the dashboard of the app, just created. Next, we need to add a
product to our app. Scroll down the page a bit and find the Messenger option then
click the Set Up button. This will redirect you to the Messenger Platform.
Once there, in the “Token Generation” section and connect your app to a Facebook
Page. This will generate a Page Access token that we will make use of later.

Token Generation

Page token is required to start using the APIs. This page token will have all messenger permissions even if your app is not
approved to use them yet, though in this case you will be able to message only app admins. You can also generate page tokens
for the pages you don't own using Facebook Login.

Page Page Access Token

Sample Bot ~ EAAghLzgZ CMfEBA]NtS

Create a new page

Next, in the Webhooks section, we click on Setup Webhooks. A popup window
appears and we fill that as below.

In the Callback URL field, add the URL that was provided by ngrok in the previous
step (the HTTPS version). Add the token we have created in verify-webhook.js in the
verify token field (‘pusher-bot’ in my case) then
select messages and messaging postbacks under Subscription Fields.

New Page Subscription

Callback URL
https:/f4fa50d65.ngrok.io

Verify Token
pusher-bot

Subscription Fields

¥ messages ¥ messaging_postbacks messaging_optins
message_deliveries message_reads messaging_payments
messaging_pre_checkouts messaging_checkout_updates messaging_account_linking
messaging_referrals message_echoes messaging_game_plays
standby messaging_handovers messaging_policy_enforcement
Learn more

Cancel RCHELTRET

25

We hit Verify and Save. This will verify that the provided token matches the one in
our code and save our webhook. Next, we need to subscribe our page to receive
webhook events as shown below.

Webhooks Edit events

To receive messages and other events sent by Messenger users, the app should
enable webhooks integration. @ Complete

Selected events: messages, messaging_postbacks

Select a page to subscribe your webhook to the page events | sample Bot * m
Subscribed pages: Sample Bot

Set up Dialogflow integration :

* We go to dialogflow website and open up a free account. After exposing our
server to the web, we start the dialogflow integration. In our bot, all the NLP
tasks,that are required, are done by dialogflow.

® (lick on the Create Agent button. Give your agent a name and fill in the

remaining fields, then hit the C****REATE button. Dialogflow should
redirect you to the main page of the agent.

sample-bot CREATE

e Dialogflow has a feature that gives our bot the ability to have simple
conversations with users without writing any code. On the sidebar of the page,
we click the Small Talk option and enable it for our bot.

26

’ Dialogflow Small Talk _—r SAVE

Entities
Your agent can learn how to support small talk without any extra development. By default, it will
Fulfillment respond with predefined phrases. Use the form below to customize responses to the most
popular requests
Integrations User: How are you?
Agent: Wonderful as always. Thanks for asking
Training User: You're so sweet.
Agent: Thanks! The feeling is mutual.
History
. Enable
Analytics &
Small Talk Customization Progress 0%
Prebuilt Agents .
About agent 0%
3} SmallTak
0%
> Docs Courtesy
> Forum
Emotions 0%
(3) Support

e Before we integrate Dialogflow with our bot, we need to set up authentication
first.
To do this, go to agent’s settings. Under Google Project, click on the service
account name. This will open your Google Cloud Platform service account’s

page.

Project ID sample-bot-835d0 (E Z | Actior e?)

Service Account dialogflow-xqvsod@ Ae—

e We see a Dialogflow Integration service account in the list of accounts.We
click on the three dots menu on the right and select Create Key. Leave the
file format as JSON and click Create. This will download a JSON file to your
computer. Afetr openning the JSON file with our favorite text editor, we only
need two of the values: private key and client email. Store these values as
environmental variables before proceeding.

e We can use the dotenv package to load environmental variables from a .env file

into process.env.

npm install --save dotenv

¢ And add the following line at the top of index.js

27

https://dillinger.io/

require(‘dotenv’).config({ path: "variables.env' });

Then create a variables.env file in the root of our project directory. We should
add this file to our .gitignore so that we do not commit it to our repository by
accident. Here’s how our variables.env file should look like:

FACEBOOK_ACCESS_TOKEN=EAAghlLzgZCMfEBAINtS. ..

DIALOGFLOW_PRIVATE_KEY="----- BEGIN PRIVATE KEY----- Wn<KEY>Y\n-----
END PRIVATE KEY----- \n™

DIALOGFLOW _CLIENT _EMATL=foo@<PROJECT_ID>.iam.gserviceaccount.com

Remember the Page Access Token received from Facebook earlier? Don’t forget
to add it to our variables.env file as shown above.
Token Generation
Page token is required to start using the APIs. This page token will have all messenger permissions even if your app is not

approved to use them yet, though in this case you will be able to message only app admins. You can also generate page tokens
for the pages you don't own using Facebook Login.

Page Page Access Token

Sample Bot ~ EAAghLzgZ CMfEBA]NtS

Create a new page

The next step is to use this feature in our messenger bot. Dialogflow provides
an SDK for Node.js which we can add to our project by running the following
command:

npm install --save dialogflow

Also, grab node-fetch so that we can use that to send requests to the Facebook
API:

npm install --save node-fetch

Next, we create a file called process-message.js in our src directory and paste in
the following contents:

28

const fetch = require('node-fetch');

// You can find your project ID in your Dialogflow agent settings
const projectld = ""; //https://dialogflow.com/docs/agents#settings
const sessionld = '123456";

const languageCode = 'en-US';

const dialogflow = require('dialogflow');

const config = {

credentials: {

private key: process.env.DIALOGFLOW PRIVATE KEY,
client_email: process.env. DIALOGFLOW _CLIENT EMAIL

}
h

const sessionClient = new dialogflow.SessionsClient(config);
const sessionPath = sessionClient.sessionPath(projectld, sessionld);

// Remember the Page Access Token you got from Facebook earlier?
// Don't forget to add it to your "variables.env" file.
const { FACEBOOK_ACCESS_TOKEN } = process.env;

const sendTextMessage = (userld, text) => {
return fetch(
“https://graph.facebook.com/v2.6 /me/messages?access__token=${ FACEBOO
K_ACCESS_TOKEN},

{

headers: {

'Content-Type': 'application/json',

I3

method: '"POST",

body: JSON.stringify({

messaging_type: 'RESPONSE',

recipient: {

id: userld,

2

message: {

text,

2

29

module.exports = (event) => {
const userld = event.sender.id;
const message = event.message.text;

const request = {

session: sessionPath,
queryInput: {

text: {

text: message,

languageCode: languageCode,

}
}
h

sessionClient

.detectIntent(request)

.then(responses => {

const result = responses|0].queryResult;

return sendTextMessage(userld, result.fulfillmentText);
1))

.catch(err => {

console.error('"ERROR:', err);

s
}

e Note: find our agent’s project ID in the Dialogflow settings and enter it as the

value of projectld above.

30

https://dialogflow.com/docs/agents#settings

' Dialogflow sample-bot m

sample-bot

Intents
Entities '

Fubfillment

Integrations

Training
Hstory e r \

Analytics

sample:

Prehuilt Anents

If we look at the code in process-message.js, we will see that we passed the text
message received from Facebook Messenger to Dialogflow. We can then extract
the matching response from Dialogflow and send the result back to Messenger.
To receive message events from Facebook, we need to add the following to
our index.jsfile:

const messageWebhook = require('./message-webhook');

app.post('/', messageWebhook);

We create the message-webhook.js file in our src folder then paste in the
following code:

const processMessage = require('./process-message');

module.exports = (req, res) => {
if (req.body.object === "page') {
req.body.entry.forEach(entry => {
entry.messaging.forEach(event => {
if (event.message && event.message.text) {
processMessage(event);

}
Di
H;

res.status(200).end();

}
%

31

e Now we can go ahead and test our bot! We can send simple messages like
“What’s up?”, or “How are you” and we will get replies from the bot. These
responses are from the Small Talk feature we enabled above.

230 T 4006:34

Sample Bot

MANAGE
Typically replies i @

. Sample Bot

. 0people like this

You are now connected. Tap the v to
manage messages.

@ Feeling wonderful!
@ Agreed! ®

Onm ¢ . © i

Create our own chatbot intents

Our bot’s ability to make small talk is all well and good, but that’s probably not what
our customers want. To add functionality to our bot, We need to create intents. We
can read more about intents on the Dialogflow website, but the gist of it is that it
helps we map a user’s request with the appropriate response.

To start, locate the ‘Intents’ option on the left and click ‘Create Intent’. We need to

give our intent a name. We’ll call mine ‘about-pusher’.

* about-pusher SAVE
Contexts @ v
Events @ v

¢ Now under Training phrases, we need to provide examples of how users may
express their request in natural language. The more examples you provide, the

more accurate our bot becomes at matching the request with the correct intent.

32

https://dialogflow.com/docs/intents

Training phrases @ Q S

"

9 How does Pusher work
93 What does Pusher dc
99 Talk to me about pusher

99 Whatis Pusher

® Once we have populated the training phrases, we need some responses. These
are the replies that will be sent to our bot when this intent is matched. We can

hit the Save button at the top of the page after adding a few responses.

Responses @

DEFAULT 300GLE ASSISTANT +
Text response ® 0
1 Pusher helps you easily build scalable in-app notifications, chat, realtime graphs, geotracking and more in your web & mobile apps with our hosted pub/sub
messaging API
2 Pusher is the category leader in delightful APis for app developers building communication and collaboration features
3
ADD RESPONSES

B Set thisintent as end of conversation @

e Finally, try it out in Messenger. It should work just fine.

Tell me about Pusher

Pusher helps you easily build
scalable in-app notifications,
chat, realtime graphs,

geotracking and more in your

web & mobile apps with our
’ hosted pub/sub messaging API. &

O B WM & a © e

33

In dialogflow we have created all the intents that are required for our actual

project. And

we have also developed the entities for those intents in a proper

manner so that we can get the slot values accordingly.

Under every intent, training phrases can be added, so that messenger bot can

be well equipped for handling user responses.

Our created intents specific to our task are as below:

@ Dialogflow Intents

Railway_BoT -

Qy

E [— + [1 Default Fallback Intent

Entities
Knowledge <2
Fulfillment

Integrations

Training
History

Analytics

Prebuilt Agents

Small Talk

® Default Welcome Intent

® Live_Train_StatusByNumber
@® PNR_Status

® Seat_availability

® Train_Between_Stations

@ Train_Fare_Enquiry

® Train_Info_ByName

® Train_Info_ByNumber

® Train_Route

How training phrases have been added for an intent manually is shown below:

* Train_Between_Stations SAVE

Vel wr A

Training phrases @ Searchtraining phre & A

”

”

”

”

”

”

|add user expression

what are the trains that run between howrah and new jalpaiguni rail stations on tuesday?
On thursday, which trains run from howrah to jammu-kashmir ?

provide the names of the trains that run from sealdah to barasat on saturday

Please help me getting the trains that run between howrah and durgapur on thursday.
provide the names of the trains that run from howrah to barasat on saturday

Give me the train details which run from bandel to durgapur on wednesday.

Give the train names that run from howrah to bandel on saturday

what are the trains that run between hwh and njp on sunday?

34

e Entities of every intents need not be same, We have maintained all the possible
entities like below in dialogflow :

Q

@ Day_Of_week
@ Station_Mame
@ Train_Class

@ train_name

@ Train_Quota

(@ Train_Type

Intent vs entities details :

e Live Train StatusByNumber < trainno>

e PNR_Status <pnrno>

® Seat availability <trainno, stnfrom, stnto, quota, class, date>

e Train Between Stations<source, dest, day>

e Train Fare Enquiry<trainno, source, dest, age, preff, quota, date>
e Train Info ByName<train name>

¢ Train Info ByNumber<trainno>

e Train Route<trainno>

We have also maintained possible entity values under every entity name in dialogflow

as shown above.

3.6 Corpus Statistics

We have collected atleast 100 sentences/user inputs per intent class. We have also
taken account of the parameter values or we may call the entity values of each user
input under their intent class.

35

Chapter 4: Intent Classification Model

An important component of chatbot is intent classifier model. We all know that
chatbots are day to day helper for us in our lives. Suppose we have an assistant bot and
we tell the bot to ‘book a veg restaurant’. Now, here our assistant know how to respond
for that query because it has the brain that is trained for identifying the sole intent of
the query. In a similar manner, we trained our chatbot to respond for a particular
query. So in case of chatbots, in order to make them respond according to the users
query, we need an “intent classification” model and the categories in which a chatbot
responds, are known as “intents”.

In other words, for example, if we have asked “for booking a cab” then it will respond
under that intent category and if we would have asked for “booking a flight” then it will
respond under a different intent category and so on.

4.1 Pre-Requisite

4.1.1 Data Preparation

Here we need a labeled dataset where, in the first column we have “User input”, in the
second column we have the “intent name” that is associated with that particular
“User input”, and in the third column we have the entity(s) values that will help in
building Entity Recognition model later. For now, we need the first two columns of the
dataset.

In the field of NLP, data preparation is the most deciding factor. In case of our present
work, we have simplified the data as much as possible, which in turn, gives the intent

classification model a help, to be trained easily and in a faster manner.

e Data Cleaning - “Data is like crude. It’s valuable, but if unrefined it cannot
really be used.”(by Clive Humby, UK Mathemetician and architect of Tesco’s

36

4.1.2

Clubcard, 2006)[1] As we are using raw data, it has been cleaned beforehand.
Thus, we removed every punctuation, special characters and all the stop words
using vastly used NLTK toolkit’s standard functions|2].

Tokenization is done afterwards, so that all the sentences are segmented into
words. After this words were converted into lowercased.

Lemmatization is followed after that. “Lemmatisation (or lemmatization) in
linguistics, is the process of grouping together the different inflected forms of a

word so they can be analyzed as a single item.” For example :

lemmatizer.lemmatize("cats") ==> cat
lemmatizer.lemmatize("churches") ==> church
lemmatizer.lemmatize("abaci") ==> abacus

Encoding — After data cleaning, we prepared the lists of words of sentences.
To convert these words into indexes, we use them as input to the Tokenizer.
This is called Input Encoding. After this, we used padding to make them of
equal length so that they can be used in the model. For outputs, same
procedures have been followed. Indexing of the intents was followed by
tokenization. After indexing all the intents, one hot encoding was carried out, so
that they can be fed to the intent classification model.

Training and Validation Set — When all the data is ready for the model,
the final step is to split the dataset into training and validation sets. Here we
divided the dataset into 80 % of training and 20 % of validation sets
respectively. Now all we have to do is to develop a model framework and fed this
data into it.

Defining Model

We have used CNN and LSTM model both, so that we can do a comparative analysis
later. Detailed descriptions on CNN and LSTM are discussed later part of the thesis.
The framework that we have implemented here, are standard CNN and LSTM model.

4.1.3

Making Predictions

By giving the input text into above function, we got the confidence values of each

intent classes associated with each of them. The highest confidence value associated

intent class is the resultant intent class of that input sentence.

37

http://ana.blogs.com/maestros/2006/11/data_is_the_new.html
https://keras.io/preprocessing/text/#tokenizer

4.2 CNN based Intent Classification

Deep neural networks (DNN) have revolutionized the field of natural language
processing (NLP). Convolutional neural network (CNN) and Recurrent neural network
(RNN) are the two main types of deep neural architectures that are widely explored to
handle various NLP tasks. CNN is supposed to be good at extracting position-
invariant features and RNN at modeling units in sequence. The state of the art on
many NLP tasks often switches due to the battle between CNNs and RNNs. This work
is the first systematic comparison of CNN and RNN on a wide range of representative
NLP tasks, aiming to give basic guidance for the selection of a network.

The idea of wusing a CNN to classify text was first presented in the
paper “Convolutional Neural Networks for Sentence Classification” by Yoon
Kim,2014.[3]

Representation :

One of the central intuitions about this idea is to see our documents as images. But
let’s discuss it in a detailed manner. Let us say we have a sentence and we have max-
length = 70 and embedding size = 300. We can prepare a matrix of numbers with the
shape 70x300 to represent this sentence. For images, we also have a matrix where
individual elements are pixel values. Instead of image pixels, the input to the tasks is
sentences or documents represented as a matrix. Each row of the matrix corresponds

to one-word vector.

Convolution Idea: While for an image we move our convolution filter horizontally as
well as vertically, for text we fix kernel size to [filter size x embed size], i.e. (3,300) we
are just going to move vertically down for the convolution taking look at three words
at once since our filter size is 3 in this case. This idea seems right since our convolution
filter is not splitting word embedding. It gets to look at the full embedding of each
word. Also, one can think of filter sizes as unigrams, bigrams, trigrams, etc. Since we
are looking at a context window of 1,2,3, and 5 words respectively.

A Convolutional Neural Network applied to NLP task look like the network depicted
in Figure below.

38

https://www.aclweb.org/anthology/D14-1181

+ activation function

convolution

1-max softmax function
} i regularization
: v pooling y A inthislayer
3 region sizes: (2,3,4) 2 feature L
Sentence matrix 2 fikters for each region maps for 6 univariate | 2 classes |

7x5 size each veclors

totally 6 filters region size concatenated

together to form a

single feature

vactor

]

like

this
movie

very
much

|

)

T
/

Figure: Illustration of a Convolutional Neural Network (CNN) architecture for
sentence classification. Here we depict three filter region sizes: 2, 3 and 4, each of
which has 2 filters. Every filter performs convolution on the sentence matrix and
generates (variable-length) feature maps. Then 1 -max pooling is performed over each
map, i.e., the largest number from each feature map is recorded. Thus a univariate
feature vector is generated from all six maps, and these 6 features are concatenated to
form a feature vector for the penultimate layer. The final softmax layer then receives
this feature vector as input and uses it to classify the sentence; here we assume binary
classification and hence depict two possible output states. Source: Zhang, Y., &
Wallace, B. (2015). A Sensitivity Analysis of (and Practitioners’ Guide to)
Convolutional Neural Networks for Sentence Classification.

In most NLP tasks, deep learning models operate on word embedding, which are
continuous representations of the input. Convolutions of kernel size n on word
embedding will learn to emphasize or disregard n-grams in the input. For example, in
sentence classification, a kernel of size 2 learns which bigrams (2-gram) are important
for the ultimate classification decision. This concept is similar to attention mechanisms
that are commonly used in encoder-decoder architectures.

39

Max-poal

|
1
: layer
|

Lookup table

Feature k

|
I
I
I
I
I
I
Feature 1 |
|
I

-————————— e —— - - — -

Input
Sentence

Figure: Collobert and Weston were among the first researchers to apply CNN-based
frameworks to NLP tasks[5]. The goal of their method was to transform words into a
vector representation via a look-up table, which resulted in a primitive word embedding
approach that learn weights during the training of the network.

In order to perform sentence modeling with a basic CNN, sentences are first tokenized
into words, which are further transformed into a word embedding matrix (i.e., input
embedding layer) of d dimension. Then, convolutional filters are applied on this input
embedding layer that consists of applying a filter of all possible window sizes to produce
what’s called a feature map. This is then followed by a max-pooling operation that is
applied on a max operation on each filter to obtain a fixed length output and reduce
the dimensionality of the output. It is observed that the procedure produces the final

sentence representation.

By increasing the complexity of the aforementioned basic CNN and adapting it to
perform word-based predictions, other NLP tasks such as NER, aspect detection, and
POS tagging. This requires a window-based approach, where for each word a fixed size
window of neighboring words (sub-sentence) is considered. Then a standalone CNN is
applied to the sub-sentence and the training objective is to predict the word in the
center of the window, also referred to as word-level classification.

It is noticed that, CNNs were also used for more complex tasks where varying lengths
of texts are used such as aspect detection, sentiment analysis, short text categorization,

40

https://link.springer.com/chapter/10.1007/978-3-642-38824-8_12
https://arxiv.org/abs/1609.02748
http://www.aclweb.org/anthology/P15-2058

and sarcasm detection. However, some of these studies reported that external
knowledge was necessary when applying CNN-based methods to microtexts such as
Twitter texts. Other tasks where CNN proved useful are query-document matching,
speech recognition, machine translation (to some degree), and question-answer
representations, among others. On the other hand, a DCNN was used to hierarchically
learn to capture and compose low-level lexical features into high-level semantic concepts
for the automatic summarization of texts.

Overall, CNNs are effective because they can mine semantic clues in contextual
windows, but they struggle to preserve sequential order and model long-distance
contextual information. Recurrent models are better suited for such type of learning

and they are discussed in next section.

Now we have discussed all the underlying layers of CNN one by one.

Pooling Layer

The second important building block of CNNs is the pooling layer. This layer is used
to make the outputs less sensitive to the local variation in the inputs. This invariance
to small local translation and can decrease the spatial resolution and lead to
underfitting in some applications. It is observed that when accurate spatial features are
not required, pooling can improve the performance of CNNs in extracting the features
of interest. Further, pooling can reduce over-fitting since it decreases the number of
dimensions and parameters. In a sense, pooling takes subsamples from the outputs.
Similar to convolutional layers, pooling layers use a kernel (a rectangular receptive
field) to apply an aggregation function such as maximum, average, L2-norm, or
weighted average to summarize the values of the neurons within the pooling kernel. To
have a pooling layer in CNNs, we need to determine the size of pooling kernels, the
step of shifting, and the number of padding. Below figure depicts max pooling over a 4
x 4 matrix where the size of pooling kernel is 2 x 2 and the kernel shifts two pixels
over the matrix (i.e., stride of 2).

41

https://medium.com/dair-ai/detecting-sarcasm-with-deep-convolutional-neural-networks-4a0657f79e80
http://acl2014.org/acl2014/P14-2/pdf/P14-2105.pdf

Single depth slice
111124

anmoNl 7 | 8
3 | 2 BiNES 3| 4
4

max pool with 2x2 filters
and stride 2 6 | 8

4

y

Figure: Pooling of a 4 x 4 image using a 2 x 2 kernel with a stride of 2

Fully Connected Layer

A typical CNN consists of several convolutional layers where each convolutional
layer is followed by a pooling layer. The last building block of CNNs is the fully
connected layer, which is basically a traditional MLP. This component is used to
either make a more abstract representation of the inputs by further processing of the
features or classify the inputs based on the features extracted by preceding layers.

Activation Functions

Activation functions are important for an Artificial Neural Network to learn and
understand the complex patterns. The main function of it is to introduce non-linear
properties into the network. What it does is, it calculates the ‘weighted sum’ and adds
direction and decides whether to ‘fire’ a particular neuron or not. There are several
kinds of non-linear activation functions, like Sigmoid, Tanh, ReLU and leaky ReLU.
The non linear activation function will help the model to understand the complexity
and give accurate results.

42

Main Architecture of the CNN framework used here :

As discussed earlier, we have applied Convolutional Neural Networks algorithm on text
data and as the data is of one-dimensional we cannot use the conventional CNN
architecture used for image data. As a result we used 1-D convolutional layers instead
of the most popular 2-D convolutional layers. All other layers like max-pooling and
dense layers are used as it is. The convolutional neural network (CNN) architecture
that has been implemented in the current study constitutes two convolutional layers
and two fully connected layer, also known as dense layers. Among the two dense
layers, the first one has 128 hidden neurons and the second one has 64 hidden neurons.
For the current study, we tried to classify each text input to a particular intent class
among 4 intent classes. Thus we have 4 output classes. As a result we added 4 softmax
units in our last (output) layer to estimate the probability distribution of the classes.
In our architecture, every convolutional layer is followed by a max-pooling layer. Each
of the first and second convolutional layer is followed by a 1-D max-pooling layer of
max-pooling window size of 5 and 3 respectively. The number of kernels (filters) is set
to 256 and 512 for the first and second convolutional layer respectively. The sizes of
the kernels that have been applied to the first and second convolutional layers are 5
and 3 respectively. Batch size of 16 is applied throughout the training process.
Rectified Linear Units (ReLU) were used in convolutional layers and fully connected
layers, except in the last dense layer, as activation functions to introduce non-linearity
to the model. As the problem is a classification problem, we have used the Categorical
Cross-entropy loss. Adam optimizer is also employed to minimize the loss function
across the training data. The number of epochs is set to 100. The training procedure
for this study was performed entirely on a CPU-based system, no GPU has been used
for conducting any part of the training process.

43

64
Hidden Neurons

128
Hidden Neurons

. - - e .) ;’4\‘\%’4[,"} D, @
oW > > N =
4 g2 & &2 & .\\‘3%:&9;”. ‘ =
3 = = =2 5 < AN - E
& ' 235 = = g2 . YA £
g Es £ £% P (Y - s
= . 53 g =5 vl 4 . %
5 o = = = = !
E g = e =
388 = c®w =
L - L - J
Feature Extraction Classification

Figure: The baseline architecture of the CNN used in the current study to classify
speech utterances based on their emotional states.

We have also used Dropout and Flatten function. Flatten function is used whenever
we needed to reduce the dimension of the data which was output by a layer in the
network and Dropout layer is used to reduce over-fitting during the training process.
Dropout layers reduces over-fitting by dropping out or ignoring some of the neurons.
We have used two Dropout layers in our network architecture with each of them
residing right after each of the two Dense layers. A dropout rate of 20% has been used

in both of the two cases.

44

Our model of the CNN can be summarized as follows:

139702257359952

;

input: (None, 15, 1)
output: | (None, 15, 512)

l

convld 1: ConvlD

input: | (None, 15, 512)

max_poolingld_1: MaxPooling1D

output: | (None, 3, 512)

i

input: | (None, 3, 512)
output: | (None, 3, 512)

l

convld_2: ConvlD

input: | (None, 3, 512)

max_poolingld_2: MaxPooling1D
output: | (None, 1, 512)

input: | (None, 1, 512)
output: | (None, 1, 128)

i

input: | (None, 1, 128)
output: | (None, 1, 128)

dense 3: Dense

dropout_2: Dropout

input: | (None, 1, 128)

flatten_1: Flatten
output: | (None, 128)

A A
input: | (None, 128)

output: | (None, 64)

l
l

input: | (None, 64)
output: | (None, 4)

dense 4: Dense

input: | (None, 64)
output: | (None, 64)

dropout_3: Dropout

dense 5: Dense

45

Experiments & Results(CNN) :

First let us discuss the frameworks that we have used as CNN based in a more detailed
manner. The below figure talks about it:

Layer (type) Output Shape Param #
cow1d 5 (CowiD) (None, 28, 256) 1536
max_poolingld 5 (MaxPoolingl (Mone, 5, 258) a
convld_6 {ConviD) {(None, 5, 512) 393728
max_poolingld 6 (MaxPoolingl (Nome, 1, 512) &
dense_13 (Dense) (None, 1, 128) 65664
dropout_8 (Dropout) (None, 1, 128) a
flatten_3 (Flatten) {None, 128) a
dense_14 (Dense) (None, 64) 8256
dropout_9 (Dropout) (None, 64) a
dense_15 (Dense) {None, 11) 715

Total params: 459,899
Trainable params: 469,899
Non-trainable params: @

In this section we report the performance of the CNN model we implemented. We have
Training vs. Test Accuracy graph, Training vs. Test Loss graph.

For the loss plot we have used categorical cross-entropy formula. For a binary
classification problem, the formula can be written as:

1 n n m

L(6) = —;Z [yilog (pi) + (1 — yi) log (1 — pi)] = —% > uilog(pij)

i=1 i=1 j=1

o yli] are the true labels (0 or 1)

o pli] are the predictions (real numbers in [0,1]), usually interpreted as probabilities

o output[i] (not shown in the equation) is the rounding of p[i], in order to convert
them also to 0 or 1; it is this quantity that enters the calculation of accuracy,
implicitly involving a threshold (normally at 0.5 for binary classification), so that
if p[i] > 0.5, then output[i] = 1, otherwise if p[i] <= 0.5, output[i] = 0.

46

Training vs. Test Loss graph:

maodel loss

= frain
351 test

3.0 |

N
\

|
i Ry
| il |||| flik. Al A
25 [\ ny h|',-_r,J1 \
M "4||,""J Wi |

VS

201

loss

15 1

10 1

05 A

0 A

epoch

So, we can clearly see that, validation/test set loss is more compare to the training set
loss.

Training vs. Test Accuracy graph:

model accuracy
10

— frain
0.9 1 test

0.8 4

0.7 4

i
n LA LR A
A n o A i Nll I||||| 'I".'“}'n"f \
1l W WYY |h| | \ !
| [\ V ¥
YT
W

06
I
05 1

categorical accuracy

04 4

0.3 4

epoch

Training accuracy is more than validation accuracy, but the gap between them is not
big enough to conclude this as overfitting.

Here is the sample input text that we have provided our CNN based intent classifier as
shown below:

prediction after training on CNN

o text = "Give me live status of train number 12345"
pred = predictions(text, model_cnn, "cnn™)
get_final output(pred, unique_intent)

47

The confidence score of each intent classification class is shown as below:

["give', 'me', 'liwve', 'status', 'of', 'train', 'number',
'12345"]

Prediction by CNN

Live Train StatusByNumber has confidence = 0.1%253011
Default Fallback Intent has confidence = 0.114802504
PNR_Status has confidence = 0.0988689%44

Seat availability has confidence = 0.0935€083
Train_Fare_ Enquiry has confidence = 0.09186842
Train Info ByName has confidence = 0.09156009
Train Info ByNumber has confidence = 0.08778542

Train Route confidence = 0.081357285

Train_Between Stations has confidence 0.052512027
Default Welcome Intent has confidence = 0.015155939

Figure : “Live_Train_statusByNumber” intent has the highest confidence value,So it

is the predicted intent class of the user input.
The below figures depicts more about our CNN based classification model :

We have calculated accuracy, precision, recall, f-score and cohen’s kappa value for the

CNN based classifier.

-25

BRccuracy: 0.634359
Precision: 0.811359
Recall: 0.6218987

Fl score: 0.64278¢6

Confusion Matrix

48

Now we will discuss the LSTM framework, so that we can compare the two
frameworks later and be sure whose usability is better in terms of intent classification

model.

4.3 LSTM based Intent Classification

Recurrent Neural Networks

There are two parts to understanding this diagram:
(a) Understanding what happens at each step i.e., how the current word is
processed
(b) Understanding how that gets together with preceding words

=

UNDERSTANDING WHAT HAPPENS AT EACH STEP

h, is called as the hidden state at time ¢, it can be thought of as a way by which the
RNN represents phrases it has seen up to time ¢ internally. At time t=1, i.e. when we
encounter the first word z,, the initial hidden state h, can be thought of as a zero-vector

representing no prior knowledge.

49

OUTPUT
Yq

Fw y,=a{W_h,)

h h HIDDEN
1 " W, h,

h,=6(i,+ W, h;)

W, INPUT

There are three stages at each time step t:

e Input: takes in the word embedding of the current word and creates another
representation for it using the input weight w,

e Hidden: gets the representation from the previous words with the current one
using wp. hy_, represents the hidden state from all previous words

e Output: converts the internal hidden representation to the actual desired output

using w,.

Here, all the weights(w) are matrices, hidden states(h) is a vector and in practice we
have a bias(b) vector at each stage which is added (not shown in the figure). “a” here
represents the sigmoid function that results in any number between 0 and 1 given an
input.

UNDERSTANDING HOW THAT GELS TOGETHER WITH
PRECEDING WORDS
Unrolling the loop in the diagram above on a phrase looks as the figure below:

WD WQ WD WU

The idea is to from left to right and at each word we create an understanding of what
we have read until now. RNNs are great but there is a problem, since at each step we
create an understanding of what we read till now, so it’s always a mix of the past and
the present. Due to this reason sometimes, we may have to process a long piece of text
but the only vital information that we may need was the first word itself. Vanilla

RNNs suffer from what can be termed as the long-term dependency problem.
LONG SHORT TERM MEMORY (LSTMS)

The abstract representation is exactly the same as for RNNs, the difference lies in that
orange cell.

Inside the orange cell we have the following layout

51

The first major difference is that we have a C, now, which is called the cell state.
Similar to the RNN structure, we still have h, which derives its value as a curated
version of C,. The cell state is a very important component of the LSTM as it acts like
a conveyor belt through which the information flows within and among cells. The small
boxes with the three “¢” are known as “gates” because “g” results a number between
0 and 1 which in a way represents the degree to which information can flow.

eg:

e Information * 0 = No information flows through
e Information * 1 = All the information passes through
e Information * (0, 1) = Some fraction of the information passed through

The following are some new labels in the figure:

tanh: a function that gives out a number between -1 and 1

@: element wise matrix multiplication

@: element wise matrix addition

There are 3 gates and 4 overall steps.

e Forget Gate (f;): as the name suggests, it decides what information do we

want to forget. Takes as input h,, and the current input x, and applies a “g”

resulting in a vector of numbers between 0 and 1.

forget gate

ft = ﬂ'(WXY xt + wl‘lf ht-1)

52

e Input Gate (i,): with the current input, we need to make changes in the cell
state to form C,. For this we may have two outcomes
i. The input gate decides which values to update and by how much using
the “a” function
ii. New candidate cell values Ct are generated using tanh
iii.

o C
1 t
&3 @ , -
A 3
|_tanh
i
it
ct
Lo | o JLewm][o]
th le whl wxi whc wxc

input gate

it = G(Wxi xl + whi h1-1)

C-tanh (W x +W,_h)

Now we know what to forget, what to update and the candidate new values Ot. Using
this knowledge, we have the next figure

C C
- & @) , Ly
A ‘
tanh)
ft
II
~
Ct
Lo J Lo J[wn][o]
th Wx[Wh‘ Wxi th ch
h h,

cell state update

C=f"C,+i’C,

Output Gate (o,): decides what part of the cell state C, should we sent as the new
hidden state h,. The “o” takes care of deciding what parts to output and multiplied by
C, gives the new hidden state h,.

53

C c
-1 t
&) >
4 tanh
f
i o
~ t
Cl
Lo J Lo [[[o |
th Wx(Wh Wx th fo.‘ who wxo

output gate

o‘=a(W
h,=o,*tanh(C,)

x+W_h)

X0t ho " 't-1

In case of Recurrent Neural Networks, the vital contrasting factor is that unlike
normal feed-forward networks for which the activation outputs are propagated only
in one direction, here the activation outputs from neurons propagate in both the
directions i.e. from inputs to outputs and from outputs to inputs. For this reason,
a loop is formed within the neural network that acts as a ‘memory state’ of the
neurons thereby providing the neurons an ability to remember what have been
learned so far.

The memory state in RNNs provides a plus over ancient neural networks however a
dilemma is also included known as the vanishing gradient problem. In this downside,
while learning with an oversized variety of layers, it becomes very tedious for the
network to learn and tune the parameters of the previous layers. In order to address
this problem, a modified version of RNNs termed as LSTMs (Long Short Term
Memory) have been developed.

Output @ @

Unfold
LSTM » LSTM » LSTM ——> ...
Time t t+1 t+2

54

LSTMs have an additional state called ‘cell state’ through which the network makes
adjustments in the information flow. The advantage of this state is that the model can

remember or forget the leanings more selectively.

1.

2.

Input Layer: Takes the sequence of words as input

LSTM Layer: Computes the output using LSTM units. Here we have added 100
units in the layer, but this number can be fine-tuned later.

Dropout Layer: A regularization layer which randomly turns-off the activations
of some neurons in the LSTM layer that helps in preventing over fitting.

Output Layer: Computes the probability of the best possible next word as
output

LSTM Hyper parameter tuning

A few ideas should be kept in mind when manually optimizing hyper parameters for

RNNs:

Watch out for over-fitting, which happens when a neural network essentially
“memorizes” the training data. Overfitting means you get great performance on
training data, but the network’s model is useless for out-of-sample prediction.
Regularization helps: regularization methods include 1;, 1,, and dropout among
others.

So have a separate test set on which the network doesn’t train.

The larger the network, the more powerful, but it’s also easier to over-fit. Don’t
want to try to learn a million parameters from 10,000 examples

More data is almost always better, because it helps fight over-fitting.

Train over multiple epochs (complete passes through the dataset).

Evaluate test set performance at each epoch to know when to stop (early
stopping).

The learning rate is the single most important hyper parameter.

In general, stacking layers can help.

For LSTMs, use the softsign (not softmax) activation function over tanh (it’s
faster and less prone to saturation (~0 gradients)).

Updaters: RMSProp, AdaGrad or momentum (Nesterovs) are usually good
choices. AdaGrad also decays the learning rate, which can help sometimes.

Finally, remember data normalization, MSE loss function + identity activation

function for regression, Xavier weight initialization

55

Now our model of LSTM model looks like this :

139702977106768

input: (None, 13)

embedding_1: Embedding

output: | (None, 15, 128)

'

nput: | (None, 15, 128)
output: (None, 128)

Istm_1: LSTM

input: | (None, 128)
output: | (None, 64)

l
'

input: | (None, 64)

dense 1: Dense

mnput: | (None, 64)
output: | (None, 64)

dropout_1: Dropout

dense 2: Dense

output: | (None, 4)

56

Experiments & Results(LSTM):

First let us discuss the frameworks that we have used as LSTM based in a more
detailed manner. The below figure talks about it:

Layer (type) Output Shape Param #
embedding 5 (Embedding) (None, 28, 128) 38272
lstm 5 (LSTM) (None, 208@) 2632088
dense 18 (Dense) {None, 64) 12864
dropout_11 (Dropout) {None, 64) a8

dense_19 (Dense) {None, 11} 715

Total params: 315,851
Trainable params: 315,851
Mon-trainable params: 8

Here also we have used the categorical crossentropy loss, and we have already
discussed how to calculate the loss in CNN (Experiments & Results) section.

Training vs. Test Loss graph:

model loss
— frain
20 1 test
15 1
i
5l
210 1
0.5 1
0.0 4
T T T T T T
0 20 40 &0 80 100
epoch

So, here we can see clearly that, validation/test loss is almost identical to the training
set loss which is expected.

57

Training vs. Test Accuracy graph:

model accuracy

categorical accuracy

epoch

Similarly, validation set accuracy is almost identical to training set and also beneath
the training set curve. So we can conclude LSTM based intent classification is a better

choice for this model.

Here is the sample input text that we have provided our LSTM based intent classifier

as shown below:

prediction after training on LSTM

[1 text = "Give me live status of train number 12345"
pred = predictions(text, model lstm, "lstm™)
get_final ocutput({pred, unigue_intent)

The confidence score of each intent classification class is shown as below:

["give', 'me', 'live', 'status', ‘'of', 'train', 'number',
'12345"]

Prediction by LSTM

Live Train StatusByNumber has confidence = 0.99006534
Train Between Stations has confidence = 0.0055835717
PNER Status has confidence = 0.004171253

Default Fallback Intent has confidence = 0.0001&836l1l18
Seat availability has confidence = 8.072023e-06
Train Fare Enquiry has confidence = 3.436412e-06
Default Welcome Intent has confidence = 4.2496833e-08
Train Info ByName has confidence = 3.7332825e-08

Train Route has confidence = 1.6617346e-09
Train Info ByNumber has confidence = 2.337104e-10

58

Here are the result value of accuracy, precision value, recall value, f-score value and
cohen’s kappa value and the confusion matrix for the LSTM based classifier, shown
below in figure 6 and 7 respectively:

- 36

-30

Rccuracy: 0.922330
Precigicn: 0.915&0
Becall: 0.912445

Fl scors: 0.%915678
Cchens kappa: 0.9%028E87

Figure 6 Figure 7

4.4 Comparative Analysis:

So, from comparative analysis of these two frameworks, we can come to the conclusion
that, LSTM provides better accuracy in classifying intents. LSTM has been used

successfully to over-shadow the effect of noise prevalent in the dataset better compare

to CNN.

59

Chapter 5: Entity Recognition and Response Generation

5.1 Entity Recognition

After classification of intents, we need proper entity values or parameter values, which
are useful in generating quality responses to the User. NER helps us in this section.
Named-entity = recognition (NER) (also known as entity identification, entity
chunking and entity extraction) is a subtask of information extraction of NLP, that
seeks to locate and classify named entity mentions in unstructured text into pre-defined
categories such as the person names, organizations, locations, medical codes,

time expressions, quantities, monetary values, percentages etc.

Entities
Our Models AR
()
Use our work Your Models \\% People
(optional) -
b
", rain your own Places
@B Machine @ Companies
B Learning
Text Text Prep (/' o) Products
f”,
[Ij Easy Tuning #H Hashtags
Without re-training
@ @mentions

Figure : Here we can see, how an input text can be tagged as various entity set using
NER model.

For Example,

Enter A Text

Michael Jordan of the Chicago Bulls is getting a 10-hour Netflix documentary in 2019

Named Entities
Group: m

60

NER helps in:

to know the relevant tags for each paragraph in an article, thus helping in
automatically categorizing the articles in defined hierarchies and enable smooth
content discovery.

to associate relevant tags to every article. Suppose, over an online publishing
platform, user can search his/her required article using a fast efficient search
algorithm. With this approach, a search term will have to be matched with only
the small list of entities discussed in each article leading to faster search
execution.

in providing customer in a fast and efficient manner. For example,

(A Sandhya Advani v

@sandyaadvani

@cromaretail please train your staff in croma bandra to provide
correct details of customer support for Fitbit. The number given
doesnt work

2:10 PM - Apr 16, 2017

QO 1 2 See Sandhya Advani's other Tweets (i

For this above customer query, NER can help customer service provider
locating the location as bandra and product as Fitbit.

DEMO- ENTER A TEXT

@cromaretail please train your staff in croma bandra to provide correct details of customer support
for Fitbit. The number given doesnt work

KEYWORDS

Group: [ZIGIH

Standard Libraries to use Named Entity Recognition

There are three standard libraries which are most popular. They are as follows:

1. Standford NER|[7]

2. spaCyl6]

3. NLTK[2]

61

In order to accomplish our goals, we have used spaCy.

5.2 spaCy framework and its application

It is an open-source software library for advanced Natural Language Processing, written

in the programming languages Python and Cython. The library is published under the

MIT license and currently offers statistical neural network models. The spaCy pre-

trained model has list of entity classes. Those are as follows :

TYPE

DESCRIFTION

MOEE

L

DATE

People, including fictional.

Nationalities or religious or political groups.

Buildings, airports, highways, bridges, etc

Companies, agencies, institutions, etc

Countries, Cities, states.

Non-GPE locations, mountain ranges, bodies of water.

Objects, vehicles, foods, etc. (Not services,

Named hurricanes, battles, wars, sports events, etc.

Titles of books, songs, etc.

Named documents made into laws.

Any named language,

Absplute or relative dates or periods.

Times smaller than 3 day,

Percentage, including "%".

Monetary values, including wunit

Measurements, as of weight or distance

“first™, “second”, etc

Numerals that do rot fall under another type

spaCy’s models are statistical and every “decision” they make — for example, which

part-of-speech tag to assign, or whether a word is a named entity, is a prediction. This

prediction is based on the examples the model has seen during training. To train a

62

model, we first need training data i.e the examples of text, and the labels you want the
model to predict. This could be a part-of-speech tag, a named entity or any other
information.

The model, then shows the unlabeled text and how to make a prediction. Because we
know the correct answer, we can give the model feedback on its prediction in the form
of an error gradient of the loss function that calculates the difference between the
training example and the expected output. The greater the difference, the more
significant the gradient and the updates to our model.

e Training data: Examples and their annotations.

e Text: The input text the model should predict a label for.

e Label: The label the model should predict.

e Gradient: Gradient of the loss function calculating the difference between
input and expected output.

3 text
Training data _
e SAVE I Updated
Model

|
PREDICT

When training a model, we don’t just want it to memorize our examples — we want it
to come up with theory that can be generalized across other examples. After all, we
don’t just want the model to learn that this one instance of “Amazon” right here is a
company — we want it to learn that “Amazon”, in contexts like this, is most likely a
company. That’s why the training data should always be representative of the data we
want to process. A model trained on Wikipedia, where sentences in the first person are
extremely rare, will likely perform badly on Twitter. Similarly, a model trained on
romantic novels will likely perform badly on legal text.

This also means that in order to know how the model is performing, and whether it’s
learning the right things or not, we don’t only need training data and we will also
need evaluation data. If we only test the model with the data it was trained on, we
will have no idea how well it’s generalizing. If we want to train a model from scratch,
we usually need at least a few hundred examples for both training and evaluation. To
update an existing model, we can already achieve decent results with very few
examples — as long as they are representative.

63

TOKENIZATION METRICS

We have to note that if the development data has raw text, some of the gold-standard
entities might not align to the predicted tokenization. These tokenization errors
are excluded from the NER evaluation. If the tokenization makes it impossible for the
model to predict 50% of entitieotal s, F-score of the corresponding NER might still

look good.
NAME DESCRIPTION
Dep Loss [Training loss for dependency parser. Should decrease, but usually not

to 0.

NER Loss

Training loss for named entity recognizer. Should decrease, but usually
not to 0.

UAS Unlabeled attachment score for parser. The percentage of unlabeled
correct arcs. Should increase.

NER P. [NER precision on development data. Should increase.

NER R. |NER recall on development data. Should increase.

NER F. |NER F-score on development data. Should increase.

Tag % Fine-grained part-of-speech tag accuracy on development data. Should
increase.

Token % [Tokenization accuracy on development data.

CPU WPS|Prediction speed on CPU in words per second, if available. Should stay
stable.

GPU Prediction speed on GPU in words per second, if available. Should stay

WPS stable.

Improving accuracy with transfer learning V2.1

In most projects, we usually have a small amount of labeled data, and access to a
much bigger sample of raw text. The raw text contains a lot of information about the
language in general. Learning this general information from the raw text can help the

model to make use the smaller labeled data more efficiently.

64

https://spacy.io/usage/training#transfer-learning

There are two main ways to use raw text in spaCy models, i)word vectors and ii)
language model pre-training. Word vectors provide information about the
definitions of words. The vectors are a look-up table, so each word only has one
representation, regardless of its context. On the other hand, Language model
pretraining lets us learn contextualized word representations. Instead of initializing
spaCy’s convolutional neural network layers with random weights, the spacy
pretrain command trains a language model to predict each word’s word vector based
on the surrounding words. The information used to predict this task is a good starting
point for other tasks such as named entity recognition, text classification or
dependency parsing.

5.3 Experiments and Results on Entity Recognition on Test
Data

Now, we have modified standard spaCy NER in the following ways. To discuss it first,
first we had to check if the standard NER of spaCy model is working fine with
recognizing all the entities in our user input or not. What we came to realize is as
below:

Testing on trained standard model:

Entities [(“howrah', 'LOC'}]

Tokens [('On*, '', 2), {'thursday', **, 2), (*,', '', 2}, ('which', "', 2), ('train’, '*, 2}, ("rums", "', 2}, ('between’, '', 2), ("howrah', 'LOC', 3), ('and", '', 2), ('jammu', '*, 2), (*-", '', 2},
Entities [("23456°, 'PNR')]
Tokens [('Provide’, '', 2}, ('me', '", 2), ("live’, '', 2), ("statws®, '', 2), ('of', '', 2), ('train’, "', 2), ('number', "', 2), ("234%6", 'PNR’, 3)]
Entities [('34367', 'PNR')]
Tokens [('Can*, '", 2), {'you', '', 2), ('please’, '', 2), ('provide’, '', 2), ('the', "', 2), ('live’, '', 2), ("train’, '', 2), ('location’, '*, 2), ('of', **, 2), ('train’', "', 2), ('whose’, "', 2),
Entities [(“howrah', 'LOC'}, ('bandel", 'LOC")]
Tokens [('Give', '*, 2), ("the', '', 2), ('train', '', 2}, ('names', '*, 2), ('that', '', 2), ('run', *', 2}, ('from', '', 2), ('howrah', ‘LOC', 3}, ("te', '", 2), ("bandel', 'LOC', 3), ('on", '', 2},
ceomp dobj relc
Please help me getting the trains that un between kolkata and durgapur on thursday.

INTJ VERB FRON VERB DET NOUN ADJ VERB ADP NOUN CCONJ ADJ ADP NOUN

Please help me getting the trains that run between kolkata and durgapur on = thursday DATE

We can see clearly that, “Kolkata” and “Durgapur” have not been selected as location
fields. So, we need to train on standard spaCy NER.

65

Training set up with examples

Then we trained our model using this:

Entity Recognition

preparing training data

[1] TRAIN DATA = [

("Can you please provide the live train location of train whose number is 345672, {"entities": [(72, 77, "PNR™)]1}).

"Provide me live status of train number 23456", {"entities": [(39, 44, ”PNR?)]}],

Ay
i
Ay
("Give the train names that run from howrah to bandel on saturday?”, {"entities": [(35, 41, "LOC"), (45, 51, "
("On thursday, which train runs between howrah and jammu-kashmir ?", {"entities": [(38, 44, “"L0C"), (49, 61, "

Based on the above, we can create four training sentences with three entities in total.
What we consider a “correct annotation” will always depend on what we want the
model to learn. While there are some entity annotations that are more or less
universally correct — like “Canada” being a “geopolitical entity” — our application may
have its very own definition of the NER annotation scheme.

Now the result after training with our own set of sentences is as follows:

trains that un between kolkata and durgapur on thursday.

INTJ VERB PRON VERB DET NOUN ADJ VERB ADP NOUN CCONJ ADJ ADP NOUN

ccomp dob) relcl
JKTT\\ e o e
me the

Please help getting

Training spaCy NER model by following above procedures, we have been able to
classify our train information specific entities out of a user query easily like below :

Please help me getting the trains that run between | kolkata Loc and | durgapur Loc on thursday.

Now, we can see clearly that, “Kolkata” and “Durgapur” have been selected as
location fields.

Here are the experiments results below :

Bocuracy: 0.722330
Precision: 0.715&0
Fecall: 0.712445

Fl score: 0.7153678
Cohen's kappa: 0.70Z2887

66

https://spacy.io/api/annotation#named-entities

5.4 Response Generation

After detecting entities, we fed the entity values to an url which is then sent to the
APT called “Railway API”[8] and get the responses back.

For example, we passed the query to railway API “What are the trains between HWH
and BBSR”. It falls under the intent class “Train between stations”

|
def four():

print("Train Between Stations™) i
url = "https://api.railwayapi.com/v2/between/source/<stn code>/dest/<stn code>/date/<dd-mm-yyyy>/apikey/<apikey>/"

return 'Train Between Stations'

We get output as :

to_station @ {u’lat': 28.17@3784, u'lng': 85.7@5892999999%, u'code’: U'KUR', U'name': U'KHURDA RDAD IN'}

name : BGP-YFR ANGA EXPRESS

dest_arrival_time : 8&:35

src_departure_time : 23:30

number : 12254

days : [{u'runs’: u'N’, u'code’: u'MON'}, {u'runs': u'N’, u'code’: W'TUE'}, {uw'runs': u'Y', u'code": uU'WED'}, {u'runs': u'N’, u'code': u'THU'}, {u'runs': w'N', u"code': u'FRI'}, {u'runs': u'N', u’
travel_time : e7:@5

from_station : {u'lat': 22.5957683, u'lng': 88.26363942000092, u'code': u'HWH', u'name': u'HOWRAH JN'}

classes : [{u'code': u"1A', u'name": u'FIRST AC'}, {u'code': u'FC', u'name': u'FIRST CLASS'}, {u'code': u'3E', u'name': u'3rd AC ECONOMY'}, {u'cocde': u'SL', u'name': u'SLEEPER CLASS'}, {u'code': u

to_station : {u"lat': 28.1783784, u'lng': 85.785862299395%9, u'code’: u'KUR', u'name': u'KHURDA ROAD IN'}

name : SC-SHM SF EXP

dest_arrival_time : o@:20

src_departure_time : @8:39

number i 22850

days : [{u'rums": u'N', u'code': u"MON'}, {u'runs': u'N', u'code': u'TUE'}, {u'runs': u'N', u'code": u'WED'}, {u'runs': u'N', u'code': u'THU'}, {u'runs': w'yY", u'code': u'FRI'}, {u'runs': u'N', u'
travel_time : 15:5@

from_station : {u'lat': 22.582917&, u'lng': 88.2826102, u'code': u"SRC', u'name’: w'SANTRAGACHI IN'}

classes : [{u'code': u'lA', u'name": u'FIRST AC"}, {u'code': u'FC', u'name”: u'FIRST CLASS'}, {u'code': uw'3E', u'name’: u'3rd AC ECONOMY'}, {u'cede': u'SL', u'name’: U'SLEEPER CLASS'}, {u‘code': u

to_station : {u"lat': 28.1703724, u'lng': 85.705869299999%9, u'code’: u'KUR', u'name': u'KHURDA ROAD IN'}

name : HWH-YPR-HWH HUMSAFAR EXP

dest_arrival_time : 2@:es

src_departure_time : 12:29

number : 22887

days : [{u'rums": u'N', u'code': u"MON'}, {u'runs': u'Y', u'cede': u'TUE'}, {u'runs': u'N', u'code": u'WED'}, {u'runs': u'N', u'code': u'THU'}, {u'runs': w'N", u'code': u'FRI'}, {u'runs': u'N', u'
travel_time : @7:28

from_station : {u’lat’: 22.585783%, u'lng’: 88.263635942808002, u'code': U'HWH', u'name’: u'HOWRAH IN'}

classes : [{u'code': u'1A', u'name": u'FIRST AC"}, {u'code': u'FC', u'name”: u'FIRST CLASS'}, {u'code': uw'3E', u'name’: u'3rd AC ECONOMY'}, {u'ccde': u'SL', u'mame’: u'SLEEPER CLASS'}, {u‘code': u

to_station : <{u"lat': 28.1783784, u'lng': 85.7@586929995999, u'code’: U'KUR', u'name': u'KHURDA ROAD IN'}

name @ HWH-SRI SATYA SAI NILAYAM

dest_arrival_time : 22:48

src_departure_time : 15:35

number : 22831

to_station : {u'lat': 20.17@3784, u'"lng': 85.70586929999999, u'code’: u'KUR', u'name’: u'KHURDA ROAD IN'}

name : NCJ-SHM GURUDEV EXPRESS

dest_arrival_time : @5:2e

src_departure_time : 13:18

number : 12659

days : [{u'runs': u'N', u'code': u'MON'}, {u'runs': u'N’, u"coede': u"TUE'}, {u'runs': u'N', u'code': u'WeD'}, {u'runs": u'N’, u'code': u'THU'}, {u'runs': u'N', u'code': u'FRI"}, {u'runs': u'N', u'co
travel_time : 4e:e2

from_station : <{u'lat': 22.583917s, u'lng': B88.28261@3, u'code’': u'SRC', u'name’: u'SANTRAGACHI IN'}

classes : [{u'code': u"1A', u'name’: u'FIRST AC"}, {u'code': u'FC', u'name’: u'FIRST CLASS'}, {u'code': u"3E', u'name": u'3rd AC ECONMOMY'}, {u'code': u'SL', u'name": u'SLEEPER CLASS'}, {u'code': u'2

to_station : {u'lat': 2e.17@3784, u'lng': 85.78586929999999, u'code’: uU'KUR', u'name’: u'KHURDA ROAD IN'}

name : SRC MAS ANTYODAYA EXPRESS

dest_arrival_time : @1:55

src_departure_time : 19:ee

number : 22841

days : [{u'runs': w'Y', u'code': u'MON'}, {u'runs': u'N’', u'code': u"TUE'}, {u'runs': u'N', u'code': u'WeED'}, {u'runs": u'N’, u'code': u'THU'}, {u'runs': u'N', u‘code': u'FRI"}, {u'runs': u'N', u'co
travel_time : @6:55

from_station : {u'lat': 22.5839176, u'lng': B8.2826183, u'code': u'SRC', u'name’': u'SANTRAGACHI IN'}

classes : [{u'code': u"1A', u'name": u'FIRST AC"}, {u'code': u'FC', u'name’': u'FIRST CLASS'}, {u'code': u"3E', u'name": u'3rd AC ECONOMY'}, {u'cocde': u'SL', u'name": u'SLEEPER CLASS'}, {u'code': u'2
to_station : {u'lat': 20.17@3784, u'"lng': 85.70586929999999, u'code’: u'KUR', u'name’: u'KHURDA ROAD IN'}

name : HWH-SC FALAKNUMA EXP

dest_arrival_time : 14:4@

src_departure_time : @7:25

number : 12783

days : [{u'runs': w'Y', u'code': u'MON'}, {u'runs': u'Y’', u"cede': u"TUE'}, {u'runs': u'Y', u'code': u'WeD'}, {u'runs’: u'Y', u'code': u'THU'}, {u'runs': u'yY', u'code': u'FRI"}, {u'runs': u'Y', u'co
travel_time : @7:15

from_station : <{u'lat': 22.5957689, u'lng': B8.26363949000002, u'code': U'HWH', u'name’: u'HOWRAH IN'}

classes : [{u'code': u"1A', u'name": u'FIRST AC"}, {u'code': u'FC', u'name’: u'FIRST CLASS'}, {u'code': u"3E', u'name": u'3rd AC ECONOMY'}, {u'cede': u'sSL', u'name”: u'SLEEPER CLASS'}, {u'code': u'2

67

For other response generations. url looks like below :
For function : Station Name to Code

url = https://api.railwayapi.com/v2/name-to code/station/ <stnname>/ apikey/<

apikey>/

For function : Train Route

url = https://api.railwayapi.com/v2/route/train/<train number>/apikey/<apikey>/

For function : Seat availability

url = https://api.railwayapi.com/v2/check-seat/train/<train number>/source/<stn
code>/dest/<dest code>/date/<dd-mm-yyyy>/pref/<class code>/quota/<quota
code> /apikey/<apikey>/

For function : Live Train Status

url = https://api.railwayapi.com/v2/live/train/<train-number> /station/<station-
code>/date/<dd-mm-yyyy>/apikey/<apikey>/

For function : Train Between Stations

url = https://api.railwayapi.com/v2/between /source/<stn code>/dest/<stn
code>/date/<dd-mm-yyyy>/apikey/<apikey>/

For function : Train Fare Enquiry

url = https://api.railwayapi.com/v2/fare/train/<train _ number>/source/<stn
code>/dest/<stn code> /age/<age>/pref/<class code>/quota/<quota
code>/date/<dd-mm-yyyvy>/apikey/<apikey>/

68

https://api.railwayapi.com/v2/name-to%20code/station/%20%3cstnname%3e/%20apikey/%3c%20apikey%3e/
https://api.railwayapi.com/v2/name-to%20code/station/%20%3cstnname%3e/%20apikey/%3c%20apikey%3e/
https://api.railwayapi.com/v2/route/train/%3ctrain%20number%3e/apikey/%3capikey%3e/
https://api.railwayapi.com/v2/check-seat/train/%3ctrain%20number%3e/source/%3cstn%20code%3e/dest/%3cdest%20code%3e/date/%3cdd-mm-yyyy%3e/pref/%3cclass%20code%3e/quota/%3cquota%20code%3e/apikey/%3capikey%3e/
https://api.railwayapi.com/v2/check-seat/train/%3ctrain%20number%3e/source/%3cstn%20code%3e/dest/%3cdest%20code%3e/date/%3cdd-mm-yyyy%3e/pref/%3cclass%20code%3e/quota/%3cquota%20code%3e/apikey/%3capikey%3e/
https://api.railwayapi.com/v2/check-seat/train/%3ctrain%20number%3e/source/%3cstn%20code%3e/dest/%3cdest%20code%3e/date/%3cdd-mm-yyyy%3e/pref/%3cclass%20code%3e/quota/%3cquota%20code%3e/apikey/%3capikey%3e/
https://api.railwayapi.com/v2/live/train/%3ctrain-number%3e/station/%3cstation-code%3e/date/%3cdd-mm-yyyy%3e/apikey/%3capikey%3e/
https://api.railwayapi.com/v2/live/train/%3ctrain-number%3e/station/%3cstation-code%3e/date/%3cdd-mm-yyyy%3e/apikey/%3capikey%3e/
https://api.railwayapi.com/v2/between/source/%3cstn%20code%3e/dest/%3cstn%20code%3e/date/%3cdd-mm-yyyy%3e/apikey/%3capikey%3e/
https://api.railwayapi.com/v2/between/source/%3cstn%20code%3e/dest/%3cstn%20code%3e/date/%3cdd-mm-yyyy%3e/apikey/%3capikey%3e/
https://api.railwayapi.com/v2/fare/train/%3ctrain%20number%3e/source/%3cstn%20code%3e/dest/%3cstn%20code%3e/age/%3cage%3e/pref/%3cclass%20code%3e/quota/%3cquota%20code%3e/date/%3cdd-mm-yyyy%3e/apikey/%3capikey%3e/
https://api.railwayapi.com/v2/fare/train/%3ctrain%20number%3e/source/%3cstn%20code%3e/dest/%3cstn%20code%3e/age/%3cage%3e/pref/%3cclass%20code%3e/quota/%3cquota%20code%3e/date/%3cdd-mm-yyyy%3e/apikey/%3capikey%3e/
https://api.railwayapi.com/v2/fare/train/%3ctrain%20number%3e/source/%3cstn%20code%3e/dest/%3cstn%20code%3e/age/%3cage%3e/pref/%3cclass%20code%3e/quota/%3cquota%20code%3e/date/%3cdd-mm-yyyy%3e/apikey/%3capikey%3e/

Chapter 6: Conclusion and Future Work

6.1 Conclusion

The goal of this thesis work was to build a stepping stone of a chatbot that will help
user providing railway specific information. For this, the first thing that we did is the
dataset collection, but what we came to know after studying all the available datasets
is that, no datasets are capable of training our intent classification model. As we all
know that, we need labeled data for training an intent classifier and in that labeled
data, we need intents associated with user input which are specific to the train
information related queries. For that, we have built a chatbot framework that are
capable of creating a dataset containing real user data with proper intent classification
name associated with it. We are also able to take out the entity values of that user
input query depending on that intent name. Using these entity values we can build a
dialogue tracker system which will be able to pertain a context during the conversation
making our bot more human like. Using the dataset, we have collected so far, we have
built two intent classifier using CNN and LSTM framework. With more data, which
are to be gathered in coming days, we will be able to make our bot more steady.
Correctly classifying intents is the first stepping stone of building a more human like
bot. So, we have given utmost importance building the intent classification framework
in this project. The demo bot that we have built using messenger, dialogflow and
node.js can be used near future gathering data in any time. It will play a vital role
helping to build a dialogue management model coming days. In the entity recognition
model, we have used spaCy libraries to build a entity recognizer, which is able to
identify correct entity (like source station, destination station, journey day etc)
from the user query which is very important for generating responses to the user. As
for now, we are providing responses based on railway API. To generate a proper
response, we needed the proper entity parameter values out of a user query after
classifying its intent, for which the entity recognizer model has been built.

69

6.2 Future Work

The main challenge of chatbot is to pertain the context of a particular intent. As
we have already mentioned in the challenges part, after identifying an intent,
sometimes, a chatbot answers to that query depending on that intent statistically
or API based. It is all about one to one query-answering system. But what
happens, sometimes user refers to a entity value(s) of a previous query in the
current query. For this type of scenarios, more study is needed, so that we can keep
session of intent live until a new intent is classified for a new user query. So, a
dialogue system is needed to be developed so that, we can keep track the context of
a user query, until the request is being served by the chatbot to the user.

Another challenge, which is very important and most strenuous, is to make the bot
platform independent. For example, here, we have developed the intent
classification framework based on train related queries. If in future one can make
the intent classification model run on all platforms(be it railways or health-care or
judiciary system or agricultural helping system etc), being trained on a particular
dataset, it will be a great success in chatbot domain.

So, bringing context and remembering the course of the conversation over a time is
the most challenging future work in this circumstances. So far, as per our planning
goes, if we will be able to associate a session to each intent and if we are able to
remember the parameter entity values of that intent over a time, we can use those
slot values in later conversation in proper scenario, thus making the bot more
human like.

70

6.3 References

[1] Blog Name : “Data is the New Oil” by Michael Palmer
Blog Link : https://ana.blogs.com/maestros/2006/11/data_is the new.html

[2] NLTK toolkit : https://www.nltk.org/

[3] Written, Yoon Kim. (2014) Convolutional Neural Networks for Sentence
Classification. In Proceedings of EMNLP 2014

[4] Written, Zhang, Y., Wallace, B. (2015). A Sensitivity Analysis of (and

Practitioners’ Guide to) Convolutional Neural Networks for Sentence Classification.

[5] Written, Ronan Collobert., Jason Weston. (2008). A Unified Architecture for
Natural Language Processing: Deep Neural Networks with Multitask Learning.

[6] https://spacy.io/usage/linguistic-features

[7] https://nlp.stanford.edu/software/CRF-NER.html

[8] https://railwayapi.com

[9] Written, Y. Bengio, R. Ducharme, P. Vincent. 2003. Neural Probabilitistic
Language Model. In Journal of Machine Learning Research 3:1137-1155.

[10] Written, R. Collobert, J. Weston, L. Bottou, M. Karlen, K.Kavukcuglu, P. Kuksa.
2011. Natural Language Processing (Almost) from Scratch.In Journal of Machine
Learning Research 12:2493-2537.

[11] Written, Lian Meng., Minlie Huang.,(2017) Dialogue Intent Classification with
Long Short-Term Memory Networks

[12] S. A. Ali, N. Sulaiman, A. Mustapha, and N. Mustapha. Improving accuracy of

intentionbased response classification using decision tree. Information Technology

Journal, 8(6), 2009.

71

https://ana.blogs.com/maestros/2006/11/data_is_the_new.html
https://www.nltk.org/
http://www.aclweb.org/anthology/D14-1181
http://www.aclweb.org/anthology/D14-1181
https://spacy.io/usage/linguistic-features
https://nlp.stanford.edu/software/CRF-NER.html
https://railwayapi.com/

[13] J. Duchi, E. Hazan, Y. Singer. 2011 Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12:2121—
2159.

[14] L. Dong, F. Wei, S. Liu, M. Zhou, K. Xu. 2014. A Statistical Parsing Framework
for Sentiment Classification. CoRR, abs/1401.6330.

[15] A. Graves, A. Mohamed, G. Hinton. 2013. Speech recognition with deep recurrent
neural networks. In Proceedings of ICASSP 2013.

[16] G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R. Salakhutdinov. 2012.
Improving neural networks by preventing co-adaptation of feature detectors. CoRR,

abs/1207.0580.

[17] K. Hermann, P. Blunsom. 2013. The Role of Syntax in Vector Space Models of
Compositional Semantics. In Proceedings of ACL 2013.

[18] M. Hu, B. Liu. 2004. Mining and Summarizing Customer Reviews. In Proceedings
of ACM SIGKDD 2004.

[19] M. Iyyer, P. Enns, J. Boyd-Graber, P. Resnik 2014. Political Ideology Detection
Using Recursive Neural Networks. In Proceedings of ACL 2014.

[20] N. Kalchbrenner, E. Grefenstette, P. Blunsom. 2014. A Convolutional Neural
Network for Modelling Sentences. In Proceedings of ACL 2014.

[21] A. Krizhevsky, I. Sutskever, G. Hinton. 2012. ImageNet Classification with Deep
Convolutional Neural Networks. In Proceedings of NIPS 2012.

[22] Q. Le, T. Mikolov. 2014. Distributed Represenations of Sentences and Documents.
In Proceedings of ICML 2014

[23] B. Pang, L. Lee. 2004. A sentimental education: Sentiment analysis using

subjectivity summarization based on minimum cuts. In Proceedings of ACL 2004.

[24] B. Pang, L. Lee. 2005. Seeing stars: Exploiting class relationships for sentiment
categorization with respect to rating scales. In Proceedings of ACL 2005.

[25] A.S. Razavian, H. Azizpour, J. Sullivan, S. Carlsson 2014. CNN Features off-the-
shelf: an Astounding Baseline. CoRR, abs/1403.6382.

72

[26] Y. Shen, X. He, J. Gao, L. Deng, G. Mesnil. 2014. Learning Semantic
Representations Using Convolutional Neural Networks forWeb Search. In Proceedings
of WWW 2014.

[27] J. Silva, L. Coheur, A. Mendes, A. Wichert. 2011. From symbolic to sub-symbolic
information in question classification. Artificial Intelligence Review, 35(2):137-154.

[28] R. Socher, J. Pennington, E. Huang, A. Ng, C. Manning. 2011. Semi-Supervised
Recursive Autoencoders for Predicting Sentiment Distributions. In Proceedings of
EMNLP 2011.

[29] R. Socher, B. Huval, C. Manning, A. Ng. 2012. Semantic Compositionality through
Recursive Matriz- Vector Spaces. In Proceedings of EMNLP 2012.

[30] R. Socher, A. Perelygin, J.Wu, J. Chuang, C. Manning,A. Ng, C. Potts. 2013.
Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. In
Proceedings of EMNLP 2013.

[31]J. Wiebe, T. Wilson, C. Cardie. 2005. Annotating Expressions of Opinions and
Emotions in Language. Language Resources and Evaluation, 39(2-3): 165— 210.

[32]S. Wang, C. Manning. 2012. Baselines and Bigrams: Simple, Good Sentiment and
Topic Classification. In Proceedings of ACL 2012.

[33]S. Wang, C. Manning. 2013. Fast Dropout Training. In Proceedings of ICML 2013.

[34]B. Yang, C. Cardie. 2014. Context-aware Learning for Sentence-level Sentiment
Analysis with Posterior Regularization. In Proceedings of ACL 2014.

[35]W. Yih, K. Toutanova, J. Platt, C. Meek. 2011. Learning Discriminative
Projections for Text Similarity Measures. Proceedings of the Fifteenth Conference on
Computational Natural Language Learning, 247-256.

[36] https://thespoon.tech/meet-heston-bot-a-skype-bot-that-helps-you-figure-out-

what-to-make-for-dinner

[37] Written, Heung-yeung SHUM., Xiao-dong HE., Di LI. (2018)., From FEliza to
Xiaolce: challenges and opportunities with social chatbots, In D. Frontiers Inf
Technol Electronic Eng (2018) 19: 10., https://doi.org/10.1631/FITEE.1700826

73

https://thespoon.tech/meet-heston-bot-a-skype-bot-that-helps-you-figure-out-what-to-make-for-dinner/
https://thespoon.tech/meet-heston-bot-a-skype-bot-that-helps-you-figure-out-what-to-make-for-dinner/

