
Generation of Non-Intersecting

Continuous Paths using Bezier Curves

for Multiple Robots

A Thesis submitted in partial fulfillment of requirement for the degree of Master of

Computer Science and Engineering in the

Department of Computer Science & Engineering,

Jadavpur University

Submitted by

Utsa Roy

 Registration Number: 140743 of 2017-18

 Class Roll Number: 001710502002

 Examination Roll No: M4CSE19001

Under the Supervision of

Dr. Chintan Kumar Mandal

Assistant Professor,

Dept. of Computer Science & Engineering

Faculty of Engineering and Technology

Jadavpur University

2019

Department of Computer Science & Engineering

Faculty of Engineering & Technology

Jadavpur University

To Whom It May Concern,

This is to certify that UTSA ROY, Registration Number: 140743 of 2017-18, Class Roll Number:

001710502002, Examination Roll Number: M4CSE19001, a student of MCSE, from the

Department of Computer Science & Engineering, under the Faculty of Engineering and

Technology, Jadavpur University has done a thesis report under my supervision, entitled as

"Generation of Non-Intersecting Continuous Paths using Bezier Curves for Multiple Robots". The

thesis is approved for submission towards the fulfillment of the requirements for the degree of

Master of Computer Science &Engineering, from the Department of Computer Science &

Engineering, Jadavpur University for the session 2018-19.

__

Dr. Chintan Kumar Mandal

(Supervisor)

Assistant Professor

 Department of Computer Science and Engineering

Jadavpur University

__

Prof. Mahantapas Kundu

(Head of the Department)

Professor

Department of Computer Science and Engineering

Jadavpur University

__

Prof. Chiranjib Bhattacharjee

(Dean)

Professor

Faculty of Engineering and Technology

Jadavpur University

Department of Computer Science & Engineering

Faculty of Engineering & Technology

Jadavpur University

Certificate of Approval

(Only in case the thesis report is approved)

The forgoing thesis is hereby approved as a creditable study of an engineering subject carried out

and presented in a manner satisfactory to warrant its acceptance as a prerequisite to the degree for

which it has been submitted. It is understood that by this approval the undersigned do not

necessarily endorse or approve any statement made, opinion expressed or conclusion drawn

therein, but approve this thesis only for the purpose for which it is submitted.

_______________________________ _______________________________

Signature of the Examiner Signature of the Examiner

Date: __________________ Date: __________________

Declaration of Originality &

Compliance of Academics Ethics

I hereby declare that this thesis contains literature survey and original research work

done by me, as part of my MCSE studies. All information in this document have

been obtained and presented in accordance with academic rules and ethical conduct.

Name: Utsa Roy

Registration No:140743 of 2017-18

Class Roll No: 001710502002

Examination Roll No:M4CSE19001

Thesis Report Title: Generation of Non-Intersecting Continuous Paths using Bezier Curves
 for Multiple Robots

__

Utsa Roy

Acknowledgement

I would like to express my deepest gratitude to my advisor and guide Dr. Chintan Kumar Mandal,

for his excellent guidance, caring, patience, and providing me with an excellent atmosphere for

doing research. I strongly believe that I got a lot of encouragement and inspiration from him

throughout the project. With his invaluable guidance, this work is a successful one. I am equally

grateful to Dr. Mahantapas Kundu, Head of The Department, Computer Science & Engineering,

Jadavpur University, for his support towards our department. Last but not least, I would like to

thank my parents and all respected teachers for their valuable suggestions and helpful discussions.

Regards,

Utsa Roy

Department of Computer Science & Engineering

MCSE

Jadavpur University

Contents

1 Introduction 1
1.1 Description of Keywords . 2

1.1.1 Visibility graph . 2
1.1.2 Dijkstra’s Algorithm . 2
1.1.3 Convex hull . 3
1.1.4 Bezier Curve . 3
1.1.5 Turning Radius . 4

1.2 Related Works . 4
1.3 Thesis Layout . 6

2 Concepts and Details of the proposed Algorithm 7
2.1 Problem Statement . 7
2.2 Assumptions . 7
2.3 Details of the Algorithm . 8

2.3.1 Stage I . 8
2.3.2 Stage II . 16

3 Discussion of Results 21
3.1 Input Patterns for Source-Destination of the Robots 21
3.2 Results . 21
3.3 Discussion of results . 21

4 Conclusion 36
4.1 Challenges . 37
4.2 Future Work . 37

A An Introduction to setup of Maps using Inkscape 38

i

List of Figures

1.1 An example of visibility graph . 3
1.2 An example of Convex Hull . 4
1.3 An example of Bezier Curve. 5

2.1 An example a problem and its probable solution. 8
2.2 An example of classification of source-destination pairs 11
2.3 An example of continuous path intersecting an obstacle. 14
2.4 LA bisecting the ∠ θ at turning point t1. 15
2.5 An example of PathShifting [Algorithm 5] 16
2.6 Quadratic Bezier curve . 18
2.7 Relation between Bezier curve and turning radius of the robot. . 19
2.8 An example of the path smoothing method. 19
2.9 Relation between Bezier curve and its control points. 20

3.1 The Linear and Zigzag pattern of source and destination. 22
3.2 Formations of source and destination. 23
3.3 Pattern 1, Formation 1 for Obstacle 4 24
3.4 Pattern 1, Formation 2 for Obstacle 4 24
3.5 Pattern 1, Formation 3 for Obstacle 4 25
3.6 Pattern 1, Formation 4 for Obstacle 4 25
3.7 Pattern 1, Formation 1 for Obstacle 2 26
3.8 Pattern 1, Formation 2 for Obstacle 2 26
3.9 Pattern 1, Formation 3 for Obstacle 2 27
3.10 Pattern 1, Formation 4 for Obstacle 2 27
3.11 Pattern 1, Formation 1 for Obstacle 7 28
3.12 Pattern 1, Formation 2 for Obstacle 7 28
3.13 Pattern 1, Formation 3 for Obstacle 7 29
3.14 Pattern 1, Formation 4 for Obstacle 7 29
3.15 Pattern 2, Formation 1 for Obstacle 4 30
3.16 Pattern 2, Formation 2 for Obstacle 4 30
3.17 Pattern 2, Formation 3 for Obstacle 4 31
3.18 Pattern 2, Formation 4 for Obstacle 4 31
3.19 Pattern 2, Formation 1 for Obstacle 2 32
3.20 Pattern 2, Formation 2 for Obstacle 2 32

ii

LIST OF FIGURES iii

3.21 Pattern 2, Formation 3 for Obstacle 2 33
3.22 Pattern 2, Formation 4 for Obstacle 2 33
3.23 Pattern 2, Formation 1 for Obstacle 7 34
3.24 Pattern 2, Formation 2 for Obstacle 7 34
3.25 Pattern 2, Formation 3 for Obstacle 7 35
3.26 Pattern 2, Formation 4 for Obstacle 7 35

List of Algorithms

1 nonIntesectingPathPlanner 9
2 CreateWtMatrix . 9
3 SuccessClass . 10
4 Path . 12
5 PathShifting . 14
6 ContinuousPath . 17

iv

Abstract

This thesis presents an algorithm for generating non-intersecting continuous
shortest path for multiple robots. We consider an 2D-Euclidean environment
with convex polygonal obstacles.

For solving the problem, we consider all robots assigned with an unique
source and destination points. This approach of the algorithm sequential and it
generates paths one after another based on an priority based on their Euclidean
distance between their source and destination. In the beginning, a visibility
graph generates all possible paths between the given source, destinations and
vertices of the given polygonal obstacles. Based on the visibility graph, a short-
est path (using Dijkstra’s Algorithm) is found between each robot’s given source
to its corresponding destination. After that, the path gets modified and con-
verted into a continuous path while updating the visibility graph in such a way
such that the newly generated path act as an obstacle for subsequent robots.
The proposed algorithm uses a classification method to decide the possibility
of finding a non-intersecting path for a given pair. Based on the classification,
the algorithm discards search for the shortest path for that pair after a certain
number of attempts.

We draw conclusions of the proposed algorithm from graphs using the num-
ber of successful pairs and the number of obstacles. The obstacles are regular
geometric polygons, like triangles, squares and hexagons kept in a grid array.
The source and destinations are also kept in a regular patterns, to make the
results consistent.

v

Chapter 1

Introduction

Robots are mechanical devices which are designed to perform one or more
specific tasks. These robots can operate automatically or semi-automatically.
Based on their mobility we can divide them into two categories - static robots
and mobile robots.

The static robots are mainly used in industrial assembly line. These type of
robots operates from a fixed position and have limited operating range/mobility.
These robots can be used for the tasks like as welding, drilling, assembling,
painting and packaging.

The mobile robots are those robots which can move from one position to
another, while performing one or more tasks. These type of robots can be used
in various fields like transportation/logistics, military, mining etc, farming.

Mobile robots can operate either automatically or with human intervention,
known as semi-autonomous robots. Fully autonomous robots use data from
sensors, odometers to take decisions while it circumvents in the environment.
The locomotion or trying to find paths through the obstacles between source and
destination using a set of instructions/algorithms are known as “path planning
algorithms”.

Path planning algorithms can be divided into two categories based on the
knowledge of the given environment.

In the first category, when a map of the environment is not available or
partially available. In this type of path planning the main target is to drive the
robot from its source to its destination avoiding all the obstacles on the path,
depending on its sensor inputs such as sonar range finder, Compass, IR range
finder, Gyro, Positioning system, odometers etc.

In the second category, the map of the environment is completely known
and path planning algorithms generates a predefined path based on that map.
The robot follows the path to reach its destination. The objective of these path
planning algorithms is to generate an optimal collision free path in minimal
time.

There are several methods to plan a collision-free path in a completely known
environment, such as cell decomposition method[15], visibility graph[5] and Po-

1

CHAPTER 1. INTRODUCTION 2

tential Field method[18].
In most of the available literature, these paths are joined by discrete lines.

However, these paths are not feasible for car like robots, as these paths contain
sharp turns at points where two line segments meet. Due to these sharp turns
of the path, these car like robots have to stop at turning points and after reori-
enting, follows the path further. This problem is related to the piano mover’s
problem [5][7][17][13]. To solve this issue, the paths are made continuous using
Bezier[5], clothoid[2] and B-Spline[6] curves to name a few. The technique of
converting a pre-planned discrete path to a continuous path is known as the
“path smoothing method” .

There are two approach to solve this problem of path planning for multiple
robots. In the first approach, the path planning algorithm generates a path
for each robot independently without considering the paths of other robots and
then at every intersection points of the paths control the velocity of the robots
to avoid the collision. In second approach the algorithm generates a set of paths
which does not intersect each other. We are focusing on the second approach
to solve the problem of path planning for multiple robots.

1.1 Description of Keywords
In this section, we describe some important terms and concepts used in this
thesis.

1.1.1 Visibility graph
A Visibility Graph[5] of a set of obstacles/polygons is a graph of inter-visible
vertices. Every node in this graph is a vertex of obstacles/polygons and every
edge in this graph represents a visible connection between two vertices. A visible
connection implies that the straight line between two vertices does not intersect
the interior of any obstacle/polygon. The edge between two visible vertices are
called visibility edge.

The time complexity of a standard algorithm to implement a visibility graph
from a set of obstacles is O(E2 logE) and its naive version takes run-time O(E3).
where E is the total number of obstacle edges. An example of visibility graph
shown in Figure 1.1

1.1.2 Dijkstra’s Algorithm
Dijkstra’s Algorithm[4] is a single source shortest path algorithm. Given a graph
and a source vertex in that graph this algorithm finds shortest paths from source
to all vertices in that given graph.

This algorithm has many variants and one of them is given a graph and two
vertices the algorithm finds the shortest path between those two vertices. We
use this variant in our algorithm.

CHAPTER 1. INTRODUCTION 3

Figure 1.1: An example of visibility graph

The time complexity of this algorithm is O(E + V logE) whereE is the
number of edges in the graph and V is the number of vertices in the graph.

1.1.3 Convex hull
The convex hull[4] of a set of points (P) denoted by CH(P) is the smallest convex
polygon for which each point in set P is either on the boundary of the polygon
or in its interior. An example shown in Figure 1.2. the thick lined polygon
represents the convex hull of the given set of points.

1.1.4 Bezier Curve
A Bezier curve[16] is a parametric curve determined by a defining polygon, as
shown in Figure 2.6. The degree of the polynomial defining the curve segment
is one less than the number of defining polygon points. The curve generally
follows the shape of the defining polygon. The first and last point on the curve
are coincident with the first and last point of the defining polygon.

Mathematically a Bezier curve is defined by -

P (t) =

n∑
i=0

BiJn,i(t) (1.1)

Where,

Jn,i(t) =

(
n

i

)
ti(1− t)n−i (1.2)

and 0 ≤ t ≤ 1

CHAPTER 1. INTRODUCTION 4

Figure 1.2: An example of Convex Hull

The Bezier curve which has triangle as defining polygon that is 2nd degree
of defining polynomial is known as quadratic Bezier curve [Figure 1.3b]. Math-
ematically,

P (t) = ((1− t)2)p0 + 2t(1− t)p1 + t2(p2) (1.3)

Where, p0 is the start point p1 is the control point and p2 is the end point.

1.1.5 Turning Radius
The turning Radius[19] of a wheel based car like robot is the radius of the
smallest circular turn that the vehicle is capable of making.

1.2 Related Works
A significant amount of work has been done in the area of path planning for
multiple robots and path smoothing. However, in most cases the collision avoid-
ance at the intersection points of the paths is done by controlling the velocity
of the robots.

An alternative approach to the problem of path planning for multiple robots
is introduced by Kamath and Yang[8]. In this paper they present a heuristic
algorithm for generating non-intersecting paths for mobile robots in a multi-
robot environment with polygonal obstacles. This algorithm works on two stage
heuristic strategy to reach the solution. The outer level heuristic function works
for a global optimum solution while the inner level heuristic function determines
the best path for a robot at a given state of configuration. The algorithm uses
a matrix to keep it informed of the status of the environment as new paths are
formed. Paths generated by this algorithm are not continuous that is they are

CHAPTER 1. INTRODUCTION 5

(a) Bezier Curve and its defining
Polygon .

(b) Quadratic Bezier curve.

Figure 1.3: An example of Bezier Curve.

not feasible for car like robots. This paths cannot be converted into continuous
paths by using path smoothing methods as they are uses the vertices of the
obstacles.

A Potential Fields based path planning for multiple robots is introduced
by Warren [20]. This work describes a technique for coordinating the paths of
multiple robots in the presence of obstacles using artificial potential fields. In
this algorithm a path that avoids only the stationary obstacles is planned for
the highest priority robot. Then, a trajectory for the next lower priority robot is
planned so that it avoids both the stationary obstacles and the higher priority
robot which is treated as a moving obstacle. This process is continued until
trajectories for all of the robots have been planned. This algorithm works in a
sequential manner and prefer the robots with higher priority first.

LaValle and Hutchinson[11] present a paper on Optimal Motion Planning for
Multiple Robots. In the paper they addressed the problem in which the task is
to simultaneously bring each of two or more robots from an initial configuration
to a goal configuration. In addition to ensuring collision avoidance, each robot
has a real-valued performance measure (or loss functional) to be optimized.
This algorithm first generate path independently for each robots and to avoid
the collision at the junction points a coordination diagram is used to plan a
collision-free trajectory along the paths.

Another approach to the multi-robot path planning problem presented by
the Svestka, Overmars [23]. Rather than the usual decoupled planning, they use
a coordinated approach as a result the method is probabilistically complete, that
is, any solvable problem will be solved within a finite amount of time. A data-
structure storing multi-robot motions is built in two steps. First, a roadmap is
constructed for just one robot. For this they use a Probabilistic Path Planner,
which guarantees that the approach can be easily applied to different types
robots.In the second step, a number of these simple roadmaps are combined

CHAPTER 1. INTRODUCTION 6

into a roadmap for the multiple robots.
Bennewitzt et.al.[1] present an approach to optimize the priorities for decou-

pled and prioritized path planning methods for groups of mobile robots. This
approach is a randomized method which repeatedly reorders the robots to find
a sequence for which a plan can be computed and to minimize the overall path
lengths. It is an any-time algorithm since it can be stopped at any point in time
and can always return its currently best estimate.

Above mentioned paper are mainly describing the problem of path planning
for multiple robots without considering the smoothness of the path. Now we
discuss some path planning method where path smoothing is put under consid-
eration. A Piecewise Bezier Curves based path planning is presented by Choi
et.al.[3]. In this paper they present a practical path planning algorithm based
on Bezier curves for autonomous vehicles operating under waypoints and corri-
dor constraints. This algorithm generates the piecewise-Bezier-curves path such
that the curves segments are joined smoothly with C2 constraint which leads to
continuous curvature along the path.

A research paper on continuous curvature path smoothing using cubic BÃľzier
spiral curves for non-holonomic robots presented by Yang et.al.[22]. This paper
presents a path-smoothing algorithm over the piecewise linear path for non-
holonomic robots. Based on the upper-bounded continuous curvature path-
smoothing algorithm, three algorithms are proposed to enhance the path smooth-
ing performance. First, an interactive algorithm, which fully utilizes extra dis-
tance margins of linear path, is suggested. Second, a bisection algorithm is pro-
posed to relieve the violation of the maximum curvature constraints. Finally,
an interpolating path-smoothing algorithm which passes intermediate points is
suggested.

Latip and Omar[10] present a paper on the Feasible Path Generation Using
Bezier Curves for Car-Like Vehicle. In this paper they show a way to generate
continuous path by joining the path segments of a discrete path using Bezier
Curve. This algorithm generates continuous path considering the vehicle wheel-
base, maximum steering angle and maximum speed to ensure the path for the
autonomous robot or vehicle is feasible.

In this present work, we are proposing an algorithm to find a set of non-
intersecting path for a set of robots such that each path in that set is a continuous
and optimal path for their corresponding robots.

1.3 Thesis Layout
The followings chapters are as follows : chapter 2 discusses the problem, assump-
tions and details of the proposed algorithm. Chapter 3 discusses the results of
the proposed algorithm and Chapter 4 concludes the thesis with future works
and challenges arising from this work.

Chapter 2

Concepts and Details of the
proposed Algorithm

In this chapter, we discuss the proposed algorithm, which generates a set of
non-intersecting continuous path for multiple robots.

2.1 Problem Statement
We consider a map constituting of a single or multiple number of convex poly-
gons, which represent static obstacles in the 2D-Euclidean space.

In this chapter, we propose an algorithm for the problem of finding the
shortest non-intersecting continuous paths for a given noRobots robots with
their corresponding source-destination pairs.

In Figure 2.1a, we give an example with a map. Given a map with ob-
stacles(gray shaded areas) and four robots at sources s1, s2, s3, s4 and their
corresponding destinations d1, d2, d3, d4 respectively. A possible solution of
this problem is shown in Figure 2.1b

2.2 Assumptions
We state the assumptions for our proposed algorithm -

• We consider the environment in the 2D-Euclidean space.

• All robots will be considered as point robots, i.e. they will be represented
as a co-ordinate in the 2D-Euclidean space instead of a polygon /robot
shape.

• All the obstacles in the map are convex polygon and the map is recon-
structed with Configuration Space using Minkowski sum. [5]

7

CHAPTER 2. CONCEPTS AND DETAILS OF THE PROPOSED ALGORITHM 8

(a) A given map with obstacles and
four robots with their correspond-
ing source and destinations

(b) A possible solution for the prob-
lem.

Figure 2.1: An example a problem and its probable solution.

• The map of the environment will be known and it will be represented as
a graph G(V,E) where, V is the set of vertices of the obstacles and E is
the set of all edges of the obstacles respectively.

• All source-destination pairs are point locations in the given map.

2.3 Details of the Algorithm
In this section, we discuss the working principle of the proposed algorithm,
nonIntesectingPathPlanner [Algorithm 1].

The goal of this algorithm is to generate a set of shortest non-intersecting
continuous paths for multiple robots.This algorithm works in two stages: the
first stage generates non-intersecting discrete paths for all or maximum number
of robots and second stage converts all the discrete paths into continuous paths.

2.3.1 Stage I
At first, a visibility graph [5][14][9] is generated using the convex polygonal
obstacles and the given source-destination pairs. The function Visibility-
Graph1 [Algorithm 1] generates the visibility graph which is represented as
Gv(totalV,Ev), where totalV is the union of vertices of the obstacles(obsV) and
the vertices of the source(Srce) and destination(Dest) pairs and Ev is the set of

1This function can be a standard visibility graph algorithm, as described in [5][21] having
time complexity O(N2 logN), where N is the number of edges of the obstacles.

CHAPTER 2. CONCEPTS AND DETAILS OF THE PROPOSED ALGORITHM 9

Algorithm 1 nonIntesectingPathPlanner
Input: obstacleMap(obsV, obsE), noRobots, maxAttempts,tRadius, sourceDest(Srce,Dest)

. noRobots also implies the total number of pairs of source-destination
. Stage I

1: pathList← φ . pathList is a list of paths for all Robots
2: totalV ← obsV ∪ Srce ∪Dest
3: Ev ←VisibilityGraph(totalV ,obsE)

. Ev is a visibility edge matrix between all vi ∈ totalV
4: wtMatrix← CreateWtMatrix(totalV , Ev)
5: SortedSrceDestList← EuclideanDistSort(Srce, Dest)
6: cHull← convexHull(obsV)
7: for j = 1 to noRobots do
8: noIntersectCHull[j]← IntersectConvexHull(cHull, Srce[j], Dest[j])
9: end for
10: for i = 1 to noRobots do
11: if SuccessClass(Srce[i], Dest[i], noIntersectCHull) ≡ HIGH then
12: noAttempts← maxAttempts
13: else if SuccessClass(Srce[i], Dest[i], cHull, noIntersectCHull) ≡ MEDIUM then
14: noAttempts← maxAttempts/2
15: else
16: noAttempts← maxAttempts/4
17: end if
18: pathList← pathList∪ Path(totalV ,obsE,wtMatrix,tRadius,

noAttempts, pathList,Srce[i],Dest[i])
19: end for

. Stage I
20: contPath←ContinuousPath(pathList,tRadius)
21: return ContPath

edges from vi to vj (vi, vj ∈ totalV), if and only if vi and vj are visible to each
other. Two points vi, vj are visible to each other means that the line segment
between them do not intersect the interior of any obstacle.

A weighted matrix wtMatrix is calculated from the visibility graph edge set
Ev by using the function CreateWtMatrix [Algorithm 2], where the weight
is the Euclidean Distance between the two vertices vi(xi, yi) and vj(xj , yj) :√

(xi − xj)2 + (yi − yj)2 (2.1)

Algorithm 2 CreateWtMatrix
1: function CreateWtMatrix
Input: totalV, Ev
Output: wtMatrix
2: for i = 1 to |totalV | do
3: for j = 1 to |totalV | do
4: if Ev [i][j] ≡ 1 then
5: WtMatrix[i][j]← EuclideanDistance(totalV [i], totalV [j])
6: else
7: WtMatrix[i][j]←∞
8: end if
9: end for
10: end for
11: return wtMatrix
12: end function

The source-destination pairs are sorted [Algorithm 1: Line 5] into a priority
list, SortedSrceDestList based on their Euclidean distance in an ascending

CHAPTER 2. CONCEPTS AND DETAILS OF THE PROPOSED ALGORITHM 10

order. This priority list helps in deciding the priority of the source-destination
pair for which the path will be generated first. The path, which is created first
will act as a new obstacle for subsequent source-destination pairs in the priority
list thus forcing the algorithm to generate non-intersecting paths.

Algorithm 3 SuccessClass
1: function SuccessClass
Input: Srce[i], Dest[i], noIntersectCHull
Output: LOW or MEDIUM or HIGH . The classification of source-destination pair
2: lineParameters← lineSegmentEquation(Srce[i], Dest[i])

. lineParameters is a list of parameters of Line equation ax+ by + c = 0
3: for j = 1 to (i− 1) do
4: if noIntersectCHull[j] > 1 then
5: prevLineParameters←lineSegmentEquation(Srce[j],Dest[j])
6: if Intersect(line, prevLineParameters) then
7: return LOW
8: end if
9: end if
10: end for
11: for k = 1 to (i− 1) do
12: if noIntersectCHull[k] ≡ 1 then
13: prevLineParameters←lineSegmentEquation(Srce[j],Dest[j])
14: if Intersect(line, prevLineParameters) then
15: return MEDIUM
16: end if
17: end if
18: end for
19: return HIGH
20: end function

The function SuccessClass as called in Algorithm 1: Line 10 [Algorithm
3] classifies a given pair of source-destination into three types of classes namely
HIGH, MEDIUM and LOW . These classes indicate the possibility of suc-
cessfully finding a non-intersecting path for a given pair in that class.

The success class is found by the function SuccessClass of a given source-
destination pair depends on the previous source-destination pairs. If the input
is the ith pair of source-destination of priority list(SortedSrceDestList) then
its success class depends on the all (i − 1) source-destination pairs in priority
list (SortedSrceDestList).If any of the straight lines joining the (i− 1) source
destination pairs partition the convex hull into two regions and the given source
and destination belong to separate regions then the success class of that pair will
be LOW . In case there is no complete partition of the convex hull into two re-
gions then it searches for lines which partially divide the convex hull that is lines
which intersect the convex hull only once. If any of these lines joining the (i−1)
source-destination pairs intersect the line between given source-destination pair
than the success class of that given pair will be MEDIUM . Except above two
conditions all other pairs will be in success class HIGH.

The function IntersectConvexHull[Line 8 : Algorithm 1] takes a source-
destination pair and the convex hull of the obstacles as input. This function
returns the number of intersection between the line joining the given source-
destination pair and the convex hull. The list noIntersectCHull store this
numbers which indicate that the given pair partition the convex hull completely
or partially. If the number is greater than 1 then the given pair partition the

CHAPTER 2. CONCEPTS AND DETAILS OF THE PROPOSED ALGORITHM 11

Figure 2.2: An example of classification of source-destination pairs

convex hull completely and if it is equal to 1 then the given pair partition the
convex hull partially. otherwise, that is in case of zero the given pair dose not
partition the convex hull.

The function SuccessClass is illustrated in Figure 2.2. The thick line is
the convex hull of the obstacles. The source-destination are taken sequentially
from the priority list SortedSrceDestList as s1 − d1, s2 − d2, s3 − d3, s4 − d4

and s5 − d5. The first pair s1 − d1 is classified as HIGH, as it is the first
pair in priority list SortedSrceDestList. The pair s1 − d1 also partitions the
convex hull into two regions. For the second pair, s2 − d2 as their source and
destinations do not belong to separate regions of the convex hull, s2 − d2 will
be classified as HIGH. For s3 − d3: the given source s3 and destination d3

belong to separate regions of the convex hull divided by the line between s1−d1

[Figure 2.2], thus classifying it as LOW . Considering the fourth pair s4−d4 : s4

and d4 do not fall in the different regions partitioned convex hull. However, the
pairs s2 − d2 and s3 − d3 partially divides the convex hull and the line joining
s4 − d4 intersects s2 − d2. For this reason, the pair of s4 − d4 will be classified
as MEDIUM . For the last pair s5 − d5, which neither intersects lines s2 − d2,
s3 − d3 or s4 − d4 nor its source and destination belong to separate regions of
the partition of the convex hull, s5 − d5 will be classified as HIGH.

Depending on the classification by SuccessClass for a given source-destination
pair, the function Path [Algorithm 4] tries to find a non-intersecting path within
a specified number of attempts, else it discards that pair. An attempt of HIGH
indicates the maximum number of attempts for which a search will continue for
finding a successful non-intersecting path; MEDIUM and LOW consequently

CHAPTER 2. CONCEPTS AND DETAILS OF THE PROPOSED ALGORITHM 12

Algorithm 4 Path
1: function Path
Input: totalV , obsE, wtMatrix, tRadius, noAttempts, pathList, Srce[i], Dest[i]
Output: path

2: refPath←Dijkstra(wtMatrix, Srce[i], Dest[i])
3: path←PathShifting(refPath, tRadius)
4: collidingEdge[2]← Collision(path, totalV , obsE, pathList)

. collidingEdge[1] is the row number and collidingEdge[2] is the column
number of wtMatrix respectively

5: if collidingEdge[1] ≡ −1 then
6: for k = 2 to (noVertexInPath(path) -1) do
7: for row = 1 to |totalV | do
8: for col = 1 to |totalV | do
9: if Incident(refPath[k], wtMatrix[row][col]) then
10: wtMatrix[row][col]←∞
11: end if
12: end for
13: end for
14: end for
15: for k = 1 to NoEdgeInPath(path) do
16: for row = 1 to |totalV | do
17: for col = 1 to |totalV | do
18: if Intersect(pathEgde[k], wtMatrix[row][col]) then
19: wtMatrix[row][col]←∞
20: end if
21: end for
22: end for
23: end for
24: return path
25: else
26: wtMatrix[collidingEdge[1]][collidingEdge[2]]←∞
27: noAttempts← noAttempts− 1
28: if noAttempts ≡ 0 then
29: return Φ
30: else
31: Path(totalV , obsE, wtMatrix, tRadius, noAttempts, pathList,

Srce[i], Dest[i])
32: end if
33: end if
34: end function

CHAPTER 2. CONCEPTS AND DETAILS OF THE PROPOSED ALGORITHM 13

will be lower fractions of HIGH. For our function, SuccessClass, we have
chosen MEDIUM as half of the HIGH, LOW one-fourth of the HIGH and
HIGH will be an high integer value.

The Algorithm nonIntesectingPathPlanner [Algorithm 1] takes source-
destination pairs one by one from a sorted list SortedSrceDestList and call
the function Path with the following inputs: vertex set of the visibility graph
(totalV), obstacle edge set (obsE), weighted matrix of visibility graph edge set
(wtMatrix), turning radius2 of robots (tRadius), number of attempts(noAttempts),
a list of previously generated paths(pathList), and source-destination (Srce[i],Dest[i])
pair.

The function Path [Algorithm 4] finds the shortest path from the given
source Srce[i] to its destination Dest[i] by using the function Dijkstra [4], 3

from the wtMatrix and the source-destination (Srce[i],Dest[i]) pair. This path
will be refer as "Reference Path" henceforth.

As the Reference Path consists of discrete lines, it is made continuous by
joining the line segments using Bezier curves. This path smoothing process is
done by the function continuousPath [Algorithm 6]]. However, the Reference
Path cannot be used directly in the path smoothing process, as it is formed
from the vertices and edges of the obstacles. The continuity of the discrete lines
uses approximation curve such as Bezier curves [function continuousPath
in Algorithm 6]. These curves does not go through the intermediate control
points, which results in the continuous path intersecting the obstacles as shown
in Figure 2.3. To avoid this, the discrete lines of the path are shifted to a
certain distance. This path shifting is processed by the function PathShifting
[Algorithm 5], which shifts the path segments depending on the angles at the
turning points and turning radius(tRadius) of the robot.

The shifting distance d is determine by a formula which is mentioned in stage
II.

To shift the paths, the function PathShifting [Algorithm 5] first determines
the equation of the line which bisect the angle θ at the turning point t1 as shown
in Figure 2.4. Let, L1 and L2 be the two-line segments at the turning point t1
given as

L1 ≡ a1x+ b1y + c1 = 0 (2.2)
L2 ≡ a2x+ b2y + c2 = 0 (2.3)

The equation of the line LA, which bisects angle ∠θ at turning point t1 is :

LA ≡
a1x+ b1y + c1√

a2
1 + b21

=
a2x+ b2y + c2√

a2
2 + b22

(2.4)

2The turning radius of a robot is the radius of the smallest circular turn that the robot is
capable of making.

3The function Dijkstra is the Dijkstra’s algorithm with time complexity
O(|Ev | log |totalV |).

CHAPTER 2. CONCEPTS AND DETAILS OF THE PROPOSED ALGORITHM 14

Figure 2.3: An example of continuous path intersecting an obstacle.

Algorithm 5 PathShifting
1: function PathShifting
Input: refPath, tRadius
Output: shiftedPoints
2: shiftedPoints← Φ
3: shiftedPoints← shiftedPoints ∪ refPath[0]
4: for i=2 to (NoVertexInPath(Path)-1) do
5: pV ertex← refPath[i− 1] . pVertex is Previous Vertex
6: tV ertex← refPath[i] . tVertex is target Vertex
7: nV ertex← refPath[i+ 1]; . nVertex is next Vertex
8: line1Parameters← LineSegmentEquation(pV ertex, tV ertex)
9: line2Parameters← LineSegmentEquation(tV ertex, nV ertex)
10: lineAParameters← AngleBisectingLine(line1Parameters, line2Parameters)

. LineA which bisected the angle between line1 and line2
11: θ ← AngleBetweenLines(line1Parameters, line2Parameters)

12: d←
tRadius∗cos(θ

2
)

tan(θ
2
)

13: shiftedPoint← shiftedPoint∪ pointOnLine(lineA, tV ertex, d)
14: end for
15: shiftedPoints← shiftedPoints ∪ refPath[i+ 1]
16: return shiftedPoints
17: end function

CHAPTER 2. CONCEPTS AND DETAILS OF THE PROPOSED ALGORITHM 15

θ

Figure 2.4: LA bisecting the ∠ θ at turning point t1.

On this line (LA) the function PathShifting determine a shifted point(sp)(xsp, ysp),
which is d distance away from the turning point t1 and in opposite direction to
the obstacle [Figure 2.5a] using the following method -

Let the coordinate of point t1 is(xt1 , yt1) and the equation of line LA is-

LA ≡ aAx+ bAy + cA = 0 (2.5)

If (xsp, ysp) is the point d distance away from the point t1 on the line LA then

d =
√

(xt1 − xsp)2 + (yt1 − ysp)2 (2.6)

and,
aAxsp + bAysp + cA = 0 (2.7)

Solving equations 2.6 and 2.7 we get two solutions for (xsp, ysp). One point
is toward the obstacle from t1 and another is in opposite direction to obstacle
from t1.We choose the coordinate of point sp which will be the point in opposite
direction to obstacle from t1.

For all turning points the function PathShifting will determine shifted
points. Then it joins them to generate the shifted path as [Figure 2.5b].

The function Collision [Line 4 : Algorithm 4] check for collisions amongst
the shifted path, obstacles and previously generated paths. The collisions are
checked by checking line intersections among the line segments of the shifted
path, obstacle edges and previously generated paths. If line collision/intersection
is detected, then the edge number of the shifted path, for which collision occurs
is noted. This edge number of the shifted path is same as its corresponding edge
number in Reference Path for which that edge in the shifted path get generated.
The function Collision returns a vector, collidingEdge, the row and column

CHAPTER 2. CONCEPTS AND DETAILS OF THE PROPOSED ALGORITHM 16

(a) sp is a point which is d distance
away from t1 on the LA and oppo-
site direction to the obstacle.

(b) Shifted path generated by join-
ing shifted points.

Figure 2.5: An example of PathShifting [Algorithm 5]

number of the colliding edge in wtMatrix. If no collision is detected, then the
vector will be −1.

On detection of a collision, the colliding edge will be deleted from wtMatrix
and noAttempt is reduced by 1. If noAttempts become 0 then the function
PATH [Algorithm 4] returns a null list, Φ indicating that no path is found
between source-destination. But if noAttempts 6= 0, then it makes a recursive
call to the function PATH with updated wtMatrix and noAttempts.

In case of no collision detected by function Collision the function Path
[Algorithm 4] deletes all the edges from wtMatrix which are incident to the
vertices of Reference Path. An edge incident to a vertex or not that determines
by the function Incident[Line 9 : Algorithm 4] which takes a vertex and an
edge as input and returns true if the edge incident to that vertex and if not then
false.

The function Path [Algorithm 4] also deletes all the edges from wtMatrix
which intersect any edge of the shifted path. The function Intersect[Line
18 : Algorithm 4] determines the intersecting edges of wtMatrix. After these
two updates of the wtMatrix the function Path returns the shifted path to
Algorithm 1. which is added to the pathList.

The former updates of wtMatrix deletes edges of the visibility graph whose
end vertices are became not visible to each other after generating a path.

After generating non-intersecting paths for maximum number of robots the
Algorithm 1 enters in the Stage II.

2.3.2 Stage II
In stage II, the function ContinuousPath [Algorithm 6] converts all the paths
which, generated from the Stage I into continuous paths using quadratic Bezier
curve based path smoothing method.

CHAPTER 2. CONCEPTS AND DETAILS OF THE PROPOSED ALGORITHM 17

Algorithm 6 ContinuousPath
1: function ContinuousPath
Input: pathList, tRadius
Output: contPath
2: contPath← φ
3: for i = 1 to NoPath(PathList[i]) do
4: sPath← φ
5: if noTurn(pathList[i]) ≡ 0 then
6: sPath← pathList[i]
7: else
8: sPath←VertexAt(PathList[i], first)
9: for j = 1 to NoTurnigPoints(pathList[i]) do
10: θ ← angleOfturning(j)

11: r ← turningRadius

tan(θ
2
)

12: c← CircleEquation(turningPoint, r)
. c is a list parameters of the circle equation (x− h)2 + (y − k)2 = r2

13: intersectingPoints← CircleIntersectPathSegment(c, pathList[i])
14: sPath←Bezier(intersectingPoint1, turningPointj , intersectingPoint2)
15: end for
16: sPath←VertexAt(PathList[i], last)
17: end if
18: contPath← contPath ∪ sPath
19: end for
20: return contPath
21: end function

The quadratic Bezier curve is a parametric curve represented as Equation
2.8 -

P (tb) = ((1− tb)2)p0 + 2tb(1− tb)p1 + t2b(p2) (2.8)

where P (tb) is a point on the curve, p0 is the starting point, p1 is the control
point, p2 is the end point and 0 < tb < 1. An example of quadratic Bezier curve
shown in Figure 2.6

To make a path continuous the function ContinuousPath [Algorithm 6]
apply quadratic Bezier curve to each turning points on that path.

We illustrate the function ContinuousPath in the Figure 2.7, the circle is
the turning circle of the robots. A turning circle of a robot or vehicle is the
smallest circular turn that the robot or vehicle is capable of making. Therefore,
To make the path feasible for the robots no curve on the path should be smaller
than the curve of that turning circle. That implies that, the radius of any curve
on a path must always be greater or equal to the turning radius. As shown
in the figure 2.7 paths segments are tangent to the turning circle.The tangent
points are ps and pe. To make the continues path feasible for the robots the
Bezier curve must be starts from a point which is not in between point ps and
point t. That is the distance between starting point of the Bezier curve and and
the point t must be greater or equal to the distance between ps and t. The same
condition applied for the end point of the Bezier curve. As the path segments
are tangent to the same circle from same point the length of ps to t and t to pe
will be same.

Now to find the distance between ps and t consider a line joining t and centre
of the turning circle c. The triangle ∆ ctps is a right triangle and the angle at
point t is θ.

CHAPTER 2. CONCEPTS AND DETAILS OF THE PROPOSED ALGORITHM 18

Figure 2.6: Quadratic Bezier curve

The distance between ps and t will be r = tRadius ∗ tan θ2 where, tRadius
is the turning radius of the robots

As mentioned earlier quadratic Bezier curve require three control points.
To find these three control points,the function ContinuousPath [Algorithm
6] generates a circle at the turning point(t) taking radius r. This circle will
intersect the path at two points p0 and p1 as shown in Figure 2.8a. These
two points p0 and p1 act as the starting and ending point for the quadratic
Bezier curve and the turning point (t) acts as the control point.Using these
three control points the function ContinuousPath [Algorithm 6] generates
the quadratic Bezier curve for that turning point.

This method is applied to all the turning points of the given path resulting
in a continuous path. An example given is in Figure 2.8b. After repeating the
function for all paths in the pathList, the funtion ContinuousPath [Algorithm
6] constructs a set of continuous path for all (noRobots) or a maximum number
of source destination paths .

As mentioned earlier in Stage I that the function PathShifting [Algorithm
5] will shift the path d distance away from the Reference Path. Now we describe
the formula to determine the shifting distance d.

Consider the Figure 2.9, ps, t and pe are the three control points of the
Bezier curve(Shown in Figure 2.9 by dotted curve). The distance between ps to
t and t to pe is r (r = tRadius ∗ tan θ2).

Let a and c be the middle points of the line segments ps − t and t − pe
respectively. Now according to the properties of Bezier curve the peek point b
of the Bezier curve belongs to the straight line a− c. The Triangle ∆abt is the
right triangle and the angle at the point t is θ.

Therefore, the distance between point b and point t is d = r
2 ∗ cos(θ2). If the

path get shifted by this distance d then the Bezier curve will go through the
point t that is the resulting continuous path will not intersect the obstacle.

CHAPTER 2. CONCEPTS AND DETAILS OF THE PROPOSED ALGORITHM 19

Figure 2.7: Relation between Bezier curve and turning radius of the robot.

P 0

P 1

(a) Circle with radius r and centre t
intersect the path at two points p0 and
p1.

(b) The Bezier curves are drawn using
their respective control points for all
turning points and continuous path is
generated.

Figure 2.8: An example of the path smoothing method.

CHAPTER 2. CONCEPTS AND DETAILS OF THE PROPOSED ALGORITHM 20

Figure 2.9: Relation between Bezier curve and its control points.

Chapter 3

Discussion of Results

In this chapter we discuss the results of the simulation of the proposed algorithm.
The proposed Algorithm is simulated in javafx using the IDE IntelliJ IDEA.

This algorithm is tested with three types of obstacle maps namely triangle,
square and Hexagon.These three types of maps have variable number of obsta-
cles. Variation of the obstacle number is in following order (4, 9, 16, 25, 36, 49, 64, 81).
Therefore, For each type there are eight maps available.

3.1 Input Patterns for Source-Destination of the
Robots

The source-destination pairs are given in two types of patterns, a linear and
other is zigzag as Shown in Figure 3.1a and Figure 3.1b respectively. The source
and destination points in each pattern are organized in four types of formation.
This formations are illustrated in Figure 3.2.

3.2 Results
The results of the simulation given below in form of graphs with Number of Ob-
stacle Vs Number of Successful Non-intersecting Paths. Number of obstacles
also can be interpreted as the number of vertices into the obstacles.

The graphs are plotted using the software "Origin Pro 8".

3.3 Discussion of results
From the graphs in Figure 3.3 to Figure 3.26 we can conclude that for formation
1 and 2 in both pattern 1 and pattern 2 the number of successful pairs will reduce
if the number of obstacles increase. The number of obstacle(x) and number of
successful(y) related by the function y = a∗xb.The values of b’s in this function
y = a ∗ xb always less than 0. Therefore we can substitute the term xb by 1/x.

21

CHAPTER 3. DISCUSSION OF RESULTS 22

(a) Pattern 1

(b) Pattern 2

Figure 3.1: The Linear and Zigzag pattern of source and destination.

That implies the number of successful pairs inversely proposal to the number
of obstacles.That is in these types of source-destination arrangement the path
intersection occurs due to obstacle avoidance. Therefore, higher the number of
obstacles lesser the number of successful pairs.

In case of formation 3 and 4 in both pattern 1 and 2 the intersection between
paths occurs because of the arrangement of source-destination points.Due to
their arrangement these paths will intersect each other if there is no obstacles.
The number of obstacles does not effect the success rate compare to formation
1 and 2. As it can observed from the graphs that, for the formation 3 and 4
the relation between number of obstacle(x) and number of success(y) is linear
define by the function y = A+B ∗ x and approximately constant that is value
of B approximately 0.

CHAPTER 3. DISCUSSION OF RESULTS 23

(a) Formation 1

(b) Formation 2

(c) Formation 3

(d) Formation 4

Figure 3.2: Formations of source and destination.

CHAPTER 3. DISCUSSION OF RESULTS 24

0 3 0 6 0 9 0
0

2 0

4 0

 S u c c e s s f u l p a i r s
 A l l o m e t r i c 1 F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = a*x^b
Adj. R-Square 0.85171

Value Standard Error
Successful pairs a 80.98891 13.40982

Successful pairs b -0.39941 0.06412

(a) Triangular obstacle map with source-destination
pattern 1 formation 1. Function of the curve is y =
a ∗ xb and a = 80.98, b = −0.39941

0 3 0 6 0 9 0

0

6

1 2

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.3a

Figure 3.3: Pattern 1, Formation 1 for Obstacle 4

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

 S u c c e s s f u l p a i r s
 A l l o m e t r i c 1 F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = a*x^b
Adj. R-Square 0.79221

Value Standard Error
Successful pairs a 75.10804 13.08715

Successful pairs b -0.32356 0.06376

(a) Triangular obstacle map with source-destination
pattern 1 formation 2. Function of the curve is y =
a ∗ xb and a = 75.10, b = −0.32356

0 3 0 6 0 9 0

- 6

0

6

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.4a

Figure 3.4: Pattern 1, Formation 2 for Obstacle 4

CHAPTER 3. DISCUSSION OF RESULTS 25

0 3 0 6 0 9 0
0

2

4

6

8

1 0
 S u c c e s s f u l p a i r s
 L i n e F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = A + B*x
Adj. R-Square -0.0521

Value Standard Error
cell://[Book1]Fit
NL1!Parameter
s.y0.row_label

cell://[Book1]Fit
NL1!Parameter
s.y0.row_label

cell://[
Book1
]FitNL

cell://[Book1]Fit
NL1!Parameter
s.y0.Error

(a) Triangular obstacle map with source-destination
pattern 1 formation 3. Function of the curve is y =
A+B ∗ x and a = 2.61467, b = 0.00733

0 3 0 6 0 9 0

- 1

0

1

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.5a

Figure 3.5: Pattern 1, Formation 3 for Obstacle 4

0 3 0 6 0 9 0
0

1

2

3

4

5

6

7

8
 S u c c e s s f u l p a i r s
 L i n e F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = A + B*x
Adj. R-Square -0.16

Value Standard Error
cell://[Book1]Fit
NL1!Parameter
s.y0.row_label

cell://[
Book1
]FitNL

cell://[
Book1
]FitNL

cell://[Book1]Fit
NL1!Parameter
s.y0.Error

(a) Triangular obstacle map with source-destination
pattern 1 formation 4. Function of the curve is y =
A+B ∗ x and a = 2.75676, b = 0.0001904

0 3 0 6 0 9 0

- 2

0

2

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.6a

Figure 3.6: Pattern 1, Formation 4 for Obstacle 4

CHAPTER 3. DISCUSSION OF RESULTS 26

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5
 S u c c e s s f u l p a i r s
 A l l o m e t r i c 1 F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = a*x^b
Adj. R-Square 0.74807

Value Standard Error
Successful pairs a 62.36247 9.93396

Successful pairs b -0.25651 0.05555

(a) Square obstacle map with source-destination pat-
tern 1 formation 1. Function of the curve is y = a ∗xb

and a = 62.36247, b = −0.25651

0 3 0 6 0 9 0

- 5

0

5

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.7a

Figure 3.7: Pattern 1, Formation 1 for Obstacle 2

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
1 5

2 0

2 5

3 0

3 5

4 0

4 5
 S u c c e s s f u l p a i r s
 A l l o m e t r i c 1 F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = a*x^b
Adj. R-Square 0.82499

Value Standard Error
Successful pairs a 58.62443 7.01819

Successful pairs b -0.25207 0.04162

(a) Square obstacle map with source-destination pat-
tern 1 formation 2. Function of the curve is y = a ∗xb

and a = 58.62443, b = −0.25207

0 3 0 6 0 9 0

- 4

0

4

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.8a

Figure 3.8: Pattern 1, Formation 2 for Obstacle 2

CHAPTER 3. DISCUSSION OF RESULTS 27

0 3 0 6 0 9 0
0

3

6

9

1 2

1 5
 S u c c e s s f u l p a i r s
 L i n e F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = A + B*x
Adj. R-Square 0.085

Value Standard Error
cell://[Book1]Fit
NL1!Parameter
s.y0.row_label

cell://[
Book1
]FitNL

cell://[
Book1
]FitNL

cell://[Book1]Fit
NL1!Parameter
s.y0.Error

(a) Square obstacle map with source-destination pat-
tern 1 formation 3. Function of the curve is y =
A+B ∗ x and a = 2.338, b = −0.006

0 3 0 6 0 9 0

0 . 0

0 . 4

0 . 8

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.9a

Figure 3.9: Pattern 1, Formation 3 for Obstacle 2

0 3 0 6 0 9 0
0 . 8

1 . 6

2 . 4

3 . 2
 S u c c e s s f u l p a i r s
 L i n e F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = A + B*x
Adj. R-Square -0.16

Value Standard Error
cell://[Book1]Fit
NL1!Parameter
s.y0.row_label

cell://[
Book1
]FitNL

cell://[
Book1
]FitNL

cell://[Book1]Fit
NL1!Parameter
s.y0.Error

(a) Square obstacle map with source-destination pat-
tern 1 formation 4. Function of the curve is y =
A+B ∗ x and a = 2, b = 0

0 3 0 6 0 9 0

- 0 . 7

0 . 0

0 . 7

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.10a

Figure 3.10: Pattern 1, Formation 4 for Obstacle 2

CHAPTER 3. DISCUSSION OF RESULTS 28

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5
 S u c c e s s f u l p a i r s
 A l l o m e t r i c 1 F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = a*x^b
Adj. R-Square 0.7284

Value Standard Error
Successful pairs a 68.85241 13.34152

Successful pairs b -0.30887 0.07014

(a) Hexagonal obstacle map with source-destination
pattern 1 formation 1. Function of the curve is y =
a ∗ xb and a = 68.85241, b = −0.30887

0 3 0 6 0 9 0

- 7

0

7

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.11a

Figure 3.11: Pattern 1, Formation 1 for Obstacle 7

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5
 S u c c e s s f u l p a i r s
 A l l o m e t r i c 1 F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = a*x^b
Adj. R-Square 0.80595

Value Standard Error
Successful pairs a 79.73639 15.87661

Successful pairs b -0.40808 0.07762

(a) Hexagonal obstacle map with source-destination
pattern 1 formation 2. Function of the curve is y =
a ∗ xb and a = 79.73639, b = −0.40808

0 3 0 6 0 9 0

- 8

0

8

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.12a

Figure 3.12: Pattern 1, Formation 2 for Obstacle 7

CHAPTER 3. DISCUSSION OF RESULTS 29

0 3 0 6 0 9 0
0

3

6

9

1 2

1 5

 S u c c e s s f u l p a i r s
 L i n e F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = A + B*x
Adj. R-Square 0.014

Value Standard Error
cell://[Book1]Fit
NL1!Parameter
s.y0.row_label

cell://[
Book1
]FitNL

cell://[
Book1
]FitNL

cell://[Book1]Fit
NL1!Parameter
s.y0.Error

(a) Hexagonal obstacle map with source-destination
pattern 1 formation 3. Function of the curve is y =
A+B ∗ x and a = 2.01333, b = 0.00667

0 3 0 6 0 9 0
- 0 . 5

0 . 0

0 . 5

1 . 0

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.13a

Figure 3.13: Pattern 1, Formation 3 for Obstacle 7

0 3 0 6 0 9 0
0

2

4

6

8

1 0

 S u c c e s s f u l p a i r s
 L i n e F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = A + B*x
Adj. R-Square 0.014

Value Standard Error
cell://[Book1]Fit
NL1!Parameter
s.y0.row_label

cell://[
Book1
]FitNL

cell://[
Book1
]FitNL

cell://[Book1]Fit
NL1!Parameter
s.y0.Error

(a) Hexagonal obstacle map with source-destination
pattern 1 formation 4. Function of the curve is y =
A+B ∗ x and a = 2.01333, b = 0.00667

0 3 0 6 0 9 0
- 0 . 5

0 . 0

0 . 5

1 . 0

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.14a

Figure 3.14: Pattern 1, Formation 4 for Obstacle 7

CHAPTER 3. DISCUSSION OF RESULTS 30

0 3 0 6 0 9 0

2 0

3 0

4 0

 S u c c e s s f u l p a i r s
 A l l o m e t r i c 1 F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = a*x^b
Adj. R-Square 0.42826

Value Standard Error
Successful pairs a 49.57315 7.81015

Successful pairs b -0.1271 0.0505

(a) Triangular obstacle map with source-destination
pattern 2 formation 1. Function of the curve is y =
a ∗ xb and a = 49.57315, b = −0.1271

0 3 0 6 0 9 0

- 7

0

7

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.15a

Figure 3.15: Pattern 2, Formation 1 for Obstacle 4

0 3 0 6 0 9 0
1 6

2 4

3 2

4 0

 S u c c e s s f u l p a i r s
 A l l o m e t r i c 1 F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = a*x^b
Adj. R-Square 0.35316

Value Standard Error
Successful pairs a 47.11889 7.64304

Successful pairs b -0.11308 0.05157

(a) Triangular obstacle map with source-destination
pattern 2 formation 2. Function of the curve is y =
a ∗ xb and a = 47.11889, b = −0.11308

0 3 0 6 0 9 0

- 7

0

7

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.16a

Figure 3.16: Pattern 2, Formation 2 for Obstacle 4

CHAPTER 3. DISCUSSION OF RESULTS 31

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
0

5

1 0

1 5

2 0
 S u c c e s s f u l p a i r s
 L i n e F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = A + B*x
Adj. R-Square 0.52568

Value Standard Error
cell://[Book1]Fit
NL1!Parameter
s.y0.row_label

cell://[Book1]Fit
NL1!Parameter
s.y0.row_label

cell://[
Book1
]FitNL

cell://[Book1]Fit
NL1!Parameter
s.y0.Error

(a) Triangular obstacle map with source-destination
pattern 2 formation 3. Function of the curve is y =
A+B ∗ x and a = 10.51476, b = −0.04619

0 3 0 6 0 9 0
- 2

- 1

0

1

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.17a

Figure 3.17: Pattern 2, Formation 3 for Obstacle 4

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
0

3

6

9

1 2

1 5
 S u c c e s s f u l p a i r s
 L i n e F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = A + B*x
Adj. R-Square 0.383

Value Standard Error
cell://[Book1]Fit
NL1!Parameter
s.y0.row_label

cell://[
Book1
]FitNL

cell://[
Book1
]FitNL

cell://[Book1]Fit
NL1!Parameter
s.y0.Error

(a) Triangular obstacle map with source-destination
pattern 2 formation 4. Function of the curve is y =
A+B ∗ x and a = 10.84562, b = −0.0379

0 3 0 6 0 9 0

- 2

0

2

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.18a

Figure 3.18: Pattern 2, Formation 4 for Obstacle 4

CHAPTER 3. DISCUSSION OF RESULTS 32

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
1 5

2 0

2 5

3 0

3 5

4 0
 S u c c e s s f u l p a i r s
 A l l o m e t r i c 1 F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = a*x^b
Adj. R-Square 0.05152

Value Standard Error
Successful pairs a 39.18428 9.30908

Successful pairs b -0.08852 0.07446

(a) Square obstacle map with source-destination pat-
tern 2 formation 1. Function of the curve is y = a ∗xb

and a = 39.18428, b = −0.08852

0 3 0 6 0 9 0

- 8

0

8

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.19a

Figure 3.19: Pattern 2, Formation 1 for Obstacle 2

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

2 2

2 4

2 6

2 8

3 0

3 2

3 4

3 6

3 8

 S u c c e s s f u l p a i r s
 A l l o m e t r i c 1 F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = a*x^b
Adj. R-Square 0.23902

Value Standard Error
Successful pairs a 41.18162 5.67121

Successful pairs b -0.07852 0.04292

(a) Square obstacle map with source-destination pat-
tern 2 formation 2. Function of the curve is y = a ∗xb

and a = 41.18162, b = −0.07852

0 3 0 6 0 9 0
- 1 0

- 5

0

5

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.20a

Figure 3.20: Pattern 2, Formation 2 for Obstacle 2

CHAPTER 3. DISCUSSION OF RESULTS 33

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
0

3

6

9

 S u c c e s s f u l p a i r s
 L i n e F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = A + B*x
Adj. R-Square 0.496

Value Standard Error
cell://[Book1]Fit
NL1!Parameter
s.y0.row_label

cell://[
Book1
]FitNL

cell://[
Book1
]FitNL

cell://[Book1]Fit
NL1!Parameter
s.y0.Error

(a) Square obstacle map with source-destination pat-
tern 2 formation 3. Function of the curve is y =
A+B ∗ x and a = 8.3519, b = −0.02048

0 3 0 6 0 9 0
- 0 . 7

0 . 0

0 . 7

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.21a

Figure 3.21: Pattern 2, Formation 3 for Obstacle 2

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
0

3

6

9

1 2

1 5
 S u c c e s s f u l p a i r s
 L i n e F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = A + B*x
Adj. R-Square 0.04959

Value Standard Error
cell://[Book1]Fit
NL1!Parameter
s.y0.row_label

cell://[Book1]Fit
NL1!Parameter
s.y0.row_label

cell://[
Book1
]FitNL

cell://[Book1]Fit
NL1!Parameter
s.y0.Error

(a) Square obstacle map with source-destination pat-
tern 2 formation 4. Function of the curve is y =
A+B ∗ x and a = 8.3519, b = −0.02048

0 3 0 6 0 9 0
- 2

0

2

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.22a

Figure 3.22: Pattern 2, Formation 4 for Obstacle 2

CHAPTER 3. DISCUSSION OF RESULTS 34

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
1 5

2 0

2 5

3 0

3 5

4 0

4 5
 S u c c e s s f u l p a i r s
 A l l o m e t r i c 1 F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = a*x^b
Adj. R-Square 0.71685

Value Standard Error
Successful pairs a 55.88006 8.33573

Successful pairs b -0.22802 0.05101

(a) Hexagonal obstacle map with source-destination
pattern 2 formation 1. Function of the curve is y =
a ∗ xb and a = 55.88006, b = −0.22802

0 3 0 6 0 9 0
- 5

0

5

1 0

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.23a

Figure 3.23: Pattern 2, Formation 1 for Obstacle 7

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
2 0

2 5

3 0

3 5

4 0

4 5
 S u c c e s s f u l p a i r s
 A l l o m e t r i c 1 F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = a*x^b
Adj. R-Square 0.55675

Value Standard Error
Successful pairs a 51.43823 8.44851

Successful pairs b -0.17723 0.05431

(a) Hexagonal obstacle map with source-destination
pattern 2 formation 2. Function of the curve is y =
a ∗ xb and a = 51.43823, b = −0.17723

0 3 0 6 0 9 0

- 7

0

7

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.24a

Figure 3.24: Pattern 2, Formation 2 for Obstacle 7

CHAPTER 3. DISCUSSION OF RESULTS 35

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
0

3

6

9

1 2

1 5

 S u c c e s s f u l p a i r s
 L i n e F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = A + B*x
Adj. R-Square -0.14773

Value Standard Error
cell://[Book1]Fit
NL1!Parameter
s.y0.row_label

cell://[Book1]Fit
NL1!Parameter
s.y0.row_label

cell://[
Book1
]FitNL

cell://[Book1]Fit
NL1!Parameter
s.y0.Error

(a) Hexagonal obstacle map with source-destination
pattern 2 formation 3. Function of the curve is y =
A+B ∗ x and a = 8.31095, b = −0.00524

0 3 0 6 0 9 0

- 1

0

1

2

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.25a

Figure 3.25: Pattern 2, Formation 3 for Obstacle 7

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
0

3

6

9

1 2

1 5
 S u c c e s s f u l p a i r s
 L i n e F i t o f S u c c e s s f u l p a i r s

Su
cce

ssf
ul

pa
irs

N o . o f O b s t a c l e

Equation y = A + B*x
Adj. R-Square 0.020

Value Standard Error
cell://[Book1]Fit
NL1!Parameter
s.y0.row_label

cell://[
Book1
]FitNL

cell://[
Book1
]FitNL

cell://[Book1]Fit
NL1!Parameter
s.y0.Error

(a) Hexagonal obstacle map with source-destination
pattern 2 formation 4. Function of the curve is y =
A+B ∗ x and a = 8.05448, b = −0.01562

0 3 0 6 0 9 0
- 2

- 1

0

1

2

Re
sid

ua
l o

f S
uc

ce
ssf

ul
pa

irs

I n d e p e n d e n t V a r i a b l e

 R e s i d u a l o f S u c c e s s f u l p a i r s

(b) Residual graph of the given graph is 3.26a

Figure 3.26: Pattern 2, Formation 4 for Obstacle 7

Chapter 4

Conclusion

In this thesis, we present an algorithm for generating non-intersecting continuous
shortest path for multiple robots. This algorithm is based on a visibility graph
and the shortest path algorithm is found by Dijkstra’s Algorithm. These two
algorithms can be replaced by other similar algorithms with minor modification
to the proposed algorithm. For example, visibility graph can be replaced with
tangent graph[12] to deal with non-polygonal obstacles like circular obstacles or
cylindrical obstacles.

From the analysis of results given in Chapter 3, we can say that the paths
can intersect amongst each other under of two conditions.

1. In the first place, it is to be noted that intersections originate to avoid
obstacles. In this case if there are no obstacles, then the paths will never
intersect with each other. That is the straight lines joining the sources to
their respective destinations will not have any intersection point. Thus,
the number of obstacles and their positions has an effect on the rate of
successful non-intersecting paths. From the graphs of simulation results in
Chapter3 the number of obstacles(x) and number of successful(y) related
by the function y = a ∗ xb.The values of b’s in this function y = a ∗ xb
always less than 0. Therefore we can substitute the term xb by 1/x.

2. Secondly, intersection originate due to the positions of the robots source
and destination points. That is, the straight lines joining the sources to
their respective destinations of the given robots intersect with each other.
In this case, the number of obstacles may not affect the rate of successful
discovery of non-intersecting paths compared with the first condition. As
it can observed from the graphs that, for the formation 3 and 4 the relation
between number of obstacle(x) and number of success(y) is linear define
by the function y = A + B ∗ x and approximately constant that is value
of B approximately 0.

If all source and destination pairs maintain the first condition, then in-
creasing the number of obstacles in the map always decreases the number of

36

CHAPTER 4. CONCLUSION 37

non-intersecting paths.
On other hand, if all the source-destination pairs maintain the second condi-

tion, then the number of non-intersecting path remains approximately same for
any number of obstacles in the map. This condition is the worst case scenario
and the number of non-intersecting paths is very low in this case.

4.1 Challenges
This work can be also extended for the concave polygonal obstacles and non-
polygonal obstacles. In the present algorithm since the visibility graphs will not
work for non-polynomial obstacles and concave polygonals, the algorithm will
not produce a desired result.

One of the other, which is remaining is to find the time complexity of the
algorithm, which should match approximately with the polynomial fitted into
the graphs.

4.2 Future Work
In the proposed algorithm, the function (SuccessClass[Algorithm 3]) is used
to classify a source-destination pair into three classes. These classes represent
the possibility of finding non-intersecting path for that pair. Based on these
classes the algorithm takes decisions to discard source-destination pairs to search
for finding non-intersecting paths after certain attempts. These three types of
classes are not sufficient for represent the possibility of finding non-intersecting
paths for a given source-destination pair. In future, a classification model based
on probability can be proposed, such that the function will able to assign a
probability of finding non-intersecting path to each given pair.

In the proposed algorithm, we only consider the intersection between the two
paths but not the distance between the two paths. An extension of this work
can be proposed where the minimum distance between two path is maintained.
This problem arises when we work with polygonal robots instead of point robots,
as because if the minimum distance is not maintained between the paths, the
robots might collide amongst themselves.

Appendix A

An Introduction to setup of
Maps using Inkscape

The simulation of the proposed algorithm build in javafx using the IDE IntelliJ
IDEA. The maps of the obstacles are given to the simulation program in SVG
format. The SVG that is Scalable Vector Graphics is a XML-based vector
image format for two-dimensional graphics. An SVG file can be read by the
Java DOM(Document Object Model) Parser. The program read the SVG file
which is basically an image of obstacle map and create the graph of obstacles
in form of vertex set and edge set.

The SVG files are created by the software "Inkscape". The following setting
should be maintain to create a image map in SVG format which will compatible
with the simulation program -

• Every length should be in px unit in the SVG Document.

• The scaling factor of x and y should be 1 that is no scaling to the image
is acceptable.

• The polygons drawing should be done by the option "Create stars and
polygons".

• The SVG file should be save with extension plain svg no other versions of
SVG (like compressed svg, inkscape svg etc) are supported by the simu-
lation.

38

Bibliography

[1] M. Bennewitz, W. Burgard, and S. Thrun. Optimizing schedules for
prioritized path planning of multi-robot systems. In Proceedings 2001
ICRA. IEEE International Conference on Robotics and Automation (Cat.
No.01CH37164), volume 1, pages 271–276 vol.1, May 2001.

[2] MiÅąel Brezak and Ivan PetroviÄĞ. Path smoothing using clothoids for
differential drive mobile robots. IFAC Proceedings Volumes, 44(1):1133 –
1138, 2011. 18th IFAC World Congress.

[3] Ji-wung Choi, Renwick Curry, and Gabriel Elkaim. Piecewise Bezier Curves
Path Planning with Continuous Curvature Constraint for Autonomous
Driving, volume 68, pages 31–45. 10 2010.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd
edition, 2009.

[5] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computa-
tional Geometry: Algorithms and Applications. Springer Berlin Heidelberg,
2013.

[6] Mohamed Elbanhawi, Milan Simic, and Reza N. Jazar. Continuous path
smoothing for car-like robots using b-spline curves. Journal of Intelligent
& Robotic Systems, 80(1):23–56, Dec 2015.

[7] James J. Kuffner Jr. and Steven M. Lavalle. Rrt-connect: An efficient
approach to single-query path planning. In Proc. IEEE IntâĂŹl Conf. on
Robotics and Automation, pages 995–1001, 2000.

[8] M. Kamath and J. Yang. An intelligent algorithm to generate non-
intersecting paths for mobile robots in a multi-robot environment. In
[Proceedings 1989] IEEE International Workshop on Tools for Artificial
Intelligence, pages 641–648, Oct 1989.

[9] J. Kitzinger. The Visibility Graph Among Polygonal Obstacles: A Com-
parison of Algorithms. University of New Mexico, 2003.

39

BIBLIOGRAPHY 40

[10] Nor Badariyah Abdul Latip and Rosli Omar. Feasible path generation
using bezier curves for car-like vehicle. IOP Conference Series: Materials
Science and Engineering, 226:012133, aug 2017.

[11] S. M. LaValle and S. A. Hutchinson. Optimal motion planning for multi-
ple robots having independent goals. IEEE Transactions on Robotics and
Automation, 14(6):912–925, Dec 1998.

[12] Yun-Hui Liu and Suguru Arimoto. Path planning using a tangent graph
for mobile robots among polygonal and curved obstacles: Communication.
The International Journal of Robotics Research, 11(4):376–382, 1992.

[13] Vladimir J. Lumelsky and Alexander A. Stepanov. Path-planning strate-
gies for a point mobile automaton moving amidst unknown obstacles of
arbitrary shape. Algorithmica, 2(1):403–430, Nov 1987.

[14] Ellips Masehian and M. R. Amin-Naseri. A voronoi diagram-visibility
graph-potential field compound algorithm for robot path planning. Journal
of Robotic Systems, 21(6):275–300.

[15] N. Omar and Universiti Tun Hussein Onn Malaysia. Fakulti Kejuruter-
aan Elektrik dan Elektronik. Path Planning Algorithm for a Car-like
Robot Based on Cell Decomposition Method. Universiti Tun Hussein Onn
Malaysia, 2013.

[16] D.F. Rogers and J.A. Adams. Mathematical elements for computer graph-
ics. McGraw-Hill, 1976.

[17] Jacob T. Schwartz and Micha Sharir. On the piano movers’ problem: Iii.
coordinating the motion of several independent bodies: The special case
of circular bodies moving amidst polygonal barriers. The International
Journal of Robotics Research, 2(3):46–75, 1983.

[18] R. Siegwart and I.R. Nourbakhsh. Introduction to Autonomous Mobile
Robots. A Bradford book. Bradford Book, 2004.

[19] B. TTTI. AUTOMOBILE ENGINEERING.

[20] C. W. Warren. Multiple robot path coordination using artificial potential
fields. In Proceedings., IEEE International Conference on Robotics and
Automation, pages 500–505 vol.1, May 1990.

[21] Emo Welzl. Constructing the visibility graph for n-line segments in o(n2)
time. Information Processing Letters, 20(4):167 – 171, 1985.

[22] Kwangjin Yang, Daehan Jung, and Salah Sukkarieh. Continuous curva-
ture path-smoothing algorithm using cubic b zier spiral curves for non-
holonomic robots. Advanced Robotics, 27(4):247–258, 2013.

[23] Petr Åăvestka and Mark H. Overmars. Coordinated path planning for
multiple robots. Robotics and Autonomous Systems, 23(3):125 – 152, 1998.

	Introduction
	Description of Keywords
	Visibility graph
	Dijkstra's Algorithm
	Convex hull
	Bezier Curve
	Turning Radius

	Related Works
	Thesis Layout

	Concepts and Details of the proposed Algorithm
	Problem Statement
	Assumptions
	Details of the Algorithm
	Stage I
	Stage II

	Discussion of Results
	Input Patterns for Source-Destination of the Robots
	Results
	Discussion of results

	Conclusion
	Challenges
	Future Work

	An Introduction to setup of Maps using Inkscape

