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Abstract 
Finite Element (FE) model updating has been focused as an important topic of research in the field 

of structural dynamics for the last few decades. Various updation algorithms have been developed 

globally by many researchers and accuracy of these algorithms also have been verified through 

real-life application. Damage localization is also possible by proper updation of the model. So, FE 

model updating of a 2D cantilever plate and lumped mass localization in the plate is carried out in 

present thesis work using experimental modal analysis. 

At first, a finite element model of the plate is developed in MATLAB environment using 

plate dimensions, material property and proper boundary condition. The plate is discretized using 

4 noded iso-parametric elements. Numerical mass and stiffness matrices are generated from the 

developed model and using free vibration analysis, modal parameters (natural frequencies and 

mode shapes) are calculated. The calculated mode shapes are not mass normalized. Mass 

normalization of the mode shapes are done using proper mathematical formulation. After that, two 

numerical masses (100gms each) are lumped in the model at 2 nodes and corresponding mass 

matrix, stiffness matrix and modal parameters are estimated. Calculated mode shapes are mass 

normalized. 

Then, experimental modal analysis is performed in the laboratory to extract the modal 

parameters of original plate and plate with lumped mass at different locations using Impact 

hammer test. Mode shapes obtained from hammer test are not mass normalized. For mass 

normalization of the mode shapes, shaker test is performed.  

To verify the accuracy of Lagrange Multiplier method, mass and stiffness matrices of 

baseline FE model are updated using numerically calculated modal parameters (when two 100gms 

masses are lumped at 2 nodes) using two different approaches. It is observed that location and 

amount of lumped masses are correctly located from updated mass matrix when all the modes are 

considered for model updating. But accuracy is low when less number of modes (3 modes, 5 modes 

etc.) are considered. 

Modal parameters obtained from experimental modal analysis are also used to update the 

baseline FE model. Location of lumped mass can be identified from updated mass matrix (not for 

all cases) but the accuracy of percentage mass recovery is low as only 3 modes are considered in 

model updating. 2nd approach of model updating does not produce significant results when 

experimental mode shapes are used.   

 

Keywords: FE model updating, Damage localization, Lagrange Multiplier method, Impact 

hammer test, Shaker test, Lumped mass 
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CHAPTER-1 

INTRODUCTION 

1.1 Introduction 

Finite Element (FE) analysis plays an important role in structural analysis in various 

field of civil engineering. An accurate and effective FE model is very important for 

parameter identification, damage detection and assessing the condition of the structure. 

FE modelling of any structure based on initial parameters does not always satisfy the 

present dynamic behaviour of the structure due to various reasons like occurrence of 

damage, change in boundary condition, material specification and change in geometry 

during construction etc. Damage identification is very important to avoid capacity 

reduction of the structure and thereby catastrophic failure. Visual inspection is the 

general process of assessment of a structure, but it is not sufficient for structural health 

monitoring in most of the cases. Due to advancement of technology, various measuring 

instruments are available nowadays to record the dynamic behaviour of real life 

structure which are considered noise free. Such recorded Modal parameters (Mode 

Shape and Natural Frequency) are used to update the existing FE model or particularly 

to update the Numerical Stiffness and Mass matrix to comply with the orthogonality 

condition. Location of major change in Mass or Stiffness matrix will indicate the 

addition of some local mass or occurrence of some local damage in the structure. 

However, it is not very easy to identify the damage from field measurements. Because, 

sometimes there are little variation in Modal Parameters even if the critical members 

are severely damaged. 

In Finite Element Model Updating, three major steps are followed:  

i) Setting up of an objective function 

ii) Setting of updating parameters 

iii) Use of an optimization algorithm 

In Model updating process, not only satisfactory correlation is required between 

analytical and experimental results but also the updated parameters should preserve the 

physical significance. 

Three common form of errors which are responsible for inaccurate model prediction 

are as follows: 

a) Model structure errors: These errors occur when the model does not represent the 

physical behaviour of the prototype. Examples of such type of error are the 

assumptions on the linearity of the system and the boundary conditions. 

b) Model order errors: A sufficient number of degrees of freedom (DOF) must be 

used in the analysis so that the actual behaviour can be modelled. The model must 

be fully converged with respect to the natural frequency. 
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c) Model parameter errors: These type of errors are encountered when the model is 

perfect but the numerical value of the physical parameters are incorrect. This type 

of errors are targeted for Model updating.  

FE Model Updating methods can be broadly classified into 2 methods – Direct methods 

and Iterative methods. Direct methods are non-iterative in nature and essentially one 

step method. Updated FE models produced by such methods may not be symmetric. 

Hence, such methods are not much useful for industrial application. Industry only rely 

upon iterative methods. One of the most commonly used iterative method is Response 

Surface Methodology (RSM). There are many other FE model updating techniques 

available in which various researches have been performed. Among those techniques, 

Lagrangian Multiplier method, Derringer Desirability Function, Neural Networking are 

much familiar.  

In recent years, system identification is developed for accurate assessment of 

damage in a structure based on input and output signal. Though it is very popular among 

researchers in the field of civil engineering, but its application to real life structure is 

limited so far. Some experiments have been carried out in the laboratory to examine the 

effectiveness of the system identification algorithm without paying much attention to 

developed noise in the measurement. Further researches are necessary on real-size 

models to resolve the complications associated with the application of such algorithm 

on real life structures. 

Extensive researches have been performed in the area of parameter identification 

and divided into two major categories- 

i. Static Technique 

ii. Dynamic Technique 

Both the techniques are based on Finite Element model utilizing the experimental 

Modal parameters. In Static parameter identification, optimization is done by 

differentiating the numerical and correct stiffness matrix subjected to equilibrium 

constraints. The method requires displacement measurement at all DOFs used to define 

the FEM of the structure which is not practical. A limited number of displacement 

measurement at all DOFs used to artificially create the remaining. This introduces a 

major error in the calculation of stiffness matrix. 

Dynamic approach is chosen as an alternative to reduce the error. Vibration testing 

is the most common method of parameter identification in structural system. But there 

are still some limitations of this approach. Since dynamic parameter identification uses 

stiffness, mass and damping property of the structure, it is much more complicated than 

static method. In structural dynamics, experimental modal analysis from vibration test 

can be considered as a special case of system identification. 

As experimental data are the basis for updating the mathematical model, it is 

important that equivalent quantities be compared. This might represent a problem 

because the Discrete Mathematical Model (DMM) contains many DOF, some of which 

are not accessible or measurable by current techniques. Examples consist of internal 
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variables or rotational DOF. This means that the model identified by the experiment 

has fewer DOF than DMM. Most of the techniques developed for Model updating are 

based on the identified modal parameters like natural frequencies and mode shapes. 

There are two ways of circumventing the problem of incompleteness. The first way is 

to expand the measured modes by filling the unknown entries of the measured mode 

shapes with data from analytical model. As the model is not correct, it is necessary to 

iterate until convergence occurs. The second way is to condense the DMM to a model 

with fewer DOF by eliminating the rotational and unimportant DOF. The problem with 

this approach is that the model loses the physical meaning. For this study, condensation 

of the DMM has been done to fit it with the experimental results. 

When comparing experimental and analytical result, it is very important that Eigen 

vectors are paired correctly. Modal Assurance Criterion (MAC) is a popular technique 

to estimate the degree of correlation between the analytical and measured mode shapes. 

The MAC value is calculated by- 

                               (1a)                                                   

where, ui is analytical mode shape and vj is experimental mode shape. The value of Mi,j 

is a number between 0 and 1. Closer the value to 1 signifies the vectors are more similar. 

Ideally, the matrix M should be an identity matrix. In practice, it should obtain the 

values close to 1 in the diagonal and small values in the off-diagonal entries. 

       The MAC can be modified to be mass normalized. This results in small off-

diagonal terms. The modified MAC is calculated by- 

                          Mi,j =
[ui
TMavj]

2

[(ui
TMaui)(vj

TMavj)]
                                         (1b) 

where, Ma is the mass matrix. After all, measurements should be conducted carefully. 

Attention should be paid to the process of attaching transducers to the structure, since 

it can affect its behaviour. Special care must be taken in acquiring the data to avoid 

leakage and noise. It is very important to conduct accurate tests and derive the 

mathematical models to represent the structure being tested. Model Updating is not 

intended to be parameter identification scheme but rather a ‘fine tuning’ procedure. 

Here, it is intended to update the FE model based on both numerical and 

experimental results and verify the accuracy of updation algorithm. 

1.2 Organization of Dissertation 

In chapter-1, the reasons behind variation of numerical and experimental result and 

preliminary concept about finite element model updating are described. Procedure of 

MAC value calculation is also discussed here. 

In chapter-2, available literatures on FE model updating are mentioned and objectives 

of the present thesis have been discussed.  



4 

 

Mathematical basis to form the finite element model of the structure and to update the 

FE model are presented in chapter-3. Euler-Lagrangian equation of motion is 

discussed. Then, stress-strain relationship and strain displacement relationship 

formulation of a plate based on Reissner and Mindlin first order shear deformation 

theory is described. Thereafter, Finite element formulations of stiffness and mass matrix 

and procedure of condensation of those matrices are presented. Normalization 

procedures of analytical and experimental mode shapes are then mentioned. Finally, FE 

model updating procedures based on Lagrange multiplier method as discussed by 

Baruch is presented.    

In chapter-4, complete experimental setup and procedure is described. Modal 

parameters calculation by Experimental modal analysis and impedance value 

calculation by shaker test are shown. 

In chapter-5, numerical results obtained from finite element model and experimental 

results are presented. Results obtained after FE model updating are also shown. 

Discussions are also made based on results. 

In chapter-6 (final chapter of the dissertation), conclusions of the present study are 

drawn and future scopes of work are mentioned. 

  

 

 

  



5 

 

CHAPTER-2 

LITERATURE REVIEW 

2.1. Literature review: 

Modal parameters like mode shapes, natural frequencies of a structure can be estimated 

from analytical model. But most of the cases these parameters do not match with the 

real life structure as discussed earlier. So, researchers have turned their attention to 

identify a system which can accurately detect the actual dynamic behaviour of real life 

structure. Many researches already have been done on model updating and many are 

going on. Some of the intensive research works have been discussed here. 

Zadeh [1] defined system identification as “The determination on the basis of 

input and output of a system within a specific class of system, to which the system 

under test is equivalent”. Elements with specific class of system are same structures 

with different parameters. Ross [2] synthesized the stiffness and mass matrix based on 

experimental result. An algorithm was developed assuming the physical significance of 

individual mass and stiffness matrix are preserved. Mass and stiffness matrix are 

derived for a cantilever beam and compared with the earlier techniques. Gersch et al. 

[3] estimated the modal parameters of linear multi-degree of freedom structures. AR-

MA (Auto Regressive Moving Average) was used to estimate the parameters. Berman 

[4] used the same approach of Baruch but updated the mass matrix. He minimized the 

Euclidian norm which was calculated from the discrepancy of the updated and 

analytical mass matrix. The orthogonality conditions were satisfied as it was used as 

constraint equation. Baruch [5] developed an approach based on Lagrange multiplier. 

He discussed about two approaches to update the mass and stiffness matrix. First 

approach is to update the mass matrix first and then update the stiffness matrix based 

on updated mass matrix. Second approach is to update the stiffness matrix first and then 

update the mass matrix based on updated stiffness matrix. Berman and Nagy [6] used 

the measured natural frequencies and corresponding mode shapes to update the mass 

and stiffness matrix. Sheena, Unger and Zalmanovich [7] calculated the difference 

between the actual stiffness matrix and analytical stiffness matrix. Then they worked 

on the minimization of the change by adjusting the elements. Displacements were 

measured at some specific points and the displacement value at other points were 

estimated by Spline function. Sanayei and Nelson [8] estimated the structural stiffness 

matrix in the same way as Sheena, but least square minimization technique was used to 

minimize the calculated change in stiffness. The data were collected on the basis that 

displacement degrees of freedom and force degrees of freedom must be same which are 

practically not feasible. Cheng S. Lin [9] located the positions of modelling error in 

stiffness matrix. A unity method was developed based on modal test data and cross 

unity method was performed between experimental flexibility matrix and analytical 

stiffness matrix. Sanayei and Onipede [10] evaluated the structural parameter data 

using incomplete data. Static condensation technique was used for calculation. In 

calculation of stiffness change, a function was estimated based on force matrix. It was 



6 

 

applied on frame and truss structure. An accurate estimation of parameter was not 

achieved. Hjelmstad, Wood and Clark [11] estimated the structural parameter data 

using an error measure on complex linear structure. Monte-Carlo simulation was used 

to check the influence of noisy data on the estimated parameter. Finite Element model 

updating is the approach to update the analytical model by minimizing the difference 

between experimental data and the analytical data. It was discussed by Mottershead 

and Friswell [12]. Banan and Hjelmstad [13] worked on system identification based 

on measured response. They studied on a real life tall building at Oakland and compared 

the parameters estimated from the structure with simulated parameters obtained from 

dynamic transient response. Sanayei and Saletnik [14] used subsets of static applied 

force and strain measurement to have least sensitivity to noise and determined the input 

output relationship using Monte-Carlo simulation. Hjelmstad and Shin [15] developed 

an adaptive parameter grouping scheme assuming the baseline parameters are known 

and localize damage in a structural system. Bakhtiari-Nejad [16] utilized the applied 

static forces at a subset of DOFs and measurement of displacement at another DOFs for 

linear elastic structure. They introduced an optimization technique that minimizes the 

difference of the load vectors of damaged and undamaged structure. Load cases are 

selected by a method based on stored strain energy and measurement locations are 

selected using Fisher information matrix. 

  For the last few decades, dynamic identification techniques have been 

developed more maturely compared with the static approach and corresponding 

literatures are quite extensive. The basic premise of the vibration-based damage 

detection is that changes in physical properties of the structure change the dynamic 

behaviour of the structure or modal parameters. This change provide a feature to 

calculate the structural state. Sanayei et al. [17] introduced a modal stiffness based 

error function to estimate the stiffness and mass matrix. Natural frequencies and mode 

shapes data were also measured at element level. Finally, model updating was 

performed keeping the updated parameters within the stipulated value and thus reducing 

the error occurred in the estimation. Sanayei and Slavsky [18] worked on damage 

localization and Finite Element model updating using multi-response NDT data. A new 

protocol for combining multiple parameter estimation algorithms for model updating is 

presented. This approach allows for the simultaneous use of both static and modal NDT 

data to perform model updating at element level. A new damage index based on multi-

response NDT data is presented for damage localization of the structure. This index is 

based on static and modal strain energy change in a structure due to damage. F. 

Khoshnoudian & A. Esfandiari [19] used incomplete measured mode shapes and 

natural frequencies in model updating for damage detection. Unmeasured mode shapes 

were expressed as the function of measured mode shapes, mass matrix and natural 

frequencies of the structure. Idehara et al. [20] developed a modal analysis procedure 

based on adaptive filter RLS/QRD and used a model of ASCE benchmark structure to 

simulate a numerical case. A harmonic noise was used to diminish the effect of external 

noise. Then a state space equation was used to model the dynamic behaviour and modal 

parameters in filter processing. Minli Yu et al. [21] experimented the modal testing on 
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a simple experimental rig comprised of a clamped horizontal bar with lumped masses. 

Apart from damping, the proposed method was used for modal parameter identification. 

A signal generator (shaker) was used for a steady sinusoidal signal generation, an 

accelerometer was used for acceleration measurement from the masses, data acquisition 

board and in house data processing software was used to analyze. The process is 

practically feasible if the problem due to excessive noise and round off error in 

calculation can be avoided.  Many analytical methods have been developed by many 

researchers for the system identification based on model updating. All the analytical 

models are based on the fundamental of structural dynamics. The modal parameters are 

calculated based on Eigen-value problem or the orthogonality conditions mainly.  

Arora [22] discussed that model updating techniques can be executed in two 

approaches- Direct method and Iterative method. Kabe [23] updated the stiffness 

matrix by adjusting the coefficient of the stiffness matrix. The percentage change in the 

coefficient was minimized preserving the physical configuration of the model. Caesar 

[24] used the same approach of Berman and also used the same constraints. But, 

preservation of total mass of the system and interface forces were done simultaneously. 

Wei [25] updated the mass and stiffness matrix using different Lagrange multiplier and 

element correction methods. Yang and Chen [26] updated the stiffness matrix and 

mass matrix by direct updating method. Orthogonality conditions were preserved in the 

updating. The proposed method can be utilized with few modes available from 

experiment. The advantage of the proposed method is due to its simplicity and accuracy 

in computation. Lee and Eun [27] simultaneously updated the mass and stiffness 

matrix without using any multiplier. The proposed equations were developed by 

Moore-Penrose inverse matrix. Carvalho et al. [28] proposed a new method for model 

updating of any undamped structure without using modal expansion or reduction 

techniques. Incomplete measured modal data was used for updating preserving the 

unaffected Eigenvalues and eigenvectors. Mukhopadhyay et al. [29] investigated the 

problem associated with mass normalization of the measured mode shapes and 

parameter identification from the measured modal data. No prior mass or stiffness data 

is required for identification. Chen and Maung [30] presented an approach for model 

updating based on perturbation theory using regularized algorithm. Incomplete modal 

data was used for model updating without using any optimization techniques. Fu, Lu 

and Liu [31] presented a response sensitivity based approach for damage localization 

in an isotropic plate using the measured dynamic response of the plate. The local 

damage is simulated by reduction in the elemental Young’s modulus of the plate. In the 

forward analysis, the forced vibration response of the plate under external loads is 

obtained from Newmark direct integration. In the inverse analysis, a response 

sensitivity based finite element model updating approach is used to identify the local 

damages of the plate in time domain. 

With recent advancement of Artificial Intelligence or Machine Learning, it has 

been used for model updating by many researchers. Neural Network is one of such 

technique which has been used frequently for the last two decades. Zhou, Wang, Chen 

and Ou [32] updated the FE model based on Response Surface Method (RSM) and 
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Radial Basis Function (RBF). They studied on a laboratory scale bridge model and 

actual bridge. On the basis of numerical simulation, experimental study and real life 

application, it is seen that the method works well. Atalla et al. [33] studied on Model 

updating using neural network. The neural network estimate the parameters being 

updated very quickly and accurately without measuring all degrees of freedom of the 

system. This also avoids the use of mode shape expansion or reduction. Miller et al. 

[34] updated the finite element model using Artificial Neural network. Beams and 

frames were investigated in the laboratory scale. Their models were updated by ANN 

with dynamic characteristics of the structure as the input vector. The ANN (Multi-layer 

feed forward or Bayesian network) are trained with numerical data disturbed by 

artificial noise. This process is also used for identification of damage or addition of 

local mass in the system. Santamaria, Arras and Coppotelli [35] worked on 

application of neural network on FE model updating of any structure in operating 

condition. Dynamic properties of the structure were identified from response data 

obtained during operating condition. Feed-forward neural network was used in the 

study with modal parameters (natural frequencies, mode shapes) as input and physical 

property of the structure as output to train the network. Trained neural network is when 

simulated data is used but have some limitations when experimental data is used. That’s 

why an algorithm based on non-trained neural network is developed. Marwala, 

Mdlazil and Sibisi [36] studied on FE model updating using Bayesian approach. 

Maximum likelihood method and Bayesian method for model updating was compared. 

Maximum likelihood method was implemented using genetic algorithm where 

Bayesian approach was implemented using Markov chain Monte Carlo algorithm. 
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2.2 Objective of the present work: 

From literature review it is seen that different methods have been used globally for 

Finite Element model updating of any structure based on experimental modal 

parameters. As experimental mode shapes and natural frequencies are the basis of 

model updating, mass normalization of the mode shapes is very important. So, based 

on literature review, objectives of the present study have been selected as follows- 

 Selection of a mathematical model for estimation of the numerical results 

(mass matrix, stiffness matrix, mode shapes and natural frequencies) 

properly. 

 Application of dynamic condensation technique on mathematical model to 

comply with the experimentally available degrees of freedom. 

 Performance of experimental modal analysis to extract the modal 

parameters using B&K analyzer. 

 Calculation of impedance value and generalized modal mass for mass 

normalization of experimental mode shapes. 

 Comparison of numerical and experimental modal parameters. 

 Updation of baseline FE model using experimental results through proper 

techniques. 

 Localization of added mass from comparison between mass matrix after 

and before updation of baseline FE model.   
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CHAPTER-3 

MATHEMATICAL BASIS 

The dynamic characteristics of any structure are predicted at first by finite element 

model simulating the real structure with similar physical properties and boundary 

conditions. Then, the actual dynamic characteristics of the structure are estimated by 

some dynamic testing system. Numerical results obtained from FE model are not 

similar with the experimental results for most of the time due to uncertainty in boundary 

condition, damping value, damage initiation etc. So, FE model updating becomes 

inevitable to predict the existing behaviour of the structure. In such cases. System 

identification becomes an effective tool. System identification using experimental 

modal analysis is a two stage process. In the first stage, experimental modal analysis is 

performed on the structure. In the next stage, FE model is updated based on 

experimental modal parameters. 

3.1 Finite Element Modelling of the Plate    

In finite element modelling, a numerical model of the real structure is formed. Natural 

frequencies and corresponding mode shapes are calculated numerically by Eigen value 

analysis. So, formation of mass matrix and stiffness matrix is required.  

For obtaining the stiffness matrix and mass matrix by FE modelling, the 

principal of virtual work done is used. The principle of virtual work done or Hamilton’s 

principle describes the motion of a system under the action of conservative force. If T 

is the kinetic energy and U is the potential energy of a system from time t1 to t2 due to 

action of forces, then as per Hamilton’s principle 

                   

 

                                                                                                                                                                               

(2)                                                                                                                         

where, L is the Lagrangian function, L = (T – U) and I is the functional. 

Kinetic energy, T = T ( ) 

Potential energy, U = U ( ) 

where q and  are coordinates and coordinate derivative respectively. 

Using variational principle, functional I can be written as  

                                        δI = non)                (3)                                

This is known as extended Hamiltonian principle. Here, δWnon is non-conservative 

energy. Expressing T and U in differential form- 
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     (4) 

                                                                                                                                                                

     (5)                                                                                                                                  

So, L depends on the coordinates and coordinative derivatives of the system. It can be 

represented as 

L = L (  

Now, for a conservative system, the non-conservative energy must be zero. Putting the 

value of T and U from equation (4) and (5) into equation (3) 

Now, one term of equation (6) can be rewritten as 

                                                                      (6) 

Equation (6) now becomes 

δI = ∫ [∑[
∂T

∂qk

n

k=1

t2

t1

−
∂

∂t
(
∂T

∂q̇k
) − (

∂U

∂qk
)]]δqkdt 

                                                                                                                                     (7) 
Now,  is arbitrary and ’s are independent coordinates. Let us assume  and 

all other .So, 

∂T

∂q1
−
∂

∂t
(
∂T

∂q̇1
) − (

∂U

∂q1
) = 0 

                                                                                                                                     (8) 

In generalized form, the equation (8) can be expressed as 

    

 
                                       

where, k= 1, 2, 3……n. U is independent of . So, the above equation can be reduces 

to  

∂L

∂qk
−
∂

∂t
(
∂L

∂q̇k
) = 0 

                                                                                                                                     (9) 

This is known as Euler – Lagrange equation of motion. 
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The work done,  due to loading F over a system can be written as  

                                                       

     (10)    

                                                                                                                                                 

The strain energy or potential energy, U over the volume of the system can be written 

as 

                                                 U =
1

2
∫  {ε}T{σ}dV
V

                                                  (11) 

 

The kinetic energy, T can be written as 

                                                                      (12) 

 

Putting the value of T, U and  in the equation (3), functional I can be expressed as 

                   

 

                                                                                                                       (13)                             

An isotropic material requires only two independent parameters E (Young’s modulus 

of elasticity) and ν (poisson’s ratio) to express the constitutive relationship matrix and 

compliance matrix. 

The stress-strain relationship for any material can be expressed as 

                                                                                   (14)                                                      

or in the other form 

                                                                                 (15)                                                   

where,  is the stress component,  is the strain component, S is the constitutive 

relationship matrix and C is the compliance matrix. For an isotropic plate, the stress 

strain compliance relationship can be written as 

                                

                            (16) 

                                                                                                                                                      

The inverse of equation (16) or stress-strain relationship can be written as 
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{
 
 

 
 
σxx
σyy
τxy
τyz
τzx}
 
 

 
 

=
E

(1 + ν)(1 − 2ν)

[
 
 
 
 
(1 − ν) ν 0 0 0
ν (1 − ν) 0 0 0
0 0 (1 − 2ν)/2 0 0
0 0 0 (1 − 2ν)/2 0
0 0 0 0 (1 − 2ν)]

 
 
 
 

{
 
 

 
 
εxx
εyy
γxy
γyz
γzx}
 
 

 
 

 

                                                                                                                                                (17) 

The kinematics equations required for the development of stress-strain relationship, 

strain-displacement relationship of rectangular plate structure is derived considering the 

first order shear deformation theory by Reissner and Mindlin. The assumptions made 

in this theory are “The normal to the mid-plane of the plate which is straight before 

deformation remains straight but not necessarily perpendicular to the mid-plane after 

deformation” and “there is a linear variation of displacement across the plate thickness 

but that the plate thickness does not change during deformation”. Apart from the above 

assumptions, an additional assumption is considered which is “the normal stress 

through the thickness is ignored”. 

 

Fig 3.1a: Deformation and displacement of plate structure 

In Fig 3.1a the deformation of plate in X-Z plane is shown. Now, it is assumed 

that u, v and w are the displacements along X, Y and Z directions respectively. Ѱx, Ѱy 

are the rotations in Y-Z and X-Z plane respectively. The displacements of the mid-plane 

are u0, v0 and w0 in their respective axes. So, the displacement at any point can be 

written as 

 

 

                                                                                                                      (18)                                                                                                                                                  
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The total rotations are given by 

 

ѱy = βx −
δw

δy
 

                                                                                                                                   (19) 

where,  and  are transverse shear rotations respectively. 

Normal strain and shear strain can be expressed as 

 

 
                                        

 

 

 

 

 

γzx =
∂u

∂z
+
∂w

∂x
= ѱy +

∂w0

∂x
= γzx

0  

                                                                                                                                                    (20)                                                                                                             

where,  ,  and  are the curvatures represented 

in terms of total rotations. Now, stress-strain relationship from equation (17) can be 

expressed in terms of mid-plane strains and curvatures as 

       

  

(21)                                                                                                                                                                                                                                                                                                       

The forces and moments which acts on the plate can be expressed in terms of stresses 

or strains. The forces per unit width and the corresponding moments are shown in Fig 

3.1b with their positive direction. 
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Fig3.1b: Resultant shear forces and bending moments in plate 

 

The thickness of the plate is assumed as ‘h’. All the forces are shown with respect to 

mid-plane of the plate. As force = stress × area, force per unit width = stress × thickness 

of the plate. Now, the forces per unit width and corresponding moments in terms of 

stresses or strains can be expressed as 

 
                                                                                                                                                     

(22) 

 

                                                                                                                                                    

(23) 

The transverse shear forces can be expressed as 

                 (24) 
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where,  shear correction factor.  for rectangular section. Equation (22), (23) 

& (24) can be rewritten in single matrix form as 

{
  
 

  
 
Nx
Ny
Nxy
Mx

My

Mxy}
  
 

  
 

=
E

(1 + ν)(1 − 2ν)

[
 
 
 
 
 
 
 
 
 
 
(1 − ν)h νh 0 0 0 0
νh (1 − ν)h 0 0 0 0

0 0
(1 − 2ν)h

2
0 0 0

0 0 0
(1 − ν)h3

12

νh3

12
0

0 0 0
νh3

12

(1 − ν)h3

12
0

0 0 0 0 0
(1 − 2ν)h3

24 ]
 
 
 
 
 
 
 
 
 
 

{
  
 

  
 
εxx
0

εyy
0

γxy
0

kxx
kyy
kxy}

  
 

  
 

 

                                                                                                                                                                               (25) 

                                                                                                                                                             

Here, stress strain relationship can be written as 

                                                                                                              (26) 

where,  and are stress vector at any point in the element and the corresponding 

strain vector respectively. [D] is the stress strain relationship matrix or constitutive 

relationship matrix. Again, [D] matrix can be represented as 

 

where,  

Dbending =
E

(1 + ν)(1 − 2ν)

[
 
 
 
 
 
 
 
 
 
 
(1 − ν)h νh 0 0 0 0
νh (1 − ν)h 0 0 0 0

0 0
(1 − 2ν)h

2
0 0 0

0 0 0
(1 − ν)h3

12

νh3

12
0

0 0 0
νh3

12

(1 − ν)h3

12
0

0 0 0 0 0
(1 − 2ν)h3

24 ]
 
 
 
 
 
 
 
 
 
 

 

and                                                                                                                                                                      (27) 

Dshear =
Ehα

(1 + ν)(1 − 2ν)
[

(1 − 2ν)

2
0

0
(1 − 2ν)

2

] 

In order to predict the exact analytical solution of a structure of complex geometry 

along with other factors such as boundary conditions, material non-homogeneity, it is 

not possible to use the thorough mathematical process by hand. In this situation, finite 

element analysis is the best numerical method to analyze any type of structure with any 

kind of boundary condition. 

But in this method, the accuracy of the solution greatly depends on the number 

and arrangement of elemental mesh of the numerical model. If all the assumptions 
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during finite element modelling are taken perfectly, then the predicted results will 

surely match with the experimental results. A generalized governing equation is 

developed here for finite element modelling.  

In order to predict the analytical frequencies and mode shape, it is required to 

derive the mass and stiffness matrix of the structure. At first, the mass and stiffness 

matrix of the 4 noded iso-parametric elements has been derived. One of such elements 

is shown in fig with node number and natural coordinates (ξ and η) of each node. At 

each node, 5 degrees of freedom (u, v, w,  have been considered. 

                η 

 

                          4 (-1, 1)                                                        3 (1, 1) 

 

                                                                                              ξ 

 

                              1 (-1, -1)                                                       2 (1, -1) 

Fig 3.1c: Four noded element with natural coordinates 

The shape functions (also called interpolation functions) at each node of the 

quadrilateral element can be found out as 

;  

 

 

                                             (28)                                                                                                                         

The displacements and rotations at any point within the element can be expressed in 

terms of shape functions and displacements, rotations at the nodes. 

 

where,  is the shape function and , , , ,  are the nodal displacements and 

rotations of the ith  node. 

In matrix form, it can be written as 

{
 
 

 
 
u
v
w
ѱx
ѱy}
 
 

 
 

=∑

[
 
 
 
 
Ni 0 0 0 0
0 Ni 0 0 0
0 0 Ni 0 0
0 0 0 Ni 0
0 0 0 0 Ni]

 
 
 
 4

i=1

{
 
 

 
 
ui
vi
wi

ѱxi
ѱyi}
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or,                                                                                                                           (29) 

Here, d is the nodal displacement vector and N is the shape function. 

From equation (20), strains and curvatures are written in matrix form as 

    (30) 

                                                                                                                                                   

Equation (30) can be expressed by putting the values of  using 

equation (29) as 

{
 
 
 
 

 
 
 
 
εxx
0

εyy
0

γxy
0

kxx
kyy
kxy

γyz
0

γzx
0 }
 
 
 
 

 
 
 
 

=∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
∂Ni
∂x

0 0 0 0

0
∂Ni
∂y

0 0 0

∂Ni
∂y

∂Ni
∂x

0 0 0

0 0 0 0
∂Ni
∂x

0 0 0 −
∂Ni
∂y

0

0 0 0 −
∂Ni
∂x

∂Ni
∂y

0 0
∂Ni
∂y

−Ni 0

0 0
∂Ni
∂x

0 Ni ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4

i=1

{
 
 

 
 
u0i
v0i
w0i
ѱxi
ѱyi}

 
 

 
 

 

                                              

or,                                                                                                                              (31) 

where,  is the strain vector, {d} is the nodal displacement vector and [B] is the strain 

displacement relationship matrix. Again, [B] matrix can be represented as 
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where, 

Bbending =∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
∂Ni
∂x

0 0 0 0

0
∂Ni
∂y

0 0 0

∂Ni
∂y

∂Ni
∂x

0 0 0

0 0 0 0
∂Ni
∂x

0 0 0 −
∂Ni
∂y

0

0 0 0 −
∂Ni
∂x

∂Ni
∂y ]
 
 
 
 
 
 
 
 
 
 
 
 
 

4

𝑖=1

 

and                                                                                                                                         (32) 

     [Bshear] =∑

[
 
 
 0 0

∂Ni
∂y

−Ni 0

0 0
∂Ni
∂x

0 −Ni]
 
 
 4

i=1

 

3.2 Stiffness matrix formulation 

Total strain energy (U) stored in an element can be written as per equation (11) 

                                                                                             (33)                                 

Putting the value of   from equation (31) in equation (26), the stress vector can be 

written as 

                                                                                                 (34) 

As the effect of thickness of the plate is employed in matrix [D], changing the 

integral from volume to area and substituting value of  from equation (31) and  

from equation (34) in equation (33), it is obtained 

   

                                        U =
1

2
∫ ∫ {d}T

b

0

a

0
[B]T[𝐷] [𝐵] {𝑑}𝑑𝑥𝑑𝑦                              (35) 

where, a and b are the length and width of the element respectively. 

If {F} is the element load vector and {d} is the corresponding displacement vector, then 

from minimum potential energy principle- 

                                                                               (36) 

where, [K] is the element stiffness matrix. 

The strain energy (U) stored in the stored in the element can be written as 

    (37) 
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Comparing equation (35) and (37), stiffness matrix can be written as 

   (38)                                           

The elemental area using natural coordinate can be written as 

 

Where,  is the Jacobian matrix and it is expressed as 

 

Now, stiffness matrix from (38) can be written as 

   (39)                                                                 

In numerical analysis, numerical integration for stiffness matrix evaluation is 

performed using Gauss Quadrature method at predefined Gauss point. 2×2 sampling 

points are considered in numerical analysis. 

 

3.3 Mass matrix formulation 

As per the force equations of equilibrium, the stress resultants along X, Y and Z 

directions are calculated as 

 

 

∂τxz
∂x

+
∂τyz

∂y
+
∂σzz
∂z

= ρm
∂2v

∂t2
 

                                                                                                                                   (40) 

 Substituting the value of u, v and w from equation (18) and integrated the resulted 

equation with limit –h/2 to +h/2, it is obtained 

 

 

∂Qx
∂x

+
∂Qy

∂y
+ q = Iẅ0 

                                                                                                                                   (41) 
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Establishing the moment relationship equations and integrating the resulted equation 

with limit     –h/2 to +h/2, it is obtained 

 

                                                                              (42)                                                                                                                                                      

Equation (41) and (42) is arranged in matrix form as 

            (43) 

                                                                                                                                                      

So, the inertia matrix is computed as  

 

where, 

 

 

 

Now, putting the value of {u} from equation (29) into equation (12), the kinetic energy 

can be rewritten as 

                                                                             (44) 
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Kinetic energy, T can be expressed as 

                                                                                                      (45)                                                                                                                                                      

From equation (44) and (45), mass matrix for each element can be written as 

 

                                                                             (46) 

                                                                                                                                                      

3.4 Condensation of Mass and Stiffness matrix 

The basic equation related to the dynamic behaviour of a system with n degree of 

freedom is as follows- 

      (47) 

where, x(t), ,  denote the displacement, velocity and acceleration responses in 

time domain respectively. [M] is the system mass matrix, [C] is the system damping 

matrix, [K] is the system stiffness matrix. f(t) denotes the time dependent external force 

acting on the system. Assuming free vibration and undamped system, equation (47) 

becomes 

                                                                             (48) 

The solution of the above eigenvalue problem can be solved in following way 

, where i= 1, 2, 3…….n 

                             (49) 

Equation (49) gives the ith frequency  and corresponding ith mode shape . It is not 

possible to measure all the degrees of freedom of the system experimentally due to lack 

of costly instruments. Master dof (measured) and slave dof (unmeasured) are chosen 

depending on the ratio of diagonal terms of [K] and corresponding diagonal terms of 

the [M] matrix. Slave dof are those which give large K/M ratio of the corresponding 

diagonal terms. But practically choosing of the slave dof are done depending on the 

availability of measuring instruments. The generalized dynamic equation (47) is 

partitioned and can be written as in the following form 

 

                    (50) 
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where, , ,  denote the displacement, velocity and acceleration responses to be 

preserved and , ,  denote the displacement, velocity and acceleration responses 

to be eliminated. 

Breaking down the equation (50) in the following form 

   

     (51) 

    

   (52) 

In order to remove the degrees of freedom identified for elimination, a 

condensation procedure is carried out and described below. 

Static condensation 

Ignoring the mass and damping matrix, equation (52) becomes 

                                            (53) 

Equation (53) can be rewritten as 

                                                         (54) 

where,  and  

Dynamic condensation 

In this case, the mass effect of the system is considered but the damping effect is 

ignored. The acceleration of the eliminated points can be written using equation (54) as 

                                                                                                         (55) 

Putting the value of  from equation (55) in equation (52), it is obtained 

                           (56) 

Rearranging the equation (56) and using the value of , it is obtaineed  

                                  (57) 

Putting the values of  and  from equation (55) and (57) respectively in equation 

(51) and keeping the damping matrix zero, it is obtained 

     
                                                                                                                                   (58) 

Rearranging equation (58), it is obtained 

 

                                                                                 

(59) 
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Taking , equation (59) can be rewritten as 

                                                                  (60) 

where,  and 

 

 and  are the reduced/condensed mass and stiffness matrix 

respectively and those matrices are used for finite element analysis. 

 

3.5 Mass normalization of analytical mode shape 

After calculating the ith frequency ( ) and corresponding ith mode shape ( ) from 

eigenvalue problem using reduced mass and stiffness matrix, the generalized mass for 

different modes are calculated as 

                                                                                                (61) 

where,  is the generalized mass of the ith mode and [M] is the reduced/condensed 

mass matrix. 

Now, mass normalized mode shape is calculated as 

                                                                                                   (62) 

                                                                                                              

3.6 Mass normalization of experimental mode shape 

The equation (47) can be written for harmonic excitation as 

                 where, i= mode no = 1, 2, 3……….n. 

                 

        

       

      

     

Now, modal impedance value can be calculated as 

                                                                 (63) 
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If the driving frequency  = ith natural frequency of the structure ( ), then the 

generalized stiffness and mass for the ith mode can be written as 

                                                                                                     (64)                                                                                                                                                    

                 (65)                                                                                                                                         

Using generalized mass, the mass normalized experimental mode shape can be 

calculated as 

                                                                                                         (66) 

 

3.8 Model updating techniques 

System identification is done by model updating. Various model updating techniques 

are available globally based on experimental results. As modal parameters are estimated 

using experimental modal analysis, updation algorithm should be based on 

experimental modal parameters. Lagrange Multiplier method is one of such techniques 

which is discussed by Baruch [5]. Detailed description of the method is given below- 

3.8.1 Lagrange Multiplier method 

3.8.1.1 First variation: Mass matrix updation followed by stiffness matrix 

updation 

At first, the mode shapes are mass normalized using analytical mass matrix by 

following equation 

                                                          (67)               

where,  is mass normalized experimentally measured mode shape,  is 

experimentally measured mode shape, [M] is analytical mass matrix which is assumed 

to be symmetric. 

The basic equation of vibration 

                                                                                        (68) 

where, M is the mass matrix, K is the stiffness matrix and x is the displacement. 

If,  is the updated mass matrix,  is the updated stiffness matrix,  is the 

experimental measured mode shape and  is the experimentally measured angular 

velocity, then following two orthogonality conditions are to be fulfilled. 

                                      ;                                (69) 

A new vector p is introduced which is defined as 
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Now, equation (68) can be written as 

                                                                                  (70) 

The norm is expressed as 

                                                                           (71) 

Where, M is the analytical mass matrix. 

Minimization of the Norm with the constraint of orthogonality (  ) 

yields 

  (72)                                 

By using the equilibrium equation ( , the following equation is 

obtained- 

        (73) 

where, I is the identity matrix. 

Updated stiffness matrix as given by Baruch [5]- 

     
                                                                                                                                   (74) 

where, K is the analytical stiffness matrix. 

3.8.1.2 Second variation: Stiffness matrix updation followed by mass matrix 

updation 

In this process, the experimental mode shapes are normalized using analytical stiffness 

matrix using the following equation- 

                                                                                       (75) 

where,  is the stiffness normalized experimentally measured mode shape,  is the 

experimentally measured mode shape, K is the analytical stiffness matrix and  is the 

experimentally measured angular velocity. 

The natural norm to be minimized to obtain the updated stiffness matrix is given by- 

 

                                           (76) 
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where,  is the updated mass matrix and  is the updated mass matrix and K is the 

analytical mass matrix. 

By using Lagrange multipliers, the constraint  is incorporated into 

the norm f. 

Minimization of the so-obtained Lagrange function with to respect  yields- 

 

                              (77) 

By using the equilibrium equation ( , equation (77) can be written as- 

 

                      (78) 

Multiplication of equation (78) by  and second usage of the equilibrium equation 

finally yields- 

         (79) 

Updated mass matrix derived by Baruch [5] is given below- 

     
                                                                                                                                   (80)       

where, M is the analytical mass matrix. 
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CHAPTER-4 

EXPERIMENTAL SETUP AND PROCEDURE 

Modal parameters estimated by analytical model does not always represent the actual 

behaviour of the existing structure. For proper estimation of the dynamic behaviour of 

any structure, experimental measurements are necessary. In present thesis work, 

experimental modal analysis is performed in the laboratory to extract the modal 

parameter of plate vibration using Hammer Test. Mass normalization of the mode 

shapes is done using vibration parameters obtained through shaker test. Details of the 

experimental setup and test procedure is described below. 

4.1 Details of Hammer test: 

Experimental setup is established in the laboratory where an Aluminium plate is fixed 

along one edge and other three edges are kept free. So, ideally it behaves like a 

cantilever plate as shown in the Fig 4.1a. The plate is discretized into 16 numbers of 4 

noded iso-parametric elements (shown in Fig 4.1b) which create 25 nodes (5 along 

length × 5 along width) in the plate. This experiment can be performed in two different 

ways- i) striking the hammer at all the nodes and measuring the response at a particular 

node ii) striking the hammer at a particular node and measuring the response at all the 

nodes. In present experiment, the hammer is roved at all the nodes and response is 

measured at a single node. It is also called Roving Hammer Test. 

 

 

Fig 4.1a: Actual experimental plate  

Location of added 

mass 
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Fig 4.1b: Schematic representation of the plate 

 

Hardware and Software used: 

Hardware accessories used for hammer test- 

i. Impact hammer attached with load cell to measure the excitation (B&K, Type-

8206-003). 

ii. Accelerometer to measure the acceleration as response (B&K, Type-4507). 

iii. Data Acquisition system to collect the excitement and response data from 

hammer and accelerometer (B&K). 

iv. BNC (Bayonet Neill-Cocelman) cable to connect the input and output devices 

with the Data Acquisition system. 

v. Personal computer to process the signal received via Data Acquisition system. 

vi. LAN interface to connect the Data Acquisition system to the computer. 

vii. Dongle for specific software authentication. 

Software used for data collection and extraction are as follows: 

i. PULSE LabShop version 15.1.0 software for Fast Fourier Transformation 

(FFT) of the signal and measurement of Frequency Response Function (FRF). 

ii. ME’scope VES v5.1 software for extraction of modal parameters from 

measured FRF data. 

Excitation measurement: 

Excitation or impulse load on the plate is given by an impact hammer. Impact hammer 

is specially designed to produce vibration of short duration when the target structure is 
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stroked and particularly used in laboratory scale. A load cell is mounted on it to convert 

the mechanical load into proportional signal. Different impact tips are used depending 

on required energy content of excitation. Soft rubber tip produces low frequency 

vibration as energy content is less and hard metal tip produces high frequency vibration 

as energy content is high. Impact hammer attached with load cell and metal tip is shown 

in Fig 4.1c 

 

 

Fig 4.1c: B&K 8206-003 type impact hammer 

 

Response measurement: 

Dynamic response of any structure can be measured as acceleration, velocity or 

displacement. Here, an accelerometer is used to measure the acceleration at a particular 

point. This is uni-axial accelerometer which measures the acceleration in Z direction 

only. A typical accelerometer is shown in Fig 4.1d 

 

 

Fig 4.1d: B&K 4507 type accelerometer 
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Data Acquisition system: 

B&K Data Acquisition system is used to collect the excitation and response data from 

hammer and accelerometer. It is connected with the PC through a LAN cable. Data 

Acquisition system is shown in Fig 4.1e 

         

Fig 4.1e: B&K Data Acquisition system 

 

Procedure: 

Hammer test is performed to extract the experimental modal parameters (natural 

frequency and mode shapes) of plate vibration. Impulse load is applied at every node 

by roving the impact hammer (shown in Fig 4.1c). An accelerometer (shown in Fig 

4.1d) is mounted at node 7 of the plate to measure the acceleration during vibration 

when the plate is stroked by hammer. Hammer and accelerometer is connected by BNC 

cable to the Data Acquisition system (shown in Fig 4.1e). Data Acquisition system is 

connected to the PC through a LAN cable (shown in fig). PULSE LabShop software is 

installed in PC for Fast Fourier Transformation of the incoming signals. Transfer 

function or Frequency Response function (FRF) is calculated during every excitation. 

FRF is calculated based on average value of three excitations at each node and stored 

as Universal ASCII file for modal parameter extraction in ME’scope software. In 

ME’scope software these ASCII files are imported as data block to calculate the natural 
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frequency and mode shapes. Flow diagram of hammer test is shown below. 

Experimental setup is shown in Fig 4.1f. 

FLOW DIAGRAM OF HAMMER TEST 

            

 

 

 

Fig 4.1f: Complete setup of Hammer Test 

                  
Location of 

accelerometer 
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4.2 Shaker test details: 

After Hammer test, Shaker test is performed to measure the impedance values at those 

frequencies obtained from hammer test. From measured impedance values, generalized 

modal masses are calculated to normalize the mode shape values. 

Hardware and Software used 

Different hardware and software are used to perform the shaker test in the laboratory. 

Hardware are as follows- 

i. Shaker (B&K, Type-4825)  

ii. Accelerometer to measure the response (B&K, Type-4507) 

iii. Force transducer (B&K, Type-8230-001) 

iv. Stringer 

v. Power amplifier 

vi. Data Acquisition system (B&K) 

Software used- 

i. PULSE LabShop version 15.1.0  

Excitation measurement 

In shaker test, harmonic oscillation is applied to the plate at a particular location through 

Data Acquisition system, Power Amplifier, Shaker and stringer. A Force Transducer is 

mounted at the top of the stringer to produce equivalent signal of applied load. 

Instruments required for excitation are shown in following Fig.                                                                                   

 

Fig 4.2a: Stringer attached with load cell at the top 

 

Fig 4.2b: B&K Shaker (Type-4825) 
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Fig 4.2c: Power Amplifier 

Response measurement 

Response is measured as acceleration by an accelerometer (B&K, Type-4507). Same 

accelerometer which was used in hammer test is also used here but the location is 

shifted. Accelerometer is already shown in Fig 4.1d. 

Procedure 

For Shaker test, sinusoidal signals are generated from Data Acquisition system (B&K) 

by PULSE LabShop software at individual modal frequency as obtained from 

experimental modal analysis. The generated signals are then transmitted to the Power 

Amplifier from Data Acquisition system (B&K). From Power amplifier, the amplified 

signals are transmitted to the B&K Shaker and finally a harmonic load is applied at a 

particular location of the plate by a vertical stringer. Vertical stringer is connected to 

the plate by a Force Transducer which produces an equivalent signal of the applied 

load. An accelerometer (B&K) is attached on the upper side of the plate just above the 

stringer location. Signals produced by Force Transducer and Accelerometer are 

received by Data Acquisition system and then analyzed by PULSE LabShop software 

to calculate the impedance value of each mode. From modal impedance value, 

generalized modal masses are calculated using mathematical formation of equation. 

Flow diagram is shown below. Complete experimental setup is shown in Fig 4.2d. 

FLOW DIAGRAM OF SHAKER TEST 

Excitation 

signal recorded 

by Transducer 

 Periodic load is applied on the plate by 

shaker through stringer 

 

Generated signal is amplified by power 

amplifier 

 

Signal generated by B&K Data 

Acquisition system 

 Response measured by 

acceleration 

 

Impedance calculation 
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Fig 4.2d: Complete setup of shaker test           
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CHAPTER-5 

RESULTS AND DISCUSSION 

Finite Element model updating of a Two-dimensional (2D) cantilever plate and 

localization of added mass based on experimental modal parameters have been studied 

in the present thesis work. The procedure of measurement of experimental dynamic 

parameters using B&K analyzer and Shaker is already discussed in previous chapter. 

The numerical results are obtained from Finite Element model of the structure in 

MATLAB environment. Finite Element model is set up based on the mathematical 

formulation discussed in chapter 3. 

5.1 Details of the structure: 

5.1.1 Dimension: 

Length = 0.51m    Width = 0.51m Thickness = 0.00569m 

   

5.1.2 Material Property: 

● Material- Aluminium     ● Modulus of elasticity = 69 GPa 

                     ● D ensity = 2700 Kg/m3   ● Poisson’s ratio = 0.332 

5.1.3 Boundary condition: 

The plate is fixed along one edge and all the three edges are kept free. So, it behaves 

like a cantilever plate. 

       

 

  Fig 5.1a: Schematic diagram of the plate 
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5.2 Numerical results: 

Finite Element model of the plate is set up in MATLAB environment. For analysis, an 

in-house FE code is developed. The plate is discretized into 4×4 meshes using 4 noded 

iso-parametric element. As at every node there are 5 degrees of freedom (3 translational, 

2 rotational), total 125 (25×5) degrees of freedom are considered for the plate. So, the 

developed mass matrix and stiffness matrix are of size (125×125). But, measurement 

of all 5 degrees of freedom at a node is not practically feasible. Therefore, Dynamic 

Condensation is applied considering displacement along Z direction only to reduce the 

size of the mass and stiffness matrix to (25×25). As there is no movement of the fixed 

edge, displacement of that 5 nodes (along fixed edge) is completely locked which 

further reduces the size of the mass and stiffness matrix to (20×20). Free vibration 

analysis is carried out in MATLAB using the mass and stiffness matrix to calculate the 

modal parameters. Numerical study is carried out considering 2 different conditions-  

Model-I: Plate without any lumped mass 

Model-II: Plate with 100gms lumped mass at node 17 and 18 

 

Fig 5.2a: Discretization of the plate into 4-noded iso-parametric element 

5.2.1 Model-I: Plate without any lumped mass 

Natural frequencies of the numerical model before and after condensation are listed 

below- 
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Table 5.2a: Numerical natural frequencies of the plate before and after condensation 

Mode 
Frequency before 

condensation (Hz) 

Frequency after 

condensation (Hz) 
Error 

1st 19.22 19.22 0 

2nd 46.64 46.64 0 

3rd 131.14 131.14 0 

4th 159.96 159.96 0 

5th 189.34 189.34 0 

6th 318.09 318.09 0 

7th 456.69 456.69 0 

8th 538.52 538.52 0 

9th 572.25 572.25 0 

10th 646.62 646.62 0 

11th 701.77 701.77 0 

12th 1038.19 1038.19 0 

13th 1337.09 1337.09 0 

14th 1381.23 1381.23 0 

15th 1441.10 1441.10 0 

16th 1486.31 1486.31 0 

17th 2281.06 2281.06 0 

18th 2297.03 2297.03 0 

19th 2445.14 2445.14 0 

20th 2511.95 2511.95 0 

 

From Table 5.2a, it is seen that there is no error in frequency measurement before and 

after condensation. So, a perfect condensation is ensured. Mode shapes obtained from 

Eigenvalue analysis is not mass normalized. Therefore, mass normalization of the mode 

shapes is done through proper mathematical formation. Mass normalized mode shapes 

are listed in Table 5.2b. Corresponding mode shapes are plotted in Figs 5.2b, 5.2c and 

5.2d to get a visual knowledge about the modes of vibration. Major diagonal elements 

of mass and stiffness matrices are shown in Table 5.2c and 5.2d respectively. 

 

Fig 5.2b: Numerical mode shape (1st mode) of plate without lumped mass 
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Fig 5.2c: Numerical mode shape (2nd mode) of plate without lumped mass 

 

 

Fig 5.2d: Numerical mode shape (3rd mode) of plate without lumped mass 

 

From the above mode shapes, it is observed that 1st and 3rd mode is pure bending mode 

and 2nd mode is torsional mode. Torsional mode is one of the predominant mode in the 

vibration of plate structure. Higher modes are not plotted here.   



Table 5.2b: Mass normalized numerical mode shape values of plate without lumped mass 

1st 

mode 

2nd  

mode 

3rd 

mode  

4th  

mode 

5th 

mode  

6th  

mode 

7th 

mode  

8th  

mode 

9th  

mode 

10th 

mode 

11th 

mode  

12th  

mode 

13th 

mode  

14th  

mode 

15th 

mode  

16th 

mode  

17th   

mode 

18th  

mode 

19th 

 mode 
0.078 0.228 -0.506 0.026 -0.716 -0.988 -0.054 0.811 -1.589 1.46 -1.43 0.85 0.40 -1.90 0.35 0.79 -1.58 -1.41 1.83 

0.311 0.714 -1.209 0.313 -1.325 -1.555 0.622 0.212 -1.224 0.22 0.01 -0.17 1.25 1.52 -1.10 -0.82 1.65 1.49 -1.97 

0.638 1.170 -0.994 1.062 -0.307 0.047 1.695 -1.085 1.037 -2.00 1.87 0.83 0.19 -0.30 1.68 0.63 -1.22 -1.15 1.47 

0.999 1.528 0.020 2.023 1.749 2.094 1.296 1.329 -0.916 2.23 -2.50 1.59 -1.03 0.52 -1.59 -0.69 1.06 1.15 -1.11 

0.096 0.115 -0.293 -0.277 -0.346 0.147 -0.431 0.698 -0.061 -0.40 1.05 -0.48 -0.86 1.89 -0.09 0.97 -0.86 -0.28 -1.49 

0.336 0.358 -0.545 -0.556 -0.627 0.300 -0.799 0.200 0.640 -0.08 0.05 -0.23 -1.39 -1.27 1.17 -1.01 0.89 0.31 1.61 

0.659 0.590 -0.084 -0.275 -0.060 0.066 -0.797 -0.844 0.967 0.58 -1.51 -0.92 -0.30 -0.25 -2.10 0.67 -0.60 -0.13 -1.19 

1.015 0.793 1.059 0.302 1.142 -0.482 -1.586 1.039 -1.308 -0.43 1.96 -1.98 1.36 -0.08 2.06 -0.27 0.33 -0.26 0.90 

0.094 -1.124 -0.185 -0.415 1.004 0.600 -2.95 0.744 2.595 -0.84 -9.93 0.47 1.09 -1.95 -0.22 1.01 3.11 1.78 1.31 

0.343 -4.662 -0.314 -0.953 2.008 0.948 -2.801 0.260 1.527 -0.13 -6.89 0.39 1.66 1.12 -1.10 -1.05 -3.37 -1.88 -1.42 

0.666 -7.318 0.262 -0.852 1.153 0.065 1.993 -0.980 -2.204 1.12 1.47 1.05 0.36 0.68 2.37 0.81 2.60 1.26 1.10 

1.022 -4.773 1.481 -0.421 -3.365 -1.507 1.678 0.703 -8.510 -1.69 -2.03 2.41 -1.65 -0.22 -2.40 -0.84 -2.78 -0.51 -8.66 

0.096 -0.115 -0.293 -0.277 0.346 0.147 0.431 0.698 0.061 -0.40 -1.05 -0.48 -0.86 1.89 -0.09 0.97 0.86 -0.28 1.49 

0.336 -0.358 -0.545 -0.556 0.627 0.300 0.799 0.200 -0.640 -0.08 -0.05 -0.23 -1.39 -1.27 1.17 -1.01 -0.89 0.31 -1.61 

0.659 -0.590 -0.084 -0.275 0.060 0.066 0.797 -0.844 -0.967 0.58 1.51 -0.92 -0.30 -0.25 -2.10 0.67 0.60 -0.13 1.19 

1.015 -0.793 1.059 0.302 -1.142 -0.482 1.586 1.039 1.308 -0.43 -1.96 -1.98 1.36 -0.08 2.06 -0.27 -0.33 -0.26 -0.90 

0.078 -0.228 -0.506 0.026 0.716 -0.988 0.054 0.811 1.589 1.46 1.43 0.85 0.40 -1.90 0.35 0.79 1.58 -1.41 -1.83 

0.311 -0.714 -1.209 0.313 1.325 -1.555 -0.622 0.212 1.224 0.22 -0.01 -0.17 1.25 1.52 -1.10 -0.82 -1.65 1.49 1.97 

0.638 -1.170 -0.994 1.062 0.307 0.047 -1.695 -1.085 -1.037 -2.00 -1.87 0.83 0.19 -0.30 1.68 0.63 1.22 -1.15 -1.47 

0.999 -1.528 0.020 2.023 -1.749 2.094 -1.296 1.329 0.916 2.23 2.50 1.59 -1.03 0.52 -1.59 -0.69 -1.06 1.15 1.11 
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Table 5.2c: Major diagonal elements of mass matrix of the plate without lumped mass (in Kg) 

Node 1st  2nd  3rd  4th  5th  6th  7th  8th  9th  10th 11th  12th  13th  14th  15th  16th  17th   18th  19th  20th  21st  22nd  23rd  24th  25th  

1st  Locked                         

2nd   0.055                        

3rd    0.055                       

4th     0.055                      

5th      0.0275                     

6th       Locked                    

7th        0.11                   

8th         0.11                  

9th          0.11                 

10th           0.055                

11th            Locked               

12th             0.11              

13th              0.11             

14th               0.11            

15th                0.055           

16th                 Locked          

17th                  0.11         

18th                   0.11        

19th                    0.11       

20th                     0.055      

21st                       locked     

22nd                       0.055    

23rd                        0.055   

24th                         0.055  

25th                         0.0275 
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Table 5.2d:  Major diagonal elements of the stiffness matrix of the plate without lumped mass (in N/m) 

Node 1st  2nd  3rd  4th  5th  6th  7th  8th  9th  10th 11th  12th  13th  14th  15th  16th  17th   18th  19th  20th  21st  22nd  23rd  24th  25th  

1st  Locked                         

2nd   4e6                        

3rd    2.6e6                       

4th     1.1e6                      

5th      2.8e5                     

6th       Locked                    

7th        8.7e6                   

8th         6e6                  

9th          3.3e6                 

10th           7.9e5                

11th            Locked               

12th             9.6e6              

13th              6.9e6             

14th               4.1e6            

15th                1.2e6           

16th                 Locked          

17th                  8.7e6         

18th                   6e6        

19th                    3.3e6       

20th                     7.9e5      

21st                       Locked     

22nd                       4e6    

23rd                        2.6e6   

24th                         1.1e6  

25th                         2.8e5 
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5.2.2 Model-II: Plate with 100gms lumped mass at node 17 and 18 

In baseline FE model of the plate, two 100gms mass are lumped at node 17 and 18 

numerically as shown in Fig 5.2e. But as the nodes along the fixed edge are locked, 

mass and stiffness matrices are condensed to a size of (20×20) which is already 

discussed. So, in condensed form of numerical mass matrix, the change of mass take 

place in node 13 and 14. Due to lumping of mass, mass matrix is changed but stiffness 

matrix remains unchanged. As a result, natural frequencies and mode shape values also 

changes. Natural frequencies and mode shape values of all modes are shown in Table 

5.2e and 5.2f.  

 

 

Fig 5.2e: Location of lumped mass (shown by arrow) 
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Table 5.2e: Numerical natural frequencies of the plate with 100gms mass lumped at 

node 17 &18 

Mode Natural frequency (Hz) 

1st 19.10 

2nd 46.32 

3rd 128.41 

4th 156.97 

5th 185.41 

6th 316.36 

7th 436.73 

8th 521.42 

9th 560.24 

10th 604.05 

11th 697.89 

12th 964.42 

13th 1148.09 

14th 1268.93 

15th 1344.60 

16th 1468.34 

17th 2039.87 

18th 2290.02 

19th 2404.75 

20th 2449.93 

 

From the above frequencies, it is seen that the values are reduced slightly from the 

frequency values of the plate without any lumped mass. When mass of any system is 

increased, frequency of the system is reduced which is a natural phenomenon.  

Mode shapes of the plate with 100gms lumped mass at node 17 and 18 are shown in 

Fig 5.2f, 5.2g and 5.2h. Major diagonal elements of mass and stiffness matrices are also 

shown in Table 5.2g and 5.2h respectively. 

 

 

 

 

 

 

 



Table 5.2f: Mass normalized mode shape values of the plate with 100gms lumped mass at node 17 & 18 

1st 

mode 

2nd  

mode 

3rd 

mode  

4th  

mode 

5th 

mode  

6th  

mode 

7th 

mode  

8th  

mode 

9th  

mode 

10th 

mode 

11th 

mode  

12th  

mode 

13th 

mode  

14th  

mode 

15th 

mode  

16th 

mode  

17th   

mode 

18th  

mode 

19th 

 mode 
20th  

mode 

-0.077 0.227 0.466 -0.151 0.723 0.944 -0.252 0.810 -1.541 0.443 -1.47 0.82 -1.43 -1.46 -0.19 -0.14 1.42 1.59 -2.33 0.51 

-0.307 0.712 1.112 -0.565 1.317 1.473 -0.946 0.364 -1.257 -0.530 -0.32 0.26 1.53 -0.82 0.45 -0.20 -1.56 -1.65 2.50 -0.52 

-0.631 1.170 0.898 -1.155 0.191 -0.107 -1.507 -1.220 0.997 -0.835 1.85 -1.93 0.36 -0.04 -0.70 1.51 1.09 1.24 -1.85 0.43 

-0.988 1.533 -0.071 -1.761 -2.020 -2.093 -0.946 0.388 -0.057 3.316 -1.77 2.66 -0.72 -0.33 -1.83 -1.50 -0.99 -1.18 1.49 -0.59 

-0.095 0.115 0.289 0.195 0.402 -0.125 0.451 0.553 0.136 1.023 0.53 -0.34 1.13 1.68 -0.33 0.25 -1.16 1.37 1.16 0.87 

-0.333 0.359 0.543 0.406 0.735 -0.259 0.882 0.128 0.645 0.631 0.18 -0.25 -1.45 1.21 -0.19 0.29 1.28 -1.42 -1.26 -0.94 

-0.653 0.596 0.096 0.245 0.112 -0.031 0.835 -0.499 0.650 -1.136 -0.61 1.31 -0.51 -0.04 0.85 -2.10 -0.82 0.96 0.93 0.60 

-1.007 0.806 -1.009 -0.060 -1.218 0.500 1.152 1.456 -1.555 -0.482 0.23 -1.83 0.83 0.43 2.23 2.14 0.80 -0.49 -0.80 -0.11 

-0.094 -0.001 0.213 0.382 0.065 -0.583 0.016 0.622 0.092 0.267 0.74 -0.68 -0.77 -1.66 0.41 -0.47 1.09 0.67 0.91 -1.59 

-0.341 0.002 0.373 0.881 0.157 -0.898 0.170 0.165 0.157 0.211 0.13 0.22 1.41 -1.38 0.17 -0.18 -1.16 -0.69 -0.94 1.69 

-0.662 0.009 -0.208 0.841 0.118 -0.031 0.180 -0.973 -0.053 -0.148 -1.06 0.21 0.05 -0.13 -0.98 2.50 0.56 0.54 0.73 -1.11 

-1.015 0.020 -1.436 0.562 -0.016 1.473 -0.235 0.777 0.005 -0.027 1.63 -0.25 -0.22 -0.30 -2.71 -2.60 -0.66 -0.56 -0.47 0.41 

-0.096 -0.116 0.324 0.273 -0.290 -0.152 -0.540 0.837 0.084 -0.750 0.29 1.27 0.84 0.73 -0.17 0.07 0.66 -0.02 -0.19 -0.05 

-0.336 -0.355 0.593 0.534 -0.502 -0.289 -0.790 0.132 -0.633 -0.443 -0.10 -0.59 -1.37 0.51 -0.05 0.19 -0.69 0.02 0.22 0.06 

-0.656 -0.576 0.072 0.234 0.012 -0.046 -0.525 -1.131 -0.704 0.816 -0.44 -0.70 1.47 0.69 0.67 -2.11 1.13 -0.05 -0.37 -0.19 

-1.010 -0.766 -1.143 -0.306 1.020 0.391 -1.569 0.570 1.638 0.901 0.52 1.37 -1.39 -0.25 2.38 2.15 -0.64 0.10 0.30 0.51 

-0.079 -0.227 0.503 -0.039 -0.637 1.036 0.091 0.471 1.630 0.412 -1.56 -1.76 -0.60 -0.67 -0.33 -0.04 1.47 -0.62 1.54 2.12 

-0.312 -0.708 1.161 -0.376 -1.183 1.672 0.891 0.036 1.395 0.736 -0.07 0.50 1.31 -0.45 0.38 -0.14 -1.50 0.65 -1.63 -2.24 

-0.637 -1.152 0.841 -1.175 -0.320 0.026 1.681 -0.635 -1.215 -0.168 2.14 1.40 -1.39 -0.68 -0.57 1.50 0.71 -0.45 1.32 1.74 

-0.996 -1.494 -0.303 -2.166 1.440 -2.166 0.825 1.881 0.334 -2.113 -2.70 -2.22 1.41 0.32 -1.96 -1.49 -0.77 0.30 -1.03 -1.6 

45 
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Fig 5.2f: Numerical mode shape (1st mode) of the plate with lumped mass at node 17 

& 18 

 

 

Fig 5.2g: Numerical mode shape (2nd mode) of the plate with lumped mass at node 17 

& 18 
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Fig 5.2h: Numerical mode shape (3rd mode) of the plate with lumped mass at node 17 

& 18 

 

Here also, 1st and 3rd modes are pure bending mode and 2nd mode is a torsional mode. 

Higher modes are not plotted but mode shape values of these modes are considered for 

model updating which is discussed in next section.



 

 

Table 5.2g: Major diagonal elements of mass matrix of the plate with 100gms lumped mass at node 17 & 18 (in Kg) 

Node 1st  2nd  3rd  4th  5th  6th  7th  8th  9th  10th 11th  12th  13th  14th  15th  16th  17th   18th  19th  20th  21st  22nd  23rd  24th  25th  

1st  Locked                         

2nd   0.055                        

3rd    0.055                       

4th     0.055                      

5th      0.0275                     

6th       Locked                    

7th        0.11                   

8th         0.11                  

9th          0.11                 

10th           0.055                

11th            Locked               

12th             0.11              

13th              0.11             

14th               0.11            

15th                0.055           

16th                 Locked          

17th                  0.21         

18th                   0.21        

19th                    0.11       

20th                     0.055      

21st                       Locked     

22nd                       0.055    

23rd                        0.055   

24th                

 
        0.055  

25th                         0.0275 
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Table 5.2h: Major diagonal elements of the stiffness matrix of the plate with 100gms mass lumped at node 17 and 18 (in N/m) 

Node 1st  2nd  3rd  4th  5th  6th  7th  8th  9th  10th 11th  12th  13th  14th  15th  16th  17th   18th  19th  20th  21st  22nd  23rd  24th  25th  

1st  Lock

ed 

                        

2nd   4e6                        

3rd    2.6e6                       

4th     1.1e6                      

5th      2.8e5                     

6th       Lock

ed 

                   

7th        8.7e6                   

8th         6e6                  

9th          3.3e6                 

10th           7.9e5                

11th            Locke

d 

              

12th             9.6e6              

13th              6.9e6             

14th               4.1e6            

15th                1.1e6           

16th                 Lock

ed 

         

17th                  8.7e6         

18th                   6e6        

19th                    3.3e6       

20th                     7.9e5      

21st                       Lock

ed 

    

22nd                       4e6    

23rd                        2.6e6   

24th                         1.1e6  

25th                         2.8e5 
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5.3 Model updating using Lagrange multiplier method to localize the 

numerical added mass based on numerical modal parameters 

Model updating using Lagrange multiplier method based on modal parameters is 

already discussed in chapter 3. Here, it is applied to update the baseline FE model (for 

Model I) using modal parameters (mode shape and natural frequency) of Model II (two 

100gms mass are lumped at node 17 & 18). The purpose of finite element model 

updating or health monitoring is to identify the location of damage or certain change of 

mass and also the extent of damage or mass change. So, usefulness of the aforesaid 

model updating method in localization of lumping mass and amount of that added mass 

is mainly studied here.   

 5.3.1 Procedure-I: Mass matrix updation followed by Stiffness matrix 

updation 

As discussed by Baruch [5] in 1st procedure of model updating using Lagrange 

multiplier method, the mass matrix is first updated using mass normalized modal 

parameters followed by the stiffness matrix updation. This study is performed 

considering different number of mode shapes and frequency values to get a clear idea 

about the significance of accounting higher number of modes in model updating and 

localizing the actual amount of lumped mass.  

5.3.1.1 Approach-I: Three (3) modes accounted 

Natural frequencies of updated model and Model II (described above) are shown in 

Table 5.3.1a and difference of major diagonal elements of mass matrix between updated 

model and model I is shown Fig 5.3.1a. Difference of diagonal entries will show the 

location and amount of added mass. Stiffness matrix remains same after updation as 

that of Model I which is shown in Fig 5.3.1b. 

          Table 5.3.1a: Natural frequencies of updated model and Model II accounting 3 

modes 

Mode Frequency of 

updated model  

Frequency of model 

II 

1st 19.10 19.10 

2nd 46.32 46.32 

3rd 128.41 128.41 

4th 159.80 156.97 

5th 189.25 185.41 

6th 318.09 316.36 

7th 456.69 436.73 

8th 538.52 521.42 

9th 572.25 560.24 
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Mode Frequency of 

updated model  

Frequency of model 

II 

10th 646.62 604.05 

11th 701.77 697.89 

12th 1038.19 964.42 

13th 1337.09 1148.09 

14th 1381.23 1268.93 

15th 1441.10 1344.60 

16th 1486.31 1468.34 

17th 2281.06 2039.87 

18th 2297.03 2290.02 

19th 2445.14 2404.75 

20th 2511.95 2449.93 

 

 

 

Fig 5.3.1a: Schematic representation of nodal mass Change after updation by 

procedure-I accounting 3 modes  
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Table 5.3.1b: Percentage recovery of actual mass after updation accounting 3 modes 

Node Numerical mass addition 

(Gms) 

Mass recovered after 

updation (Gms) 

% recovery 

At 17 100 0.7 0.7 

At 18 100 2.5 2.5 

 

 

Fig 5.3.1b: Schematic representation of diagonal elements of stiffness matrix after 

updation accounting 3 modes 

From diagonal elements of stiffness matrix after updation, it is seen that stiffness values 

are same as that of Model II and does not change from Model-I because lumped masses 

do not alter the stiffness of any structure.   
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5.3.1.2 Approach-II: Five (5) modes accounted 

Here, difference of diagonal entries of mass matrix of updated model and Model I is 

shown in Fig 5.3.1c. Natural frequencies of updated model and Model-II are shown in 

Table 5.3.1c. Stiffness matrix remains same after updation as that of Model I like 

approach-I. So, it is not shown here.  

Table 5.3.1c: Natural frequencies of updated model and model II accounting 5 modes 

Mode Frequency of  updated model Frequency of model II 

1st 19.10 19.10 

2nd 46.32 46.32 

3rd 127.70 128.41 

4th 154.21 156.97 

5th 182.71 185.41 

6th 318.07 316.36 

7th 456.65 436.73 

8th 538.52 521.42 

9th 572.24 560.24 

10th 646.59 604.05 

11th 701.77 697.89 

12th 1038.19 964.42 

13th 1337.09 1148.09 

14th 1381.22 1268.93 

15th 1441.10 1344.60 

16th 1486.30 1468.34 

17th 2281.06 2039.87 

18th 2297.03 2290.02 

19th 2445.14 2404.75 

20th 2511.95 2449.93 
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Fig 5.3.1c: Schematic representation of nodal mass Change after updation by 

procedure-I accounting 5 modes 

 

Table 5.3.1d: Percentage recovery of actual mass after updation accounting 5 modes 

Node Numerical mass 

addition (Gms) 

Mass recovered after 

updation (Gms) 

% recovery 

At 17 100 3.13 3.13 

At 18 100 8.83 8.83 

 

5.3.1.3 Approach-III: Eight (8) modes accounted 

Here also, the difference of major diagonal elements of mass matrix between updated 

model and Model I is shown in Fig 5.3.1d and comparison of natural frequencies of 

updated model and Model II is shown in Table 5.3.1e. Stiffness matrix is not shown 

because it remains unchanged. 
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Table 5.3.1e: Natural frequencies of updated model and Model II accounting 8 modes 

 

 

 

 

Mode Frequency after updation 

of model I 

Frequency of model II 

1st 19.10 19.10 

2nd 46.32 46.32 

3rd 128.41 128.41 

4th 156.97 156.97 

5th 185.41 185.41 

6th 316.36 316.36 

7th 436.73 436.73 

8th 521.42 521.42 

9th 571.70 560.24 

10th 640.05 604.05 

11th 701.43 697.89 

12th 1037.71 964.42 

13th 1337.03 1148.09 

14th 1380.83 1268.93 

15th 1440.79 1344.60 

16th 1486.25 1468.34 

17th 2281.04 2039.87 

18th 2297.01 2290.02 

19th 2445.14 2404.75 

20th 2511.92 2449.93 
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Fig 5.3.1d: Schematic representation of nodal mass Change after updation by 

procedure-I accounting 8 modes 

Table 5.3.1f: Percentage recovery of actual mass after updation accounting 8 modes 

 

Node Numerical mass 

addition (Gms) 

Mass recovered after 

updation (Gms) 

% recovery 

At 17 100 17.1 17.1 

At 18 100 21.0 21.0 

 

5.3.1.4 Approach-IV: Twelve (12) modes accounted 

The difference of major diagonal elements of mass matrix between updated model and 

Model I is shown in Fig 5.3.1e and comparison of natural frequencies of updated model 

and Model II is shown in Table 5.3.1g. As stiffness matrix remains unchanged, it is not 

shown here. 
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Table 5.3.1g: Natural frequencies of updated model and model II accounting 12 

modes 

 

 

 

Mode Frequency of updated 

model 

Frequency of model II 

1st 19.10 19.10 

2nd 46.32 46.32 

3rd 128.41 128.41 

4th 156.97 156.97 

5th 185.41 185.41 

6th 316.36 316.36 

7th 436.73 436.73 

8th 521.42 521.42 

9th 560.24 560.24 

10th 604.05 604.05 

11th 697.89 697.89 

12th 964.42 964.42 

13th 1335.38 1148.09 

14th 1379.19 1268.93 

15th 1408.92 1344.60 

16th 1485.02 1468.34 

17th 2278.85 2039.87 

18th 2295.68 2290.02 

19th 2444.99 2404.75 

20th 2508.53 2449.93 
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Fig 5.3.1e: Schematic representation nodal mass Change after updation by procedure-

I accounting 12 modes 

 

Table 5.3.1h: Percentage recovery of actual mass after updation accounting 12 modes 

Node Numerical mass 

addition (Gms) 

Mass recovered 

after updation 

(Gms) 

% recovery 

At 17 100 41.7 41.7 

At 18 100 31.5 31.5 

 

5.3.1.5 Approach-V: Twenty (20) modes accounted 

The difference of major diagonal elements of mass matrix between updated model and 

Model I is shown in Fig 5.3.1f and comparison of natural frequencies of updated model 

and Model II is shown in Table 5.3.1i. As stiffness matrix remains unchanged, it is not 

shown here. 
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Table 5.3.1i: Natural frequencies of updated model and Model II accounting 20 

modes 

 

 

 

 

 

Mode Frequency of 

Updated model 

Frequency of model II 

1st 19.10 19.10 

2nd 46.32 46.32 

3rd 128.41 128.41 

4th 156.97 156.97 

35th 185.41 185.41 

6th 316.36 316.36 

7th 436.73 436.73 

8th 521.42 521.42 

9th 560.24 560.24 

10th 604.05 604.05 

11th 697.89 697.89 

12th 964.42 964.42 

13th 1148.09 1148.09 

14th 1268.93 1268.93 

15th 1344.60 1344.60 

16th 1468.34 1468.34 

17th 2039.87 2039.87 

18th 2290.02 2290.02 

19th 2404.75 2404.75 

20th 2449.93 2449.93 
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Fig 5.3.1f: Schematic representation nodal mass Change after updation by procedure-I 

accounting 20 modes 

Table 5.3.1j: Percentage recovery of actual mass after updation accounting 20 modes 

Node Numerical mass addition 

(Gms) 

Mass recovered after 

updation (Gms) 

% recovery 

At 17 100 100 100 

At 18 100 100 100 

  

From the above results, it is observed that only a few number of frequencies of the 

updated FE model are perfectly similar as that of the frequencies of Model-II when 

three, five, eight and twelve modes are accounted for model updating. Complete 

similarity of frequencies between updated model and Model-II is obtained when all the 

twenty modes are accounted for model updating.  

MAC value: 

Modal Assurance Criteria (MAC value) represents the correlation between the mode 

shape values of updated model and the corresponding actual mode shape values of the 

structure in real condition. Here, MAC value is calculated using equation (1a) (chapter-

1) between the obtained mode shapes after updation of baseline finite element model 
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by procedure I and the mode shape values of Model II for different approaches as 

discussed earlier. If MAC value for all the modes become 1, it will be a perfect 

representation of the actual system or structure. So, in the case of exact updation, the 

matrix representation of the MAC values will be an Identity matrix as the correlation 

between 2 different modes is zero.  

Table 5.3.1k: MAC value of the modes after updation by procedure I for different 

approaches 

Mode Approach-

I 

Approach-II Approach-III Approach-IV Approach-V 

1st 1 1 1 1 1 

2nd 1 1 1 1 1 

3rd 1 0.981 1 1 1 

4th 0.988 0.976 1 1 1 

5th 0.981 0.986 1 1 1 

6th 0.997 0.998 1 1 1 

7th 0.943 0.946 1 1 1 

8th 0.844 0.845 1 1 1 

9th 0.915 0.916 0.946 1 1 

10th 0.861 0.861 0.945 1 1 

11th 0.977 0.977 0.984 1 1 

12th 0.900 0.900 0.903 1 1 

13th 0.009 0.009 0.009 0.043 1 

14th 0.354 0.354 0.358 0.399 1 

15th 0.002 0.002 0.002 0.010 1 

16th 0.890 0.890 0.890 0.925 1 

17th 0.318 0.318 0.319 0.393 1 

18th 0.647 0.647 0.647 0.724 1 

19th 0.077 0.077 0.077 0.088 1 

20th 0.215 0.215 0.215 0.222 1 

 

5.3.2 Procedure-II: Stiffness matrix updation followed by mass matrix 

updation 

As discussed by Baruch [5] in 2nd procedure of model updating using Lagrange 

multiplier method, the stiffness matrix is first updated using stiffness normalized modal 

parameters followed by the mass matrix updation. Mode shapes are normalized using 

the analytical stiffness matrix as stated in chapter 3. In this procedure, same approaches 

are considered as that of procedure-I to verify the accuracy of this technique. A 
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convergence study of getting the actual amount and location of mass of these 2 

procedures is also carried out. Difference of diagonal elements of mass matrix of 

updated model and Model I for different approaches (accounting different number of 

modes) is shown in Table 5.3.2a and frequency of updated model for different 

approaches is shown in Table 5.3.2b 

Table 5.3.2a: Difference of major diagonal elements of mass matrix between updated 

model & Model-I for different approaches  

Node Approach-I Approach-II Approach-III Approach-IV Approach-V 

1st  Locked Locked Locked Locked Locked 

2nd  -8.92e-02 -3.15e-02 -0.20 -5.68e-02 -2.13e-10 

3rd  -0.20 -9.52e-02 -3.76e-02 -0.10 -2.10e-10 

4th  -6.77e-02 -6.98e-02 -0.11 -0.18 -8.35e-9 

5th  -1.08e-02 -8.08e-03 -0.15 -3.12e-02 4.02e-9 

6th  Locked Locked Locked Locked Locked 

7th  -0.20 -3.09e-02 -0.44 -0.99 -3.75e-10 

8th  -0.60 -0.11 -0.19 -1.32 -7.48e-9 

9th  -1.8e-02 -5.87e-02 -1.27 -1.12 -2.91e-9 

10th  -0.17 -1.02e-04 -0.23 -0.16 -5.62e-9 

11th  Locked Locked Locked Locked Locked 

12th  -0.24 -0.83 -3.68 -1.87 -1.64e-9 

13th  -0.67 -2.63 -3.46 -2.33 -7.22e-11 

14th  -4.92e-02 -0.94 -0.85 -0.55 3.05e-8 

15th  -0.16 -1.54e-02 -3.12e-02 -4.5e-02 -1.24e-8 

16th  Locked Locked Locked Locked Locked 

17th  8.07 14.90 46.59 86.08 100 

18th  34.37 54.03 65.29 83.00 100 

19th  -1.33 -1.37 -2.19 -4.85 2 e-8 

20th  -4.23e-02 -0.26 -0.14 -0.50 -1.14e-9 

21st   Locked Locked Locked Locked Locked 

22nd  -0.28 -0.84 -1.03 -0.22 5.18e-10 

23rd  -1.19 -2.31 -0.63 -7.83e-02 1.76e-9 

24th  -1.19 -0.36 -0.34 -1.83e-02 -3.67e-9 

25th -0.14 -0.15 -6.73e-02 -1.28e-02 7.93e-10 
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Table 5.3.2b: Frequency of Model-II and updated model by procedure-II for different 

approaches 

Mode Frequency of updated model 

 

Frequency of 

model II 

Approach-

I 

Approach-

II 

Approach-

III 

Approach-

IV 

Approach-

V 
1st 19.10 19.10 19.10 19.10 19.10 19.10 

2nd 46.32 46.32 46.32 46.32 46.32 46.32 

3rd 128.41 128.41 128.41 128.41 128.41 128.41 

4th 159.54 156.97 156.97 156.97 156.97 156.97 

5th 188.87 185.41 185.41 185.41 185.41 185.41 

6th 317.96 317.82 316.36 316.36 316.36 316.36 

7th 455.37 454.11 436.73 436.73 436.73 436.73 

8th 538.09 537.63 521.42 521.42 521.42 521.42 

9th 571.63 571.11 570.02 560.24 560.24 560.24 

10th 642.67 639.21 627.51 604.05 604.05 604.05 

11th 701.64 701.53 700.84 697.89 697.89 697.89 

12th 1037.33 1036.43 1030.64 964.42 964.42 964.42 

13th 1336.05 1334.33 1327.26 1310.82 1148.09 1148.09 

14th 1369.34 1360.26 1350.88 1327.50 1268.93 1268.93 

15th 1440.24 1440.14 1424.15 1351.25 1344.60 1344.60 

16th 1481.94 1479.49 1477.35 1474.55 1468.34 1468.34 

17th 2278.78 2277.62 2267.12 2191.13 2039.87 2039.87 

18th 2295.63 2295.11 2292.75 2290.53 2290.02 2290.02 

19th 2444.91 2444.79 2443.93 2430.96 2404.75 2404.75 

20th 2506.16 2503.58 2489.45 2455.47 2449.93 2449.93 
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MAC value: 

Here, MAC value is calculated using equation 1 between the obtained mode shapes 

after updation of baseline finite element model by procedure II and the mode shapes of 

Model II for different approaches. MAC values are tabulated in Table 5.3.2c. 

 

Table 5.3.2c: MAC value of the modes after updation by procedure II for different 

approaches 

Mode Approach-

I 

Approach-

II 

Approach-

III 

Approach-

IV 

Approach-

V 
1st 1 1 1 1 1 

2nd 1 1 1 1 1 

3rd 1 1 1 1 1 

4th 0.993 1 1 1 1 

5th 0.984 1 1 1 1 

6th 0.998 0.999 1 1 1 

7th 0.953 0.969 1 1 1 

8th 0.858 0.880 1 1 1 

9th 0.928 0.946 0.979 1 1 

10th 0.873 0.887 0.980 1 1 

11th 0.980 0.981 0.992 1 1 

12th 0.900 0.898 0.911 1 1 

13th 0.004 4e-04 4e-04 0.652 1 

14th 0.305 0.218 0.084 0.163 1 

15th 0.007 0.009 0.009 0.916 1 

16th 0.920 0.935 0.950 0.987 1 

17th 0.362 0.383 0.469 0.851 1 

18th 0.729 0.760 0.903 0.995 1 

19th 0.091 0.097 0.153 0.860 1 

20th 0.230 0.234 0.282 0.833 1 
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Convergence study: 

From above 2 procedures of Finite Element model updating, it is observed that the 

location of lumped mass can be identified considering lesser number of vibration 

modes but actual amount of lumped mass can’t be estimated without considering 

all the vibration modes for that model. It is also observed that updating procedure-

II gives more promising results than procedure-I when lesser number of modes are 

considered. In this study, the percentage recovery of actual amount of mass with 

consideration of different number of modes for both the model updating procedures 

is shown in Figs 5.3.2a and 5.3.2b. 

 

Fig 5.3.2a: Convergence of 2 updating procedures in recovering actual mass at 

node 17 

 

Fig 5.3.2b: Convergence of 2 updating procedures in recovering actual mass at node 

18 
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5.3.3 Discussions on numerical results 

Finite Element model updating of a cantilever plate based on numerical has been 

performed to assess the existing mass and stiffness distribution of the structure using 

Lagrange multiplier method. Major observations from the obtained results are as 

follows 

I. From FE model updating based on numerical results, it is observed that location 

of added mass can be traced by accounting lesser number of modes but 

estimation of actual amount of mass can’t be made without considering all the 

modes for that particular model because the summation of major diagonal 

elements of mass matrix will be equal to the total generalized modal mass of 

accounted modes.  

  

II. In Procedure-I of model updating where mass matrix updation is followed by 

stiffness matrix updation, it is seen that accuracy of lumping mass localization 

is also very low when only 3 modes are accounted. But, in Procedure-II of 

model updating where stiffness matrix updation is followed by mass matrix 

updation, lumping mass can be localized with better accuracy considering 3 

modes. Accuracy of localization is increased when higher modes are accounted 

for both the procedures.  
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5.4 Experimental results: 

5.4.1 Hammer Test results: 

Hammer test is performed to estimate the modal parameters (natural frequencies and 

corresponding mode shapes) and damping value of various modes. The test procedure 

has been discussed in chapter 4. For measurement of acceleration as response, an 

accelerometer is mounted at node 7. The impact hammer is roved at all the 25 nodes. 

From hammer test, natural frequencies, corresponding mode shapes and damping 

values are estimated for first 3 modes of vibration for 4 numbers of experimental setup. 

Setup-I: Cantilever plate without lumped mass 

Setup-II: Cantilever plate with 100gms lumped mass near node 17 and 18 

Setup-III: Cantilever plate with 200gms lumped mass near node 18 

Setup-IV: Cantilever plate with 200gms lumped mass near node 17 

 

5.4.1.1 Setup-I: Cantilever plate without lumped mass 

Natural frequencies & damping values are shown in table and non-normalized mode 

shape values are shown in Table 5.4.1a and measured mode shape values are shown in 

Table 5.4.1b. 

Table 5.4.1a: Measured frequency and Damping value for plate without lumped mass  

Mode Natural frequency (Hz) Damping value (%) 

1st  17.9 3 

2nd  43.8 9.39 

3rd  107 4.57 
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Table 5.4.1b: Measured mode shape values for plate without lumped mass 

 

 

 

1st mode 2nd mode 3rd mode 

2.35 12.1 -166 

4.51 25.8 -249 

8.49 38.3 -110 

11.9 47.5 152 

2.74 6.69 -121 

5.00 13.2 -159 

8.97 20.3 -10.2 

13.4 27.4 236 

2.90 1.63 -103 

6.47 0.978 -127 

9.27 1.14 24.8 

14.0 2.02 277 

2.01 -4.77 -108 

4.77 -12.4 -150 

8.69 -20.4 -14.0 

12.7 -26.5 233 

1.5 -10.4 -146 

4.67 -25.5 -229 

8.37 -40.4 -99.6 

12.8 -47.4 130 
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Fig 5.4.1a: Experimental mode shape of plate without added mass (1st mode) 

 

 

Fig 5.4.1b: Experimental mode shape of plate without added mass (2nd mode) 

 

Fig 5.4.1c: Experimental mode shape of plate without added mass (3rd mode) 
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5.4.1.2 Setup-II: Cantilever plate with 100gms lumped mass near node 

17 & 18 

Table 5.4.1c: Measured frequency and damping value for plate with 100gms lumped 

mass near node 17 & 18 

Mode Natural frequency (Hz) Damping (%) 

1st  17.7 3 

2nd  43.4 9.49 

3rd  104 4.58 

 

Table 5.4.1d: Measured mode shape values for plate with 100gms lumped mass near 

node 17 &18 

1st mode 2nd mode 3rd mode 

2.38 11.4 -130 

3.72 25.1 -200 

7.38 37.3 -90.7 

11.2 46.8 108 

2.22 6.34 -100 

4.25 13.2 -132 

8.04 20.8 -13.9 

12.5 26.8 202 

2.64 1.36 -89.4 

4.87 1.08 -113 

8.18 1.01 25.5 

11.6 2.07 265 

1.72 -4.96 -100 

4.59 -12.3 -133 

7.96 -19.6 8.33 

11.5 -25.1 222 

1.66 -9.68 -127 

4.28 -24.1 -194 

7.89 -38.2 -59.9 

10.8 -46.5 166 
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5.4.1.3 Setup-III: Cantilever plate with 200gms lumped mass near 

node 18 

Table 5.4.1e: Measured frequency and damping value for plate with 200gms lumped 

mass near node 18 

Mode Natural frequency (Hz) Damping value (%) 

1st  17.5 3 

2nd  43.3 9.7 

3rd  104 4.6 

 

Table 5.4.1f: Measured mode shape values for plate with 200gms lumped mass near 

node 18 

1st mode 2nd mode 3rd mode 

2.83 12.1 -135 

3.97 25.7 -198 

7.04 38.8 -88 

9.59 46.5 118 

2.59 7.06 -105 

4.64 14.2 -137 

7.89 20.7 -9.16 

10.9 27.5 209 

2.01 1.11 -93 

4.68 1.08 -113 

7.47 1.27 20.3 

10.8 2.01 251 

2.3 -3.85 -98.7 

4.28 -11.7 -135 

7.63 -18.5 1.0 

10.5 -23.8 228 

2.19 -9.49 -123 

4.06 -24.5 -191 

7.67 -37.0 -65.5 

9.75 -44.6 159 
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5.4.1.4 Setup-IV: Cantilever plate with 200gms lumped mass near 

node 17 

Table 5.4.1g: Measured frequency and damping value for plate with 200gms lumped 

mass near node 17 

Mode Natural frequency (Hz) Damping value (%) 

1st 17.7 3 

2nd 43.5 9.55 

3rd 103 4.69 

 

Table 5.4.1h: Measured mode shape values for plate with 200gms lumped mass near 

node 18 

1st mode 2nd mode 3rd mode 

1.35 10.2 -125 

2.97 22.7 -187 

6.84 35.7 -99.3 

12.2 46.2 87.5 

1.65 5.82 -93.7 

4.27 12.6 -121 

7.69 19.9 -14.3 

12.4 27.2 174 

1.96 1.11 -82.4 

4.7 1.34 -99.0 

8.21 2.01 28.4 

11.8 2.51 234 

1.96 -4.33 -97.1 

4.59 -11.7 -128 

7.6 -19.6 -0.64 

10.8 -25.5 209 

3.2 -9.29 -131 

5.38 -24.1 -203 

7.34 -39.1 -79.2 

9.41 -46.3 123 
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5.4.2 Shaker Test results: 

The main objective of the Shaker test is estimating of the modal mass to convert the 

mode shape values obtained from Hammer test to mass normalized mode shape values. 

The theory behind Shaker test is discussed in chapter 4. The plate with existing setup 

is oscillated with sinusoidal signal at the frequencies obtained using Hammer test to 

calculate the modal impedance value. But, to check the lowest impedance value of 

every mode, a tuning process is undertaken considering the frequency values closer to 

that modal test frequency and it is observed that the impedance value is not minimum 

at frequency obtained from modal test. The introduction of the stringer connected to the 

plate results in change in the boundary condition, thereby change in the overall stiffness. 

This might have resulted in shift in the frequencies at which least impedance values are 

observed. The altered frequencies with the lowest impedance value is considered for 

further calculation. From the modal impedance value, generalized stiffness and 

corresponding generalized modal mass is calculated. In calculation of generalized 

modal mass, damping values are required which are kept same as obtained from 

Hammer test. The mass normalized mode shapes are then calculated by dividing the 

measured un-normalized mode shape values with the square root of generalized modal 

mass. Before mass normalization, unit normalization is applied to the un-normalized 

mode shape values.  Impedance values, generalized stiffness, generalized modal mass 

and mass normalized mode shape values for four experimental setup are as follows- 

 

5.4.2.1 Setup-I: Cantilever plate without lumped mass 

Table 5.4.2a: Impedance value, generalized stiffness and generalized modal mass for 

plate without lumped mass 

Mode Hammer 

test 

frequency 

(Hz) 

Frequency of 

lowest 

impedance 

value (Hz) 

Impedance 

value 

(N/m) 

Damping 

value 

(%) 

Generalized 

stiffness 

(N/m) 

Generalized 

modal mass 

(Kg) 

1st  17.9 17.7 718 3 11966.67 0.967 

2nd  43.8 43.7 3331.52 9.39 17739.72 0.235 

3rd  107 106.8 30411.49 4.57 332729.62 0.738 

 

Actual mass of the plate= 3.99Kg 

Total generalized modal mass up to 3 modes= 1.94Kg which is 48.62% of actual mass 

of the plate. 
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Table 5.4.2b: Mass normalized measured mode shape values for plate without lumped 

mass 

1st mode 2nd mode 3rd mode 

0.170 0.525 -0.698 

0.328 1.120 -1.046 

0.617 1.662 -0.462 

0.865 2.062 0.639 

0.199 0.290 -0.508 

0.363 0.573 -0.668 

0.652 0.881 -0.043 

0.974 1.189 0.992 

0.210 0.070 -0.433 

0.470 0.042 -0.534 

0.674 0.049 0.104 

1.017 0.088 1.164 

0.146 -0.207 -0.454 

0.347 -0.538 -0.630 

0.631 -0.885 -0.059 

0.923 -1.150 0.979 

0.109 -0.451 -0.613 

0.339 -1.107 -0.962 

0.608 -1.754 -0.418 

0.930 -2.057 0.546 

 

5.4.2.2 Setup-II: Cantilever plate with 100gms lumped mass near node 

17 & 18 

Table 5.4.2c: Impedance value, generalized stiffness and generalized modal mass for 

plate with 100gms lumped mass near node 17 & 18 

Mode Hammer 

test 

frequency 

(Hz) 

Frequency 

of lowest 

impedance 

value (Hz) 

Impedance 

value 

(N/m) 

Damping 

value 

(%) 

Generalized 

stiffness 

(N/m) 

Generalized 

modal mass 

(Kg) 

1st  17.7 17.5 793.50 3 13225.09 1.094 

2nd  43.4 43.3 5655.34 9.49 29796.31 0.402 

3rd  104 103.3 34379.01 4.58 375316.70 0.890 

 

Actual mass of the setup= 4.19Kg 

Total generalized modal mass up to 3 modes= 2.386Kg which is 56.94% of actual mass 

of the setup. 
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Table 5.4.2d: Mass normalized measured mode shape values for plate with 100gms 

lumped mass near node 17 & 18 

1st mode 2nd mode 3rd mode 

0.182 0.384 -0.520 

0284 0.846 -0.799 

0.564 1.257 -0.362 

0.856 1.577 0.432 

0.170 0.214 -0.400 

0.325 0.445 -0.528 

0.615 0.701 -0.055 

0.956 0.903 0.807 

0.202 0.046 -0.357 

0.372 0.036 -0.452 

0.625 0.034 0.102 

0.887 0.070 1.059 

0.131 -0.167 -0.400 

0.351 -0.414 -0.532 

0.609 -0.660 0.033 

0.879 -0.846 0.887 

0.127 -0.362 -0.508 

0.327 -0.812 -0.775 

0.603 -1.287 -0.239 

0.826 -1.567 0.663 

 

5.4.2.3 Setup-III: Cantilever plate with 200gms lumped mass near 

node 18 

Table 5.4.2e: Impedance value, generalized stiffness and generalized modal mass for 

plate with 200gms lumped mass near node 18 

Mode Hammer 

test 

frequency 

(Hz) 

Frequency of 

lowest 

impedance 

value (Hz) 

Impedance 

value 

(N/m) 

Damping 

value 

(%) 

Generalized 

stiffness 

(N/m) 

Generalized 

modal mass 

(Kg) 

1 17.5 17.3 747.41 3 12456.83 1.054 

2 43.3 43.2 5966.51 9.7 30723.53 0.417 

3 104 103.2 33061.90 4.6 359358.69 0.855 
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Actual mass of the setup= 4.19Kg 

Total generalized modal mass up to 3 modes= 2.326Kg which is 55.51% of the actual 

mass of the setup 

Table 5.4.2f: Mass normalized measured mode shape values for plate with 200gms 

lumped mass near node 18 

1st mode 2nd mode 3rd mode 

0.253 0.403 -0.582 

0.355 0.855 -0.854 

0.629 1.292 -0.379 

0.857 1.548 0.509 

0.231 0.235 -0.453 

0.415 0.473 -0.590 

0.705 0.689 -0.039 

0.974 0.915 0.901 

0.179 0.037 -0.401 

0.418 0.036 -0.487 

0.667 0.042 0.087 

0.965 0.067 1.082 

0.205 -0.128 -0.425 

0.382 -0.389 -0.582 

0.682 -0.616 0.004 

0.938 -0.792 0.983 

0.196 -0.316 -0.530 

0.363 -0.816 -0.823 

0.685 -1.232 -0.282 

0.871 -1.485 0.685 

 

5.4.2.4 Setup-IV: Cantilever plate with 200gms lumped mass near 

node 17 

Table 5.4.2g: Impedance value, generalized stiffness and generalized modal mass for 

plate with 200gms lumped mass near node 17 

Mode Hammer 

test 

frequency 

(Hz) 

Frequency of 

lowest 

impedance 

value (Hz) 

Impedance 

value 

(N/m) 

Damping 

value 

(%) 

Generalized 

stiffness 

(N/m) 

Generalized 

modal mass 

(Kg) 

1st  17.7 17.6 806.24 3 13437.33 1.099 

2nd  43.5 43.2 5538.02 9.55 28994.87 0.393 

3rd  103 103.7 31772.34 4.69 338724.30 0.798 
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Actual mass of the setup= 4.19Kg 

Total generalized modal mass up to 3 modes= 2.29Kg which is 54.65% of the actual 

mass of the setup 

Table 5.4.2h: Mass normalized measured mode shape values for plate with 200gms 

lumped mass near node 17 

1st mode 2nd mode 3rd mode 

0.104 0.351 -0.598 

0.228 0.782 -0.895 

0.526 1.230 -0.475 

0.939 1.591 0.419 

0.127 0.200 -0.448 

0.328 0.434 -0.579 

0.592 0.685 -0.068 

0.954 0.937 0.832 

0.151 0.038 -0.394 

0.362 0.046 -0.474 

0.632 0.069 0.136 

0.908 0.086 1.120 

0.151 -0.149 -0.465 

0.353 -0.403 -0.612 

0.585 -0.675 -0.003 

0.831 -0.878 1.000 

0.246 -0.320 -0.627 

0.414 -0.830 -0.971 

0.565 -1.347 -0.379 

0.724 -1.595 0.589 
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5.5 Model updating using Lagrange multiplier method based on 

experimental modal parameters: 

The effectiveness of Lagrange multiplier method in Finite Element model updating to 

localize the added mass based on numerical modal parameters is discussed in section 

5.3. Here, this method is applied to update the baseline FE model of the plate structure 

as coded in the MATLAB platform using dimensions, material properties and boundary 

conditions to estimate the actual mass and stiffness distribution of the plate in the 

existing condition. From mass distribution of the updated model, major change in mass 

matrix is located which is then validated with the experimental setup. Application of 

the method is in two different ways as stated in earlier section. As higher modes cannot 

be estimated properly by experimental setup, first 3 modes and corresponding 

frequency values are considered for model updating. 

 

5.5.1 Procedure-I: Mass matrix updation followed by stiffness matrix 

updation 

In this procedure, mass matrix is first updated using experimental modal parameters 

and then stiffness matrix is updated using that updated mass matrix. Mass normalized 

mode shape values of first 3 modes are used for updating purpose. Application of this 

procedure for different experimental setup is as follows- 

5.5.1.1 Setup-I: Cantilever plate without lumped mass 

Table 5.5.1a: Frequency of updated model and experimental frequency 

Mode Frequency of updated 

model (Hz) 

Experimental frequency  

(Hz) 

1st  17.7 17.7 

2nd  43.7 43.7 

3rd  106.8 106.8 
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Fig 5.5.1a: Schematic presentation of change of nodal mass after updation by 

procedure-I using experimental modal parameters of plate without lumped mass 

 

Fig 5.5.1b: Change in major diagonal elements of mass matrix after model updating 

by procedure-I for plate  
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Fig 5.5.1c: Change in major diagonal elements of stiffness matrix after model 

updating by procedure-I for plate 

 

Table 5.5.1b: Mode shape values of updated model 

1st mode 2nd mode  3rd mode 

0.170 0.525 -0.698 

0.328 1.120 -1.046 

0.617 1.662 -0.462 

0.865 2.062 0.639 

0.199 0.290 -0.508 

0.363 0.573 -0.668 

0.652 0.881 -0.043 

0.974 1.189 0.992 

0.210 0.070 -0.433 

0.470 0.042 -0.534 

0.674 0.049 0.104 

1.017 0.088 1.164 

0.146 -0.207 -0.454 

0.347 -0.538 -0.630 

0.631 -0.885 -0.059 

0.923 -1.150 0.979 

0.109 -0.451 -0.613 

0.339 -1.107 -0.962 

0.608 -1.754 -0.418 

0.930 -2.057 0.546 
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MAC value: 

MAC values are calculated between modes of updated model and experimental modes. 

The values are given in Table 5.5.1c. 

Table 5.5.1c: MAC value of plate without lumped mass before updation 

Mode 1st mode 2nd mode 3rd mode 

1st mode 0.9894 1.27e-06 0.0769 

2nd mode 4.09e-06 0.9931 1.27e-06 

3rd mode 0.0769 1.27e-06 0.8384 

 

Table 5.5.1d: MAC value of plate without lumped mass after updation 

Mode 1st mode 2nd mode 3rd mode 

1st mode 1 0.0001 0.046 

2nd mode 0.0001 1 6.1e-07 

3rd mode 0.046 6.1e-07 1 

 

As MAC values are 1 for same modes, mode shapes obtained from updated model 

perfectly represents the experimental mode shapes which is the prime concern in 

FE model updating. 

            

           Fig 5.5.1d: MAC value of the plate without lumped mass before updation  

 

               Fig 5.5.1e: MAC value after model updating of plate without lumped mass by 

procedure-I 
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5.5.1.2 Setup-II: Cantilever plate with 100gms lumped mass near node 

17 & 18 

Table 5.5.1e: Frequency of updated model and experimental frequency 

Mode Frequency of updated model 

(Hz) 

Experimental frequency  

(Hz) 

1st  17.5 17.5 

2nd  43.3 43.3 

3rd  103.3 103.3 

 

 

Fig 5.5.1f: Schematic presentation of change of nodal mass after updation by 

procedure-I using experimental modal parameters of plate with 100gms lumped mass 

near node 17 & 18 
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Fig 5.5.1g: Change in major diagonal elements of mass matrix after model updating 

by procedure-I for plate with 100gms lumped mass near node 17 & 18 

 

 

 

Fig 5.5.1h: Change in major diagonal elements of stiffness matrix after model 

updating by procedure-I for plate with lumped mass near node 17 & 18 
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Table 5.5.1f: Mode shape values of updated model 

1st mode 2nd mode  3rd mode 

0.170 0.525 -0.698 

0.328 1.120 -1.046 

0.617 1.662 -0.462 

0.865 2.062 0.639 

0.199 0.290 -0.508 

0.363 0.573 -0.668 

0.652 0.881 -0.043 

0.974 1.189 0.992 

0.210 0.070 -0.433 

0.470 0.042 -0.534 

0.674 0.049 0.104 

1.017 0.088 1.164 

0.146 -0.207 -0.454 

0.347 -0.538 -0.630 

0.631 -0.885 -0.059 

0.923 -1.150 0.979 

0.109 -0.451 -0.613 

0.339 -1.107 -0.962 

0.608 -1.754 -0.418 

0.930 -2.057 0.546 

 

MAC value: 

MAC values are calculated between modes of updated model and experimental modes. 

The values are given in Table 5.5.1g. 

Table 5.5.1g: MAC value of updated model  

Mode 1st mode 2nd mode 3rd mode 

1st mode 1 0.0008 0.0752 

2nd mode 0.0008 1 0.005 

3rd mode 0.0752 0.005 1 
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Fig 5.5.1i: MAC value after model updating of plate with 100gms lumped mass near 

node 17 & 18 by procedure-I 

5.5.1.3 Setup-III: Cantilever plate with 200gms lumped mass near 

node 18 

          Table 5.5.1h: Frequency of updated model and experimental frequency 

Mode 
Frequency of updated model 

(Hz) 

Experimental frequency 

(Hz) 

1st 17.3 17.3 

2nd 43.2 43.2 

3rd 103.2 103.2 

            

 

Fig 5.5.1j: Schematic presentation of change of nodal mass after updation by 

procedure-I using experimental modal parameters of plate with 200gms lumped mass 

near node 18 
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Fig 5.5.1k: Change in major diagonal elements of mass matrix after model updating 

by procedure-I for plate with 200gms lumped mass near node 18 

 

 

 

Fig 5.5.1l: Change in major diagonal elements of stiffness matrix after model 

updating by procedure-I for plate with 200gms lumped mass near node 18 
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Table 5.5.1i: Mode shape values of updated model 

1st mode 2nd mode 3rd mode 

0.253 0.403 -0.582 

0.355 0.855 -0.854 

0.629 1.292 -0.379 

0.857 1.548 0.509 

0.231 0.235 -0.453 

0.415 0.473 -0.590 

0.705 0.689 -0.039 

0.974 0.915 0.901 

0.179 0.037 -0.401 

0.418 0.036 -0.487 

0.667 0.042 0.087 

0.965 0.067 1.082 

0.205 -0.128 -0.425 

0.382 -0.389 -0.582 

0.682 -0.616 0.004 

0.938 -0.792 0.983 

0.196 -0.316 -0.530 

0.363 -0.816 -0.823 

0.685 -1.232 -0.282 

0.871 -1.485 0.685 

MAC value: 

MAC values are calculated between modes of updated model and experimental modes. 

The values are given in Table 5.5.1j. 

Table 5.5.1j: MAC value of updated model  

Mode 1st mode 2nd mode 3rd mode 

1st mode 1 0.0022 0.0514 

2nd mode 0.0022 1 0.0032 

3rd mode 0.0514 0.0032 1 
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Fig 5.5.1m: MAC value after model updating of plate with 200gms lumped mass near 

node 18 by procedure-I 

 

5.5.1.4 Setup-IV: Cantilever plate with 200gms lumped mass near 

node 17 

 

          Table 5.5.1k: Frequency of updated model and experimental frequency 

Mode Frequency of updated model 

 (Hz) 

Experimental frequency  

(Hz) 

1st  17.6 17.6 

2nd  43.2 43.2 

3rd  103.7 103.7 

 



89 

 

 

Fig 5.5.1n: Schematic presentation of change of nodal mass after updation by 

procedure-I using experimental modal parameters of plate with 200gms lumped mass 

near node 17 

 

 

Fig 5.5.1o: Change in major diagonal elements of mass matrix after model updating 

by procedure-I for plate with 200gms lumped mass near node 17 
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Fig 5.5.1p: Change in major diagonal elements of stiffness matrix after model 

updating by procedure-II for plate with 200gms lumped mass near node 17 

 

Table 5.5.1l: Mode shape values of updated model 

1st mode 2nd mode 3rd mode 

0.104 0.351 -0.598 

0.228 0.782 -0.895 

0.526 1.230 -0.475 

0.939 1.591 0.419 

0.127 0.200 -0.448 

0.328 0.434 -0.579 

0.592 0.685 -0.068 

0.954 0.937 0.832 

0.151 0.038 -0.394 

0.362 0.046 -0.474 

0.632 0.069 0.136 

0.908 0.086 1.120 

0.151 -0.149 -0.465 

0.353 -0.403 -0.612 

0.585 -0.675 -0.003 

0.831 -0.878 1.000 

0.246 -0.320 -0.627 

0.414 -0.830 -0.971 

0.565 -1.347 -0.379 

0.724 -1.595 0.589 

 



91 

 

MAC value: 

MAC values are calculated between modes of updated model and experimental modes. 

The values are given in Table 5.5.1m 

Table 5.5.1m: MAC value of updated model  

Mode 1st mode 2nd mode 3rd mode 

1st  1 0.0014 0.0431 

2nd  0.0014 1 0.0012 

3rd  0.0431 0.0012 1 

 

 

 

Fig 5.5.1q: MAC value after model updating of plate with 200gms lumped mass near 

node 18 by procedure-I 

5.5.2 Procedure-II: Stiffness matrix updation followed by mass matrix 

updation 

As discussed by Baruch [5] in 2nd procedure of model updating using Lagrange 

multiplier method, the stiffness matrix is first updated using stiffness normalized 

experimental modal parameters followed by the mass matrix updation. Mode shape 

values are normalized using the analytical stiffness matrix as stated in chapter 3. In 

this study, only one experimental setup (setup II) is considered to estimate the 

updated mass and stiffness matrix and corresponding modal parameters.  

When baseline FE model is updated by this procedure, insignificant mass matrix is 

obtained. So, the values are not provided here and further study is going on. 
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5.5.3 Discussions on experimental results 

Finite Element model updating of a cantilever plate based on numerical modal 

parameters as well as experimental has been performed to assess the existing mass and 

stiffness distribution of the structure using Lagrange multiplier method. Here, it is seen 

that when two 100gms masses are lumped near node 17 & 18 (setup-II) and the FE 

model is updated by Procedure-I, maximum change of mass from baseline FE model is 

at node 18 and a notable change of mass occurs at node 17. But, change of mass at node 

13 is higher than node 17. So, accuracy of Procedure-I in lumping mass localization is 

not satisfactory with only 3 modes of vibration as like numerical updation. For 

experimental setup-III, where 200gms mass is lumped near node 18, maximum change 

of mass occurs at node 18 after updation of baseline FE model by Procedure-I. But, the 

amount of mass change at node 18 is lower than setup-II. As total generalized mass 

estimated considering 3 modes is only up to 50% of the total mass for different 

experimental configurations, accurate estimation of the added mass is not possible. But, 

when total estimated generalized mass from experimental setup is higher, added mass 

localization is more prominent as it is seen in the case of Setup-II. For experimental 

setup-IV, where 200gms mass is lumped near node 17, maximum change of mass 

occurs at node 13 after updation of baseline FE model by procedure-I. It is due to 

reduction of effect of lumped mass as it is located near the fixed end and consideration 

of lesser number of vibration modes. 

Although the accurate identification of the added mass location could not be 

achieved fully, the updated stiffness and mass matrix resulted in obtaining system 

parameters (frequency and mode shape) identical to those obtained from experiment. It 

is primarily understood that without considering higher modes, accurate prediction 

might not be possible. However, if one observes the true experimental setup, the mass 

lumped is little bit away from node 17 & 18 which might have in reality introduced a 

smeared mass effect causing an increase in mass at node 13 that incidentally a 

neighbour node of node 18.   
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CHAPTER-6 

CONCLUSIONS AND FUTURE SCOPE OF WORK 

6.1 Conclusions: 

In the present research work an attempt has been made to implement a finite element 

model updating technique based on Lagrange Multiplier methodology for both 

numerical and experimental models. Some of the salient features of the work carried 

out are listed below -  

i) A detailed literature review on FE model updating is carried out and some of the 

major observations are listed. Thereafter, the objectives of the present work are 

formulated. 

ii) A FE model of the plate structure is coded in MATLAB platform using 4 noded iso-

parametric elements and necessary condensations are carried out. 

iii) Numerical nodal masses are added to the plate and corresponding modal parameters 

are calculated. 

iv) Experimental modal parameters are estimated in the laboratory using Experimental 

modal analysis. 

v) Lagrange Multiplier method is used to update the baseline FE model. 

vi) Lagrange multiplier method is found to be effective in FE model updating. Two 

procedures of model updation (Procedure-I & Procedure-II) as discussed in previous 

chapter are very accurate in lumped mass localization when worked with numerical 

modal parameters and more number of vibration modes. 

vii) Model updated by Procedure-I (mass matrix updation followed by stiffness matrix 

updation) also results in reasonably good results when worked with experimental modal 

parameters. Accuracy of updation would have been much better if higher modes are 

accounted. 

viii) Model updated by Procedure-II (stiffness matrix updation followed by mass matrix 

updation) is producing insignificant results when worked with experimental modal 

parameters which should be studied further. 

ix) More accurate updation is possible if the effect of higher modes can be accounted 

in the lower modes. 

x) Experimental modal analysis should be as noise free as possible. 

 

 

 

 

 

 



94 

 

6.2 Scope of future work: 

i. Measurement of higher modes by experimental modal analysis if possible. 

 

ii. Application of proper algorithm to account the effect of higher modes into 

lower modes. 

 

iii. There may be lack of proper fixity at the fixed end. So, proper fixity have to 

be ensured if required. 

 

iv. Estimation of the stringer stiffness in the original FE model. 

 

v. Application of the aforesaid updation methods in assessment of real-life 

structures. For that purpose, operational modal analysis have to be performed 

in place of experimental modal analysis.  
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