

 Detection of sensing contexts through machine

learning algorithms using Participatory sensing data

Faculty of Engineering and Technology, Jadavpur University in fulfillment of the

 requirements for the Degree of Master of Computer Application

 Submitted by

 Partha pratim saha

 Registration No: 137332 of 2016-2017

 Class Roll No: 001610503025

 Examination Roll No: MCA196021

 Under the supervision of

 Dr. Sarbani Roy

 Associate Professor, Dept. of Computer Science & Engineering

 Jadavpur University

 A thesis submitted in partial fulfillment of the requirements of degree of Master of

 Computer Application

 Department of Computer Science and Engineering

 Faculty of Engineering & Technology

 Jadavpur University

 May 2019

 Declaration of Originality & Compliance of Academics Ethics

I hereby declare that this thesis contains literature survey and original

research work done by me, as part of my MCA studies. All information in

this document have been obtained and presented in accordance with

academic rules and ethical conduct.

Name : PARTHA PRATIM SAHA

Registration No : 137332 of 2016-2017

Class Roll No : 001610503025

Examination Roll No : MCA196021

Project Report Title : Detection of sensing contexts through machine

 learning algorithms using Participatory sensing

 data

 Partha pratim saha

 Department of Computer Science & Engineering

 Faculty of Engineering & Technology

Jadavpur University

This is to certify that PARTHA PRATIM SAHA, Registration Number: 137332 of 2016-

2017, Class Roll Number: 001610503025, Examination Roll Number: MCA196021, a

student of MCA, from the Department of Computer Science & Engineering, under the

Faculty of Engineering and Technology, Jadavpur University has done a project report

under my supervision, entitled as " Detection of sensing contexts through machine

learning algorithms using Participatory sensing data". The thesis is approved for

submission towards the fulfillment of the requirements for the degree of Master of

Computer Application, from the Department of Computer Science & Engineering,

Jadavpur University for the session 2018-19.

 Dr. Sarbani Roy

 Associate Professor

Department of Computer Science and Engineering

 Jadavpur University

 Dr. Mahantapas Kundu

 (Head of the Department)

 Professor

Department of Computer Science and Engineering

 Jadavpur University

 Dr. Chiranjib Bhattacharjee
 (Dean)

 Professor

Faculty of Engineering and Technology

 Jadavpur University

 Certificate of Approval

 (Only in case the project report is approved)

The forgoing thesis is hereby approved as a creditable study of an

engineering subject carried out and presented in a manner satisfactory to

warrant its acceptance as a prerequisite to the degree for which it has been

submitted. It is understood that by this approval the undersigned do not

necessarily endorse or approve any statement made, opinion expressed or

conclusion drawn therein, but approve this thesis only for the purpose for

which it is submitted.

_______________________________ _______________________________
 Signature of the Examiner Signature of the Examiner

 Date: __________________ Date: __________________

JADAVPUR UNIVERSITY

 Abstract

 Faculty of Engineering and Technology

 Department of Computer Science and Engineering

 Detection of sensing contexts through machine learning algorithms using

 participatory sensing data

 by Partha pratim saha

Detecting of sensing context is an important part when we use raw sensor data for any

work. Suppose we take some sensor data for any work. Now how we know that these

data are noisy or not. For this we detect the context and see when these data were

collected what is the situation of participator.

 To implement this system we create an android application that take sensor

data and store these data in local storage. Now we apply machine learning algorithm

over these data sets and detect the context. Since our problem is a classification

problem so we use decision tree and random forest to solve our problem. When we

finally detect the context then we say that these data is noisy or not and after that we

can use these data depend on the data is noisy or not.

 Acknowledgement

I would like to express my deepest gratitude to my advisor and guide Dr.

Sarbani Roy, for her excellent guidance, care, patience, and providing me

with an excellent atmosphere for doing research. I received a lot of

encouragement and inspiration from her throughout the project. I am equally

grateful to Dr. Mahantapas Kundu, Head of The Department, Computer

Science & Engineering, Jadavpur University, for his support towards our

department. Last but not the least, I would like to thank my parents and all

respected teachers for their valuable suggestions and helpful discussions.

Regards,

Partha pratim saha

Examination Roll No: MCA196021

Master of Computer Application

Jadavpur University

Contents

1. Introduction

1.1. Overview …………………………………………………………….... 1

1.2. Motivation ………………………………………………………………. 1

1.3. Contribution …………………………………………………………….. 2

1.4. Organization …………………………………………………………….. 2

2. Background

2.1. Participatory Sensing ……………………………………………………. 3

2.2. Importance of context Sensing ………………………………………….. 4

3. Proposed System for Context Sensing

3.1. Problem Statement ……………………………………………………..... 6

3.2. Android Application Development

3.2.1. Design ………………………………………………………… 7

3.2.2. Implementation ……………………………………………….. 9

3.3. Data Collection …………………………………………………………. 11

3.4. Prediction Techniques

3.4.1. Decision Tree ………………………………………………... 12

3.4.2. Random Forest ………………………………………………. 14

4. Results and Analysis

4.1. Decision Tree …………………………………………………………… 17

4.2. Random Forest ………………………………………………………….. 18

4.3. Discussion ………………………………………………………………. 19

5. Conclusion ………………………………………………………………….. 20

1

Chapter 1

Introduction

1.1 Overview

Participatory sensing is the concept of communities (or other groups of people)

contributing sensory information to form a body of knowledge. A growth in mobile

devices, for example smart phones, tablet computers or activity trackers, which have

multiple sensors, has made participatory sensing viable in the large-scale. Participatory

sensing can be used to retrieve information about the environment, weather, urban

mobility, congestion as well as any other sensory information that collectively forms

knowledge [1].

Context sensing is the technology that infers the characteristics of one or more persons,

locations, objects, situations, or activities and uses that information to dynamically adapt

to, synchronize, and frame situations and processes. Context sensing is a key technology

for mobile systems, smart objects, and multi-device environments for extending and

augmenting human-computer interactions [2].

In our system group of people are participate to contribute sensory information using

their smart phones, tablet computer etc. We store the information in local storage of this

device. Then apply the machine learning algorithms and sensing the context that is when

the data was collected at that time the participator holds the device on his hand or put in

the pocket or talking to someone etc.

1.2 Motivation

Suppose we collect the noise data. Participator can take data in any situation which we

don’t know. If we take all the data from participators and use it blindly then many

problems can occur. Consider three participator take data in different situation and

contribute this. Suppose a participator take data when he was talking to someone, another

participator take data when the device was present in his pocket and the rest one take data

when he holds the device in his hand. Now out of this three participators we use the data

that gives the last participator because when this participator take data that time his

Chapter 1. Introduction 2

device did not perform any other task that make our data noisy. Second participator data

was not taken because for the noise data collection if we put our device in our pocket

then the noise data was not well collected. This system is used when data filtering is

occur that is after taking the all participators data, the data sets were noisy or not depend

on the data collection context and using this system we find the context when the data

was collected then it was very helpful to decide which data sets are use and which are not

use.

1.3 Contribution

One android application is created using java programming language that takes the sensor

data from the mobile device in any situation and stores these data sets in local csv file.

Now apply the machine learning algorithms over these data sets to predict the contexts.

Since the problem is classification problem so here we use classification algorithms to

solve this problem. Here we implement two classification algorithms one is Decision

Tree and the other one is Random Forest. After applying these two algorithms now we

find the accuracy. Finally take the better accuracy result and depend on this result take

the features and the algorithm which help to give this result.

1.4 Organization

The organization of the thesis is as follows. The Background is presented in Chapter 2.

The design of the android application, data collection and prediction technique are

implemented in Chapter 3. The experimental setup along with results are then discuss

under Result and Analysis in Chapter 4. Finally the thesis concludes in Chapter 5.

 3

Chapter 2

Background

2.1 Participatory Sensing

Participatory sensing is the process whereby individuals and communities use ever-more-

capable mobile phones and cloud services to collect and analyze systematic data for use

in discovery. The convergence of technology and analytical innovation with a citizenry

that is increasingly comfortable using mobile phones and online social networking sets

the stage for this technology to dramatically impact many aspects of our daily lives.

2.1.1 Application and uses model

One application of participatory sensing is as a tool for health and wellness. Potential

contexts include chronic-disease management and health behavior change. Communities

and health professionals can also use participatory approaches to better understand the

development and effective treatment of disease. The same systems can be used as tools

for sustainability. In addition, participatory sensing offers a powerful “make a case”

technique to support advocacy and civic engagement. It can provide a framework in

which citizens can bring to light a civic bottleneck, hazard, personal-safety concern,

cultural asset, or other data relevant to urban and natural-resources planning and services,

all using data that are systematic and can be validated. These different applications imply

several different usage models. These models range from public contribution, in which

individuals collect data in response to inquiries defined by others, to personal use and

reflection, in which individuals log information about themselves and use the results for

personal analysis and behavior change. Yet across these varied applications and usage

models, a common workflow is emerging.

2.1.2 Essential Components

Ubiquitous data capture and leveraged data processing are the enabling technical

components of these emerging systems. The need for the individual to control access to

the most intimate of these data streams introduces a third essential component: the

personal data vault.

Chapter 2: Background 4

While empirical data can be collected in a variety of ways, mobile phones are a special

and, perhaps, unprecedented tool for the job. These devices have become mobile

computing, sensing, and communication platforms, complete with image, audio, video,

motion, proximity, and location data capture and broadband communication, and they are

capable of being programmed for manual, automatic, and con-text-aware data capture.

Because of the sheer ubiquity of mobile phones and associated communication infra-

structure, it is possible to include people of all backgrounds nearly everywhere in the

world. Because these devices travel with us, they can help us make sustainable

observations on an intimately personal level. Collectively, they provide unmatched

coverage in space and time.

In some cases, the data collected with a mobile device are enough to reveal an interesting

pattern on their own. However, when processed through a series of external and cross-

user data sources, models, and algorithms, simple data can be used to infer complex

phenomena about individuals and groups. Mapping and other interactive capabilities of

today’s Web enhance the presentation and interpretation of these patterns for participants.

Many applications will call for the comparison of current measures to past trends, so

robust and long-term storage and management of this data is a central requirement.

Participatory-sensing systems leveraging mobile phones offer unprecedented

observational capacity at the scale of the individual. At the same time, they are

remarkably scalable and affordable given the wide proliferation of cellular phone

infrastructure and consumer devices that incorporate location services, digital images,

accelerometers, Bluetooth access to off-board sensors, and easy programmability. These

systems can be leveraged by individuals and communities to address a range of civic

concerns, from safety and sustainability to personal and public health. At the same time,

they will push even further on our societies’ concepts of privacy and private space [7].

2.2 Importance of context sensing

Technologies that infer the characteristics of one or more persons, locations, objects,

situations, or activities and use that information to dynamically adapt to, synchronize, and

frame situations and processes. Context sensing is a key technology for mobile systems,

smart objects, and multi-device environments for extending and augmenting human-

computer interactions. Integrating contextual information helps us create and deliver

content that better meets user needs.

Technical communicators need to understand how to describe these systems, known as

context-aware or smart technologies, and how to use them for delivering context-aware

content that can automatically infer information needs and user intentions. Context

sensing approaches can be categorized by their use of predefined information, sensor-

based situational information and aggregated information. Approaches that aggregate,

combine, or integrate sensor information are also referred to as context detection.

Approaches that can relate the contexts of different entities for identifying their

situational similarity are called context matching. Context detection and matching

Chapter 2: Background 5

typically operate on five groups of contextual information for enriching the user

experience: individuality, activity, location, time and date, and relationships [2]. To

implement our system we required context sensing because without context sensing we

cannot find situation of the participator. Participatory sensing is an important part of our

system because if it was not done well then noisy data was collected by the participators

and our system predict wrong context.

 6

Chapter 3

Proposed System for Context Sensing

3.1 Problem Statement

Create an android application that take the sensor value from mobile device in any

environment and store these sensor data in local storage. Share this android application to

all participators. Apply the machine learning over these data sets that was given by the

participators and detect the context that is when the data was collected at that time

participator put the mobile device in his or her pocket or talking to someone or walking

etc.

3.2 Android Application Development

Android apps can be written using Kotlin, Java, and C++ languages. The Android SDK

tools compile our code along with any data and resource files into an APK, an Android

package, which is an archive file with an .apk suffix. One APK file contains all the

contents of an Android app and is the file that Android-powered devices use to install the

app. The Android operating system is a multi-user Linux system in which each app is a

different user. By default, the system assigns each app a unique Linux user ID (the ID is

used only by the system and is unknown to the app). The system sets permissions for all

the files in an app so that only the user ID assigned to that app can access them. Each

process has its own virtual machine (VM), so an app's code runs in isolation from other

apps. By default, every app runs in its own Linux process. The Android system starts the

process when any of the app's components need to be executed, and then shuts down the

process when it's no longer needed or when the system must recover memory for other

apps. The Android system implements the principle of least privilege. That is, each app,

by default, has access only to the components that it requires to do its work and no more.

This creates a very secure environment in which an app cannot access parts of the system

for which it is not given permission. App components are the essential building blocks of

an Android app. Each component is an entry point through which the system or a user

can enter your app. There are four different types of app components and they are

activities, services, broadcast receivers and content providers. Each type serves a distinct

purpose and has a distinct lifecycle that defines how the component is created and

destroyed. There are two major parts in android application development and they are

design and implementation.

Chapter 3. Proposed system for context sensing 7

3.2.1 Design

The functionality of the application, the way of using the interface, and should be

presented to the user in an easy-to-understand manner. This section will discuss how the

program was designed, represented by the Activity Diagram that was used to design and

understand the user flow of the application. The design pattern is a template that shows

the interactions between the program components, such as the classes and the objects. It

is used as a reusable solution for software engineering problems. The use of the MVC

design pattern helped to separate the programming of the view and the model in two

different classes, helping to extend and modify both much easier. The view provides a

visual representation of the data model, while the controller links the model and the view,

by ‘listening’ for events from the view, and carrying out the corresponding action on the

model. The view represented in our android application is given below.

 Figure 3.1: view of android application

The Activity class is a crucial component of an Android app, and the way activities are

launched and put together is a fundamental part of the platform's application model.

Unlike programming paradigms in which apps are launched with a main() method, the

Android system initiates code in an Activity instance by invoking specific callback

methods that correspond to specific stages of its lifecycle. The Activity class is designed

to facilitate this paradigm. When one app invokes another, the calling app invokes an

activity in the other app, rather than the app as an atomic whole. In this way, the activity

serves as the entry point for an app's interaction with the user. You implement an activity

as a subclass of the Activity class. An activity provides the window in which the app

draws its UI. This window typically fills the screen, but may be smaller than the screen

and float on top of other windows. Generally, one activity implements one screen in an

app. For instance, one of an app’s activities may implement a preferences screen, while

another activity implements a select photo screen. Most apps contain multiple screens,

which mean they comprise multiple activities. Typically, one activity in an app is

specified as the main activity, which is the first screen to appear when the user launches

the app. Each activity can then start another activity in order to perform different actions.

Chapter 3. Proposed system for context sensing 8

 Figure 3.2: Lifecycle of an activity

In our application when the application is open the activity starts. At that time it call

onCreate(), onStart() and onResume() methods consequently. Now the activity is on

running state and our application take data from device sensor and store in the local

storage. If participator minimize our application for any reason then onPause() and

onStop() methods call and the activity goes in the stopped state. When participator go

back to our application it call onRestart(), onStart() and onResume() methods and it goto

the running state again. When the participator exit from our application it call onPause(),

onStop() and onDestroy() methods and the activity is shutdown. The following flow chart

shows how our android application is work.

 Figure 3.3: How our android application work

Chapter 3. Proposed system for context sensing 9

3.2.2 Implementation

Our android application’s view partition was implemented in activity_main.xml file.

Every text view has a unique id in this file. Using this id we can access this text view in

main java file. Suppose the id of one text field is value then it access from main java file

by using this code value=(TextView)findViewById(R.id.value). Mobile device sensors are

three type motion sensor, environmental sensor and position sensor. Motion sensor

includes linear accelerometer, gravity, gyroscope and relational vector sensor.

Environmental sensor includes temperature, pressure and humidity. Position sensor

includes latitude and longitude. You can access those sensors and acquire raw sensor data

by using the android sensor framework. The sensor framework is part of the android

hardware package and includes the classes and interfaces are SensorManager, Sensor,

SensorEvent and SensorEventListener. The system use SensorManager class to create an

instance of sensor service. This class provides various methods for accessing and listing

sensor, register and unregister sensor event listener and acquiring orientation information.

The system use Sensor class to create an instance of a specific sensor. The system use

SensorEvent class to create a sensor event object, which provides the information about a

sensor event. A sensor event object include the information are raw sensor data, the type

of the sensor that generate the event, the accuracy of the data and the time stamp for the

event. The system use SensorEventListener interface to create to callback method that

receive notification when the sensor value change or when the sensor accuracy change.

First we write onCreate() method. In onCreate() method first we access all the text

that are present in the view by their unique id and store the reference in local text view

variable. Suppose we access the x value of linear accelerometer then the corresponding

code is lxValue=(TextView)findViewById(R.id.lxvalue) where lxvalue is the id of the x

value of linear accelerometer’s text field. Similarly we can access all text fields by using

their unique id and store the reference in different variable. This was done because when

the sensor values are display in view section then using this text views variable we can do

it easily. Now we can create an object of sensor manager by using this code

sensormanager=(SensorManager)getSystemService(Context.SENSOR_SERVICE) . After

that we create the object of all the sensors. For linear accelerometer the code is

linearaccelerometer=sensormanager.getDefaultSensor(Sensor.TYPE_LINEAR_ACCELE

ROMETER) , where linearaccelerometer is the object of sensor class. Similarly we can do

for gyroscope, proximity, light and location service and onCreate() method is ended here.

Now we write onStart() method. In onStart() method we check if the sensor objects are

null or not. If any sensor object is null then display the massage that this sensor is not

present in this device and if it is not null then register the listener corresponding this

sensor object. onStart() method is ended here. Now we write the onResume() method. In

onResume() method first we check the device state then we check the external memory is

available or not. Now we check the current directory and create a folder name as ‘Myfile’

if it is not present. Then create a csv file name as ‘sensordata’. On every sensor event

change there is a method is called onSensorChanged() and it accept the argument as a

sensor event object. This method was automatically call when any sensor event change

occur. Using the code Sensor sensor=sensorEvent.sensor we get the sensor from sensor

event where sensorEvent is an object of sensor event. We check the type of the sensor

Chapter 3. Proposed system for context sensing 10

and depend on that this sensor value is display in the corresponding text view in user

view section. For location sensor we implement a method call as onLocationChanged().

To get latitude use the code latitude=location.getLatitude(). Similarly we get longitude

also and display in the user view section.

 Figure 3.4: user view when data are storing in file

Now we take data after 2 second and store it in the local csv file. To do this we create a

function call as showData() and call it from onSensorChanged() method after every two

second. We also add the current data and time in the csv file. In onPasue() method we

close the file only. In onStop() method we unregister the listener class from sensor

manager by using this code sensormanager.unregisterListener(MainActivity.this).

Figure 3.5: sensor data in file

Chapter 3. Proposed system for context sensing 11

3.3 Data Collection

Participators collect the data in all possible situations. Possible situations are when they

are collecting data is talking to someone, walking in road, travelling in any transport

system, present in indoor or outdoor, put the device in his or her pocket, hold the device

in hand.

 Figure 3.6: Participators collect data

After completing their data collection process the file where the data store is share with

the system where the machine learning algorithms are implemented. Files are transfer

from the mobile device to that system through data cable and this system can access these

files easily.

3.4 Prediction Techniques

Prediction technique is the machine learning algorithms that are use to solve this

problem. Machine Learning (ML) can be explained as automating and improving the

learning process of computers based on their experiences without being actually

programmed i.e. without any human assistance. The process starts with feeding good

quality data and then training our machines (computers) by building machine learning

models using the data and different algorithms. The choice of algorithms depends on

what type of data do we have and what kind of task we are trying to automate. Generally

there are two main types of machine learning problems, supervised and unsupervised.

Supervised machine learning problems are problems where we want to make predictions

based on a set of examples. Unsupervised machine learning problems are problems where

our data does not have a set of defined set of categories, but instead we are looking for

the machine learning algorithms to help us organize the data. Within supervised machine

Chapter 3. Proposed system for context sensing 12

learning we further categorize problems into two parts, one is classification problem and

another one is regression problem. Unsupervised machine learning problems are

problems where we have little or no idea about the results should look like. We are

basically providing the machine learning algorithms with data and asking it algorithm to

look for hidden features of data and cluster the data in a way that makes sense based on

the data. Examples of algorithms used for unsupervised machine learning problems are

K-means clustering, Neural Networks and Principal component analysis. A classification

problem is a problem where we are using data to predict which category something falls

into. An example of a classification problem could be analyzing a image to determine if

it contains a car or a person, or analyzing medical data to determine if a certain person is

in a high risk group for a certain disease or not. In other words we are trying to use data

to make a prediction about a discrete set of values or categorizes. Since our problem is

classification problem so we discuss only these algorithms which solve the classification

problems. These algorithms are Decision Tree, Random Forest, Naive Bayes Classifier,

Logistic Regression and K-Nearest Neighbors. Here we use only decision tree and

random forest [4].

3.4.1 Decision Tree

A tree has many analogies in real life, and turns out that it has influenced a wide area of

machine learning, covering both classification and regression. In decision analysis, a

decision tree can be used to visually and explicitly represent decisions and decision

making. As the name goes, it uses a tree-like model of decisions. Though a commonly

used tool in data mining for deriving a strategy to reach a particular goal, it’s also widely

used in machine learning, which will be the main focus of this article. For this let’s

consider an example that the mobile device was present in his hand or put the device in

his pocket. If the device was present in his hand at that time he was walking or not. We

consider all three axes of linear accelerometer and proximity as features. Now the

following diagram show how decision tree work.

Chapter 3. Proposed system for context sensing 13

 High Low

 Device present in pocket

 Change not change

Participator was walking Participator was not walking

that time that time

 Figure 3.7: Decision Tree

Although, a real dataset will have a lot more features and this will just be a branch in a

much bigger tree, but you can’t ignore the simplicity of this algorithm. The feature

importance is clear and relations can be viewed easily. This methodology is more

commonly known as learning decision tree from data and above tree is called

Classification tree as the target is to classify passenger as survived or died. Regression

trees are represented in the same manner, just they predict continuous values like price of

a house. In general, Decision Tree algorithms are referred to as CART or Classification

and Regression Trees. So, what is actually going on in the background? Growing a tree

involves deciding on which features to choose and what conditions to use for splitting,

along with knowing when to stop. As a tree generally grows arbitrarily, you will need to

trim it down for it to look beautiful. Let’s start with a common technique used for

splitting. In Recursive Binary Splitting all the features are considered and different split

points are tried and tested using a cost function. The split with the best cost (or lowest

cost) is selected. This algorithm is recursive in nature as the groups formed can be sub-

divided using same strategy. Due to this procedure, this algorithm is also known as the

greedy algorithm, as we have an excessive desire of lowering the cost. This makes the

root node as best predictor/classifier. Let’s take a closer look at cost functions used for

classification and regression. In both cases the cost functions try to find most

homogeneous branches, or branches having groups with similar responses. This makes

sense we can be surer that a test data input will follow a certain path. Regression :

sum(y — prediction)²
Lets say, we are predicting the price of houses. Now the decision tree will start splitting

by considering each feature in training data. The mean of responses of the training data

inputs of particular group is considered as prediction for that group. The above function

Proximity data

is high or low?

X and y axis of linear

accelerometer is

continuously change or

not?

Chapter 3. Proposed system for context sensing 14

is applied to all data points and cost is calculated for all candidate splits. Again the split

with lowest cost is chosen. Classification : G = sum(pk * (1 — pk))

A Gini score gives an idea of how good a split is by how mixed the response classes are

in the groups created by the split. Here, pk is proportion of same class inputs present in a

particular group. A perfect class purity occurs when a group contains all inputs from the

same class, in which case pk is either 1 or 0 and G = 0, where as a node having a 50–50

split of classes in a group has the worst purity, so for a binary classification it will have

pk = 0.5 and G = 0.5. You might ask when to stop growing a tree? As a problem usually

has a large set of features, it results in large number of split, which in turn gives a huge

tree. Such trees are complex and can lead to over fitting. So, we need to know when to

stop? One way of doing this is to set a minimum number of training inputs to use on each

leaf. For example we can use a minimum of 10 passengers to reach a decision(died or

survived), and ignore any leaf that takes less than 10 passengers. Another way is to set

maximum depth of your model. Maximum depth refers to the the length of the longest

path from a root to a leaf. The performance of a tree can be further increased by pruning.

It involves removing the branches that make use of features having low importance. This

way, we reduce the complexity of tree, and thus increasing its predictive power by

reducing over fitting. Pruning can start at either root or the leaves. The simplest method

of pruning starts at leaves and removes each node with most popular class in that leaf,

this change is kept if it doesn't deteriorate accuracy. It’s also called reduced error pruning.

More sophisticated pruning methods can be used such as cost complexity pruning where

a learning parameter (alpha) is used to weigh whether nodes can be removed based on the

size of the sub-tree. This is also known as weakest link pruning. This is all the basic, to

get you at par with decision tree learning. An improvement over decision tree learning is

made using technique of boosting [5].

3.4.2 Random Forest

Random Forest is a flexible, easy to use machine learning algorithm that produces, even

without hyper-parameter tuning, a great result most of the time. It is also one of the most

used algorithms, because its simplicity and the fact that it can be used for both

classification and regression tasks. Random Forest is a supervised learning algorithm.

Like you can already see from its name, it creates a forest and makes it somehow random.

The “forest” it builds, is an ensemble of Decision Trees, most of the time trained with the

“bagging” method. The general idea of the bagging method is that a combination of

learning models increases the overall result. One big advantage of random forest is, that it

can be used for both classification and regression problems, which form the majority of

current machine learning systems. I will talk about random forest in classification, since

classification is sometimes considered the building block of machine learning. Below you

can see how a random forest would look like with two trees:

Chapter 3. Proposed system for context sensing 15

 Figure 3.8: Random Forest

Random Forest has nearly the same hyper parameters as a decision tree or a bagging

classifier. Fortunately, you don’t have to combine a decision tree with a bagging

classifier and can just easily use the classifier-class of Random Forest. Random Forest

adds additional randomness to the model, while growing the trees. Instead of searching

for the most important feature while splitting a node, it searches for the best feature

among a random subset of features. This results in a wide diversity that generally results

in a better model. Therefore, in Random Forest, only a random subset of the features is

taken into consideration by the algorithm for splitting a node. You can even make trees

more random, by additionally using random thresholds for each feature rather than

searching for the best possible thresholds (like a normal decision tree does). Sklearn

provides a great tool for this, that measures a features importance by looking at how

much the tree nodes, which use that feature, reduce impurity across all trees in the forest.

It computes this score automatically for each feature after training and scales the results,

so that the sum of all importance is equal to 1. If you don’t know how a decision tree

works and if you don’t know what a leaf or node is, here is a good description from

Wikipedia: In a decision tree each internal node represents a “test” on an attribute, each

branch represents the outcome of the test, and each leaf node represents a class label

(decision taken after computing all attributes). A node that has no children is a leaf.

Through looking at the feature importance, you can decide which features you may want

to drop, because they don’t contribute enough or nothing to the prediction process. This is

important, because a general rule in machine learning is that the more features you have,

the more likely your model will suffer from over fitting and vice versa.

Chapter 3. Proposed system for context sensing 16

Random Forest is a collection of Decision Trees, but there are some differences. If we

input a training dataset with features and labels into a decision tree, it will formulate

some set of rules, which will be used to make the predictions. For example, if we want to

predict whether a participator walking or not, we would collect the data after labeling and

take some sensors as a features. If we put the features and labels into a decision tree, it

will generate some rules. Then we can predict whether the advertisement will be clicked

or not. In comparison, the Random Forest algorithm randomly selects observations and

features to build several decision trees and then averages the results. Another difference

is that “deep” decision trees might suffer from over fitting. Random Forest prevents over

fitting most of the time, by creating random subsets of the features and building smaller

trees using these subsets. Afterwards, it combines the sub trees. Note that this doesn’t

work every time and that it also makes the computation slower, depending on how many

trees your random forest builds [6].

 17

Chapter 4

Results and Analysis

After doing the usual Feature Engineering, Selection, and of course, implementing a

model and getting some output in forms of a probability or a class, the next step is to find

out how effective is the model based on some metric using test datasets. Different

performance metrics are used to evaluate different Machine Learning Algorithms. For

now, we will be focusing on the ones used for Classification problems. We can use

classification performance metrics such as Log-Loss, Accuracy, AUC(Area under Curve)

etc.

Accuracy in classification problems is the number of correct predictions made by the

model over all kinds predictions made. In the Numerator, are our correct predictions

(True positives and True Negatives)(Marked as red in the fig above) and in the

denominator, are the kind of all predictions made by the algorithm(Right as well as

wrong ones).

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

True Positives (TP): True positives are the cases when the actual class of the data point

was 1(True) and the predicted is also 1(True)

True Negatives (TN): True negatives are the cases when the actual class of the data

point was 0(False) and the predicted is also 0(False)

False Positives (FP): False positives are the cases when the actual class of the data point

was 0(False) and the predicted is 1(True). False is because the model has predicted

incorrectly and positive because the class predicted was a positive one. (1)

False Negatives (FN): False negatives are the cases when the actual class of the data

point was 1(True) and the predicted is 0(False). False is because the model has predicted

incorrectly and negative because the class predicted was a negative one. (0)

The accuracy of the proposed system has been evaluated through extensive testing and

experimentation and this chapter gives the insight to our experiments. Here we use two

algorithms and take feature alternatively and see which algorithm and feature

combination give the better accuracy.

4.1 Decision Tree

In this section we see that using decision tree algorithm how the result differs when we

take different features and the accuracy is change. We take a training data set and fit our

model using decision tree algorithm. Now we take an unknown data set and predict our

contexts depend on that data present in unknown data set. Since gyroscope, light and

location sensor are not important for our system that is these sensor values are not more

helpful for our system so we can ignore this sensor values as a features and take all three

Chapter 4. Result and Analysis 18

axis of linear acceleration and proximity as a features. Our below table shows that how

accuracy is differing when we take various set of feature:

 Use Algorithm Use as Features Total no of correct

prediction using

these feathers and

this algorithm

Accuracy

Decision Tree LA-x, LA-y, LA-z,

proximity

 329 0.951

Decision Tree LA-x, LA-y, proximity 328 0.947

Decision Tree LA-y, LA-z, proximity 323 0.933

Decision Tree LA-x, LA-z, proximity 325 0.939

Decision Tree LA-x, proximity 308 0.890

Decision Tree LA-y, proximity 307 0.887

Decision Tree LA-z, proximity 315 0.910

Here LA-x means x axis of linear accelerometer, LA-y means y axis of linear

accelerometer, LA-z means z axis of linear accelerometer. Total number of data present

in unknown data set is 346. Here we see that when we take LA-x, LA-y, LA-z and

proximity as a features using decision tree algorithm we get the highest accuracy that is

using this sensors as features we predict maximum number of correct context.

4.2 Random Forest

In this section we see that using random forest algorithm how the result differs when we

take different features and the accuracy is change. We take a training data set and fit our

model using random forest algorithm. Now we take an unknown data set and predict our

contexts depend on that data present in unknown data set. As we take linear acceleration

and proximity in earlier section for the same reason here we take all three axes of linear

acceleration and proximity as features. Our below table shows that how accuracy is

differing when we take various set of feature:

Chapter 4. Result and Analysis 19

Use Algorithm Use as Features Total no of correct

prediction using

these feathers and

this algorithm

Accuracy

Random Forest LA-x, LA-y, LA-z,

proximity

338 0.976

Random Forest LA-x, LA-y, proximity 338 0.976

Random Forest LA-y, LA-z, proximity 329 0.950

Random Forest LA-x, LA-z, proximity 337 0.973

Random Forest LA-x, proximity 308 0.890

Random Forest LA-y, proximity 308 0.890

Random Forest LA-z, proximity 316 0.913

LA-x means x axis of linear accelerometer, LA-y means y axis of linear accelerometer,

LA-z means z axis of linear accelerometer. Total number of data present in unknown data

set is 346. Here we see that when we take LA-x, LA-y, LA-z and proximity as a features

or LA-x, LA-y and proximity using random forest algorithm we get the highest accuracy

that is using these sensors as features we predict maximum number of correct context.

4.3 Discussion

Now if we compare these two algorithms decision tree and random forest we see that

when we use random forest algorithm over the same data set it gives better result from

decision tree. So we can say that using random forest algorithm and if LA-x, LA-y, LA-z

and proximity or LA-x, LA-y and proximity take as a feature set then we have the highest

accuracy which is 0.976. Now if we notice over these two feature set LA-x, LA-y, LA-z,

proximity and LA-x, LA-y, proximity then we can see that z axis of linear

accelerometer’s present or absent is not affected the accuracy. So we can say that our

context detection system does not depend on the z axis of the linear accelerometer. Now

if we implement our android application to take noise data and apply decision tree or

random forest algorithm over this data set so we detect the context that when participator

collect noise data at that time what participator do with his mobile device. After seeing

the context we can decide which data is noisy or not and take those data which are not

noisy and we use these accurate data in different work.

 20

Chapter 5

Conclusion

In this work a system has been proposed in order to detect the context when the

participators collect data. This system recognizes that when data was collected at that

time participator talking to someone or walking or put mobile device in his or her pocket.

A csv file was used to store these sensor data. A decision tree classifier and random forest

classifier has been used to do a real time and aggressive event recognition. The data

collection was still going on and in a few months the system would perform a lot better

then as of now when we will have more data.

 21

References

[1] Xiao-Feng Xie & Zun-Jing Wang. "An empirical study of combining participatory and

 physical sensing to better understand and improve urban mobility networks.". In:

 Transportation Research Board (TRB) Annual Meeting. Washington, DC, USA (2015).

[2] Christian Glahn. “The Language of Technical Communication”. In: XML Press that was

 founded in 2008 to publish books and ebooks on writing, management, content strategy,

 technology, and social media (2016).

[3] Bleumers, L.” Capturing context: Mobile and pervasive game-play in participatory sensing”.

 In: K. Mitgutsch, S. Huber, H. Rosenstingl, M. Wagner, & J. Wimmer (Eds.), Context

 Matters! Exploring and Reframing Games in Context (pp. 168–180). Wien, Austria: New

 Academic Press (2013).

[4] Samuel, Arthur. "Some Studies in Machine Learning Using the Game of Checkers". In: IBM

 Journal of Research and Development (1959). 3 (3): 210–229.

[5] Kamiński, B.; Jakubczyk, M.; Szufel, P.”A framework for sensitivity analysis of decision

 tree”. In: Central European Journal of Operations Research (2017). 26 (1): 135–159.

[6] Shi T, Seligson D, Belldegrun AS, Palotie A, Horvath S. "Tumor classification by tissue

 microarray profiling: random forest clustering applied to renal cell carcinoma". In: Modern

 Pathology (April 2005). 18 (4): 547–57.

[7] Deborah Estrin. “Participatory Sensing: Applications and Architecture”. In: IEEE

 Internet computing (January 2010).

