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CHAPTER 1                                                                          INTRODUCTION                                                                                              

1.  INTRODUCTION 

1.1 ACOUSTIC ANALYSIS: INTERIOR AND EXTERIOR 

Acoustics is the branch of physics that deals with the study of all mechanical waves in gases, 

liquids, and solids including topics such as vibration, sound, ultrasound and infrasound. The 

study of acoustics revolves around the generation, propagation and reception of mechanical 

waves and vibrations. There are many kinds of cause, both natural and volitional. There are 

many kinds of transduction process that convert energy from some other form into sonic 

energy, producing a sound wave. There is one fundamental equation that describes sound 

wave propagation, the acoustic wave equation, but the phenomenon that emerge from it are 

varied and often complex. The wave carries energy throughout the propagating medium. 

Eventually this energy is transduced again into other forms, in ways that again may be natural 

or volitionally contrived. The central stage in the acoustical process is wave propagation. 

This falls within the domain of physical acoustics. In fluids, sound propagates primarily as a 

pressure wave. In solids, mechanical waves can take many forms including longitudinal 

waves, transverse waves and surface waves. Acoustics looks first at the pressure levels and 

frequencies in the sound wave and how the wave interacts with the environment. While 

propagation, disturbances is related to the sound pressure level (SPL) which is measured on a 

logarithmic scale in decibels.  

Excessive exposure to high sound pressure level (SPL) causes hearing damage. It affects 

mental concentration and quality of work too. Hence good acoustic design is very important 

as it provides contentment and leads to a healthy life. Therefore prediction of the acoustic 

field due to arbitrarily shaped structures is an important research area in many disciplines. 

This topic has variety of applications especially, in engineering and automotive engineering 

fields in determining the interior noise levels of aircraft and ground vehicles. In the past, a 

great deal of effort has been put into studying methods of reducing high frequency noise 

inside the cabins of aircraft. Researches are carried out to reduce the noise to acceptable 

levels from the point of view of passenger comfort, by means of careful design and vibration 

isolation techniques.  
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Exterior acoustic analysis is required mostly for strategic reasons and avoiding community 

noise pollution problems whereas interior acoustic analysis is mainly needed for human 

comfort and health as well as structural safety, integrity and economy.  

Insight into the behaviour of many practical sound sources, such as vibrating surfaces, jet 

flows, and combustion, can be obtained by considering elementary sources. It begins by 

discussing sources that are so small in comparison with the wavelength of the sound they 

produce that the sources can be considered as concentrated at a single point. The simplest 

source to deal with mathematically is a vanishingly small pulsating sphere with a finite 

volume velocity. Such a source is called a monopole, a point source or a simple source. Any 

source that changes its volume as a function of time may be approximated by a monopole 

source at frequencies where it is small compared with the wavelength. 

The different forms of the sound field radiated from different surfaces at low and at high 

frequencies provide physical insight into practical acoustic sources involving vibrating 

surfaces, such as loud speakers and active sonar systems. Also estimate of far field sound 

pressure level is important for a vibrating structure radiating sound. 

For the solution of these problems several methods have been used so far, use of the finite 

element method, statistical energy analysis, and boundary element method (BEM) with 

integral formulations being the most prominent. Each method has its advantage and 

drawbacks depending on the particular application in hand.  

1.2 BOUNDARY ELEMENT METHOD  

The boundary element method (BEM) constitutes a technique for analysing the behaviour of 

mechanical systems and especially of engineering structures subjected to external loading. 

The term loading is used here in the general sense, referring to the external source which 

produces a non-zero field function that describes the response of the system (temperature 

field, displacement field, stress field, etc.), and it may be heat, surface tractions, body forces, 

or even non-homogeneous boundary conditions, e.g. support settlement. Today the BEM is 

being applied to all fields of engineering such as the potential theory, acoustics, torsion, 

electric and magnetic field theory, elastostatics, elastodynamics, plate and shell analysis, 

transient heat transfer, viscoelasticity, viscoplasticity, fracture mechanics, water waves, 

viscous fluid flow, ground water flow and thermoelasticity, etc. The method is even used to 

investigate into the micro-mechanical behaviour of the fibre reinforced composite materials.  



3 
 

In principle, the method is based on finding the unknown solutions at the boundary in light of 

a second set of known boundary solution, derived from the Green’s solution of the governing 

equation, the two solutions being connected through Gauss Divergence theorem, for a set of 

given boundary conditions. The boundary conditions are incorporated into the system 

equation before going for the solution. Any solution that is needed inside the domain can be 

calculated from the boundary solutions, once the boundary values are known. 

1.3 BOUNARY ELEMENT METHOD (BEM) OVER FINITE ELEMENT METHOD 

(FEM) 

There are certain advantages of BEM over FEM. Modelling with finite elements can be 

ineffective and laborious for certain classes of problems, is not free of drawbacks. The most 

important reasons are: 

I. Discretization is over the entire domain occupied by the body. Hence, generation and 

inspection of the finite element mesh exhibit difficulty and are both laborious and 

time consuming, especially when the geometry of the body is not simple. For 

example, when there are holes, notches or corners, mesh refinement and high element 

density is required at these critical regions of large solution gradients. 

II. Modification of the discretized model to improve the accuracy of the solution or to 

reflect design changes can be difficult and requires a lot of effort and time. 

III. For infinite domains, e.g. half space or the complementary domain to a finite one, 

fabrication or fictitious closed boundaries is required in order to apply the FEM. This 

reduces the accuracy and some time may result in spurious or incorrect solutions. 

IV. For problems described by differential equations of fourth or higher order (i.e., plate 

equations, or shell equations of sixth, eighth or higher order), the conformity 

requirements demand such a tedious job that FEM may become impractical. 

On the contrary, the boundary element method possesses many advantages, the most 

important of which are: 

I. Discretization is only over the boundary of the body, making numerical modelling 

with the BEM easy and reducing the number of unknowns by one order. Thus, a 

remodelling to reflect design changes becomes simple. 

II. For infinite domains, the problem is formulated simply as an exterior one, apparently, 

the fundamental solution has to satisfy some conditions at infinity, such as 
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sommerfeld’s radiation condition for problems in acoustics. In this manner, computer 

programs developed for finite domains can be used, with just few modifications, to 

solve problems in infinite domains. This is not possible with the FEM. 

III. The method is particularly effective in computing the derivatives of the field function 

(e.g., fluxes, strains, stresses, moments). It can easily handle concentrated forces and 

moments, either inside the domain or on the boundary. 

IV. The BEM allows evaluation of the solution and its derivatives at any point of the 

domain of the problem and at any instant in time. This is feasible because the method 

uses an integral representation of the solution as a continuous mathematical 

expression, which can be differentiated and utilized as a mathematical formula. This 

is impossible with the FEM, since the solution is obtained only at the nodal points. 

V. The method is well suited for solving problems in domains with geometric 

peculiarities, such as cracks.  

1.4 NEED OF BOUNDARY ELEMENT METHOD FOR ACOUSTIC ANALYSIS 

Over recent decades, the boundary element method (BEM) has received much attention from 

researchers and has become an important technique in the computational solution of a 

number of physical problems. In common with the better known finite element method 

(FEM) and finite difference method (FDM), the boundary element method is essentially a 

method for solving partial differential equations (PDEs) and can only be employed when the 

physical problem can be expressed as such. As with the other methods mentioned, the 

boundary element method is a numerical method and hence it is an important subject of 

research amongst the numerical analysis community. The boundary element method has 

found application in such diverse topics as stress analysis, potential flow, fracture mechanics 

and acoustics. 

Acoustics is an important branch of physical science. An acoustic field can exist in a fluid 

domain such as air or water, the two most important acoustic media. The linear wave 

equation forms an acceptable model in many fluids and it is often used in the cases of air and 

water media. In many physical situations the acoustic field is periodic, and has the outcome 

of reducing wave equation to a sequence of Helmholtz equations by a Fourier decomposition 

with one Helmholtz equation for each sample frequency. Solutions of acoustic problems are 

obtained through the consideration of the individual Helmholtz problems. 
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The Helmholtz equation governing a range of classes of domains may be solved by the 

boundary element method. Hence the BEM has received attention from engineers that are 

interested in applications such as the sound output of a loudspeaker, the noise from a 

radiating source such as an engine and the interior acoustic modes of an enclosure such as a 

vehicle interior. The method is equally applicable in underwater acoustics and can be used to 

model the scattering effect of an obstruction in the ocean or to determine the acoustic field 

surrounding a sonar transducer. 

The advantage in the boundary element method arises from the fact that only the boundary of 

the domain of the PDE requires sub-division. Thus the dimension of the problem is 

effectively reduced by one, for example an equation governing a three dimensional region is 

transformed into one over its surface. In cases where the domain is exterior to the boundary, 

as it is in acoustic radiation and scattering models, the extent of the domain is infinite and 

hence the advantages of the BEM are even more striking; the equation governing the infinite 

domain is reduced to an equation over the finite boundary. 

1.5 SCOPE OF THE WORK IN EXTERIOR AND INTERIOR ACOUSTICS 

The present study involves analysis of exterior and interior acoustic analysis using BEM in 

two parts.  

In the first part exterior acoustic analysis is shown. The acoustic radiation problem is 

emphasized because many noise control problems can be adequately modelled by assuming 

that the noise source is submerged in an infinite fluid medium. At low frequencies where the 

acoustic wavelength is much larger that the characteristic dimension of the vibrating 

structure, the acoustic radiation can be modelled as equivalent to that of a simple point 

source. Analysis of sound pressure level for pulsating sphere and other arbitrary structures 

i.e., a cube and a cylinder whose lateral surface is pulsating are shown. Sound pressure level 

(SPL) of the exterior domain has been plotted showing different patterns for different point 

sources. One of major problem regarding exterior acoustic is that of its non-uniqueness 

problem which has been taken care of by applying Combined Helmholtz Integral Equation 

Formulation (CHIEF) method. One CHIEF point has been used for the above simple sources 

which have proven to be helpful in removing irregularity for certain frequencies.  

In the second part, interior acoustic analysis of rigid arbitrary shaped cavity have been shown 

having different shapes. Absorbent layer has been used in the interior cavity as a boundary 
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condition to reduce the sound pressure level (SPL) at certain frequencies. Different case 

studies have been done regarding the shape and size of different cavity. The boundary as well 

as domain SPL has been determined by using boundary element method (BEM) with the help 

of MATLAB programming. It was shown that different position of absorbent layer behaves 

differently in reducing the SPL at a particular location and at specific frequency.  
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CHAPTER 2                                                              LITERATURE REVIEW                                    

2. LITERATURE REVIEW 

2.1 HISTORICAL DEVELOPMENT OF BOUNDARY ELEMENT METHOD 

Until the beginning of the eighties, the BEM was known as Boundary Integral Equation 

Method (BIEM). As a method for solving problems of mathematical physics has its origin in 

the work of G. Green [1]. He formulated, in 1828, the integral representation of the solution 

for the Dirichlet and Neumann problems of Laplace equation by introducing the so-called 

Green’s function for these problem. In 1872, Betti [2] presented a general method for 

integrating the equations of elasticity and deriving their solution in integral form. Basically, 

this may be regarded as a direct extension of Green’s approach to the Navier equations of 

elasticity. In 1885, Somigliana [3] used Betti’s reciprocal theorem to derive the integral 

representation of the solution of the elasticity problem, including its expression of the body 

forces, the boundary displacements and the tractions. Already in late eighties, one could find 

numerous publications in the literature, where the BEM was applied to a wide variety of 

engineering problems. Among them are static and dynamic, linear or non-linear problems of 

elasticity, of plates and shells, problems of elastodynamics, wave and earthquake 

engineering, geomechanics and foundation engineering, soil-structure interaction, fluid-

structure interaction, fluid dynamics, unilateral contact, fracture mechanics, electricity and 

electromagnetism, heat conduction, acoustics, aerodynamics, corrosion, optimization, 

sensitivity analysis, inverse problems, problems of system identification, etc. it could be said 

that today the BEM has matured and become a powerful method for the analysis of 

engineering problems, and an alternative to the domain methods. The method has been 

established by the name BEM, which is attributed to the approach used to solve the boundary 

integral equations. Software based on the BEM has been developed for computers of simple 

or parallel architecture, along with professional high performance packages, like BEASY [4]. 

In 1978, C. Brebbia organized the first international conference on BEM, and since then 

conferences on BEM are organized yearly by the International Society for Boundary 

Elements (IABEM). Furthermore, all conferences on computational mechanics devote 

sessions to the BEM. The proceedings of the above conferences (BEM, IABEM) are referred 

to literature review articles [5,6].  

2.2 BOUNDARY ELEMENT METHODS - NUMERICAL IMPLEMENTATION 

One of the fundamental requirements for numerical modelling is a description of the problem, 

its boundaries, boundary conditions and material properties, in a mathematical way. The 

exact definition of the shape of a complicated boundary would require the specification of the 

location (relative to the origin set of axes) of a large number of points on the surface (indeed 

an exact definition will take an infinite number). In order to able to model such problems 

with a reasonable amount of input data, only a limited number of points may be defined and 

the shape between the points is approximated by functions. This is known as solid modelling 

[7]. Solid modelling is being used, for example, to describe the shape of car bodies in 
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mechanical engineering and ore bodies in mining, for the purpose of generating displays on 

computer graphics terminals. Thus a new form of car body can be visualized, in perspective, 

from various angles, even before a scale model is built and the location and grade of ore 

bodies can be displayed for optimising excavation strategies in mine planning. Constant 

elements were used in the early days of the development, where the method was known under 

the name Boundary Integral Equation Method [8]. This is similar to the development of FEM, 

where triangular and tetrahedral elements, with exact integration, were used in the early days. 

In 1968, Ergatoudis and Irons [9] suggested that isoparametric finite elements and numerical 

integration could be used to obtain better results, with fewer elements. The concept of higher 

order elements and numerical integration is very appealing to engineers because it alleviates 

the need for tedious analytical integration and, more importantly, it allows the writing of 

general purpose software with a choice of element types. The idea of using isoparametric 

concepts for boundary elements seems to have been first introduced by Lachat and Watson 

[10] and this prompted a change of name of the method to Boundary Element Method. 

2.3 EXTERIOR ACOUSTIC ANALYSIS 

Classical formulations of acoustic radiation from vibrating bodies based on integral equations 

started in early 1960’s. In these works, exterior steady-state acoustic radiation problem for 

bodies of arbitrary shape was investigated. Chen and Schwelkert [11] described the acoustic 

field by a distribution of surface sources of unknown strength at the shell-fluid boundaries, 

which led to a set of integral equations. This numerical technique is named as Simple Source 

Formulation (SSF) in which the acoustic pressure at an exterior field point is represented in 

terms of a surface integral of a source density function. Computational results were given for 

two sample problems such as a piston set in a rigid sphere, and a stiffened cylindrical shell of 

finite length in water. Chertock [12] developed a numerical method utilizing the discretized 

Surface Helmholtz Integral (SHIE) for the solution of radiation problems involving surfaces 

of revolution. Another approximate method was presented by Williams et al. [13] in which 

the farfield pressure was approximated by a truncated series of spherical Hankel functions. 

The method was shown to be most accurate for radiating surfaces that are nearly spherical in 

shape. Copley [14] proposed a method applicable to radiation from surfaces of revolution 

utilizing the Interior Helmholtz Integral Equation (IHIE). All three types of integral 

formulations for obtaining approximate solutions of the exterior steady-state acoustic 

radiation problem for an arbitrary surface were discussed by Schenck [15]. Schenck proposed 

a Combined Helmholtz Integral Formulation (CHIEF) to overcome the deficiencies and 

computational difficulties present in the previous works. He showed that this formulation 

yielded unique solutions even at the characteristic wave numbers for which the other integral 

equations broke down. Meyer, Bell, and Zinn [16] investigated the development of a 

procedure for the exterior sound radiation problems. They were concerned with the following 

points: 

I. The development of a numerical scheme for handling the singular integrands 

encountered in the application of the Helmholtz formulae 

II. The determination of the accuracy of the resulting solutions. 
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III. The determination of the most effective procedure for handling the non-uniqueness 

for the radiation solution at eigenvalues of the associated internal acoustic problem. 

The Boundary Element Method (BEM) became popular in late 1970’s. koopman and Benner 

[17] presented a computational method based on Helmholtz integral for assessing the sound 

power characteristics of machines. The accuracy of the method was demonstrated by 

calculating the pressure on the surface of a uniformly pulsating sphere and of an oscillating 

sphere. A clear explanation of the application of the BEM to exterior sound radiation 

problems was given by Seybert et al [18]. The BEM was used to obtain numerical solutions 

to the same classical radiation problems. They introduced an isoparametric element 

formulation in which both the surface geometry and the acoustic variables on the surface of 

the radiating body were represented by quadratic shape functions. Solutions to the problems 

encountered in the use of BEM have been suggested by Piaszczyk [19] and Brod [20]. 

Recently, Wu et al [21] described a BEM code for acoustic analysis, along with the process 

of vectorizing and parallelizing the code on a vector parallel computer and Seybert, Cheng, 

and Wu presented an approach to the solution of coupled interior/exterior acoustic problems 

using the BEM [22]. 

2.4 INTERIOR ACOUSTIC ANALYSIS 

The solution of the interior noise fields of cavities having arbitrary shapes by using BEM has 

recently received much interest. Bell, Meyer, and Zinn [23] presented an integral solution of 

the Helmholtz equation for predicting acoustic properties of arbitrarily shaped bodies. They 

examined two-dimensional problems of a circle and rectangle together with a duct having a 

right-angle bend. They also investigated the acoustic properties of a sphere using an 

axisymmetric formulation. A master plan for prediction of vehicle interior noise was 

suggested by Dowell [24]. The interior noise problem was presented considering noise 

sources, noise effects on people and payloads, noise reduction concepts, noise transmission 

analysis, and interior acoustic cavities. He examined the contributions to the literature on this 

subject and discussed the different methods of approach to the problem. Sestieri et al [25] 

discussed the structural-acoustic coupling problem by using the BEM for interior volumes 

having complex shapes. They investigated the importance of coupling and reached the 

conclusion that a full coupled analysis did not seem to be justified. Seybert and Cheng [26] 

concerned with the application of the BEM to interior acoustics problems governed by the 

reduced wave (Helmholtz) differential equation. They applied the BEM formulation to an 

axisymmetric problem at which the surface integrals could be reduced to line integrals along 

the generator of the cavity and to integrals over the angle of revolution. Therefore, the surface 

was discretized by using line elements, not surface elements and only the generator of the 

cavity needed to be discretized. They illustrated the solution for the acoustic response of a 

spherical cavity. 

Fyfe [27] discussed the application of the BEM to predict the interior acoustic mode 

frequencies of an enclosed medium. He used a non-rectangular box and an automobile model 

to show the accuracy of the method. Cheng and Seybert [28] examined both the interior and 

exterior acoustic radiation problems considering the application of the BEM. The acoustical 
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response of a spherical cavity was determined and good agreement between the BEM results 

and the analytical solution was obtained. 

A more general investigation of the application of the BEM for the numerical solution of 

noise problems inside a complex shaped cavity was performed by Suzuki et al [29]. A new 

formulation for complicated boundary conditions was proposed to solve practical noise 

problems inside a vehicle cabin. The acoustic effect of absorbent materials on the vibrating 

surfaces and the effect of leakage through an opening were considered in the analysis. They 

applied the method in determining the sound pressure inside a linear duct, the transmission of 

sound through a cavity-backed plate, and predicting the sound pressure field inside a rather 

simple sedan compartment model. These studies resulted in the development of a new 

computer code called ACOUST/BOOM to analyse the sound pressure radiated by a vibrating 

structure and to calculate the acoustic resonance of the field [30]. In 2006, Niyogi [31] had 

analysed coupled structural acoustic problem using absorbent layer through admittance 

relations. In 2009, Han et al [32] predicted the absorption exponent in rectangular enclosures 

with a single absorbent boundary.  

In this present study sound pressure level at the boundary and within the domain of an 

arbitrary shaped cavity have been found out. Boundary element analysis (BEA) has been used 

[33, 34, 35] to solve the acoustic cavity problem governed by wave equation, in frequency 

domain. Eight-noded isoparametric serendipity elements are used to model the boundary. A 

pressure-velocity formulation is adopted to model the acoustic domain. It was tried to control 

the sound pressure level using absorbent layer at different boundary. 

 

 

  

 

 

 

 

 

 

 

 

 

 



11 
 

CHAPTER 3                                              THEORETICAL BACKGROUND 

3. THEORETICAL BACKGROUND 

 

3.1 THEORETICAL FORMULATION 

The boundary element formulation for the sonic response of exterior and interior acoustic 

domain is presented in this chapter. The governing acoustic equation (Helmholtz equation) is 

developed and the fundamental solution is presented and employed in conjunction with the 

Green’s symmetric identity to generate the Helmholtz boundary integral equation (HBIE). 

The HBIE is the basis of a direct boundary element formulation for the acoustic response 

analysis.  The present formulation adopts boundary pressure and normal fluid velocity at the 

nodes as the primary variables.  

3.2 THE GOVERNING ACOUSTIC EQUATION 

The equation of state for a gas relates the internal restoring forces to the corresponding 

deformations. Being very quick, the acoustic processes are nearly adiabatic, and so, their 

equation of state, assuming the medium to be a perfect gas, may be written as  


















ooP

P
                          (3.2.1a) 

where  is the ratio of the specific heats of the gas at constant pressure to that at constant 

volume, P and Po are the instantaneous and ambient pressures, respectively, and  and o are 

instantaneous and ambient mass densities, respectively, of the acoustic fluid. For the acoustic 

disturbances to be adiabatic there must not be any exchange of thermal energy between 

adjacent elements of fluid. Taylor’s series expansion rule may now be applied to draw a 

relation between changes in pressure and density due to acoustic disturbances, as shown 

below 

    
























 2/

2

2

2

ooo

oo

PP
PP 







 

where the partial derivatives are constants determined for the adiabatic compression and 

expansion of the fluid about its equilibrium density. Assuming the fluctuations are small, 
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only the first order term in  o   may be retained. This gives a linear relation between the 

pressure fluctuation and the change in density. 

  BsB
P

PPp
o

o
oo

o


























                     (3.2.1b) 

where  
o

PB o   / is the adiabatic bulk modulus, and   oos  / is the 

condensation. The numerical value of s is very small. In fact, for the intense sounds in air, 

which are painful to human ear, neither s nor the spatial rate of change of fluid particle 

displacement, jai x / , exceed the numerical value of 0.0001. 

 

 

 

 

 

The equation of continuity for the acoustic fluid may be derived with reference to Fig. 3.2.1, 

exhibiting a fixed control volume dV = dx dy dz in space, through which fluid flows with 

velocity au


 ( ta  / ) and instantaneous density. The net influx of mass into this spatially 

fixed volume, resulting from flow in the x direction, is 

 
dV

x

uax







. 

Similar expressions can be obtained for the y and z directions too, so that the total influx is 

     
   dVudV

z

u

y

u

x

u
a

azayax 


























  

where  is the divergence operator. The rate with which the mass increases inside this 

volume is  dVt / . Since the net influx must equal the rate of increase, hence, 

  0



au

t





                (3.2.2) 

 

 

dx 

dy 

dz 

x 

y 
z 

Fig. 3.2.1 Mass flow in the x direction 

through a fixed volume dV. 
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This is the equation of continuity, non-linear by nature. However, from the definition of 

condensation, the instantaneous mass density of air may be written as 

)1( so   ,                (3.2.3) 

where o is the constant ambient mass density and s is very small, which linearizes the non-

linear equation of continuity as 

0



au

t

s 
               (3.2.4) 

This equation can be integrated with respect to time to relate the condensation with fluid 

particle displacements, ai , as follows 

as 


                 (3.2.5) 

since,   aaaa dttdtudtu 


   /  , and the constant of integration is zero, 

because the acoustic quantities are all zero if there is no disturbance present. The quantity a


is the fluid particle displacement vector. Eliminating the condensation term from Eq. (3.2.1b) 

and Eq. (3.2.5), the following relation is obtained 

aBp 


                 (3.2.6) 

To derive the equation of dynamic equilibrium, the acoustic fluid is assumed to be inviscid 

and the effect of thermal conductivity is neglected. A fluid element dV = dx dy dz, which 

moves with the fluid, containing a mass of dm is considered. The net force fd


on the element 

accelerates it according to the Newton’s second law of motion. In the absence of viscosity, 

the net force on the element along x direction is 

dV
x

P
dzdydx

x

P
PPdf x

























  

Thus, the total force on the fluid element is 

dVPfd 


 

The acceleration of the fluid element is  
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  aa
a

az
a

ay
a

ax
aa uu

t

u
u

z

u
u

y

u
u

x

u

t

u
a






























 . 

The mass of the fluid element is dm =  dV. Hence the force equation becomes 

  












 aa

a uu
t

u
P




  

This nonlinear, inviscid force equation is referred to as the Euler’s equation. However, since s 

is negligible and tuuu aaa  /)(


, due to their low numeric values, therefore  can be 

replaced by o and the term aa uu


)(   can be dropped, and the linear, inviscid force equation 

results as follows 

p
t

ua
o 





                (3.2.7) 

The equations of state (3.2.1b), continuity (3.2.4), and force (3.2.7) can now be clubbed into a 

single differential equation with one dependent variable. The particle velocity can be 

eliminated between Eq. (3.2.4) and Eq. (3.2.7). Taking the divergence of Eq. (3.2.7) 

p
t

ua 2

0 







  

Similarly, taking the time derivative of Eq. (3.2.4), 

0
2

2











t

u

t

s a



 

Eliminating au


 from these two relations produces 

 222 / tsp o   . 

Now the equation of state (3.2.1b) is used to eliminate the condensation term from the 

equation above, whereby 

 oBc
t

p

c
p /;

1
2

2

2

2 



              (3.2.8) 



15 
 

This is the three-dimensional lossless wave equation. The one-dimensional equivalent of this 

equation, travelling along the z- direction, may be written as 

2

2

22

2 1

t

p

cz

p









                          (3.2.9) 

where p = p(z,t). In the above equations, variable c is the speed of propagation of sound 

through the acoustic fluid medium. Any function, with argument (ct  z), is a solution to Eq. 

(3.2.9). A solution, f(ct-z) progresses towards the positive z direction, while the function 

f(ct+z) advances in the negative z direction.  

If it is now assumed that the medium is excited by a time-harmonic loading with a forcing 

frequency  such that  

     tizutzutizptzp aa  exp,),exp()(),(                     (3.2.10) 

then, Eq. (3.2.9) becomes  

0)(
)(1

2

2

2

2

2, 






 





  ti

zz ezp
cz

zp
p

c
p                                  (3.2.11) 

Or, 0
2

2

2

2
















p

cz

p
                      (3.2.12a) 

Or, 02

2

2













pk

z

p
                       (3.2.12b) 

Eq. (3.2.12) is the one-dimensional Helmholtz equation. The ratio k = /c, is referred to as 

wavenumber. 

The velocity (Neumann) boundary condition for the one-dimensional Helmholtz equation can 

be derived from the kinetic condition obtained from Eq. (3.2.7). The one-dimensional kinetic 

relation will be 

z

p

t

ua
o











 . 

By inserting relations (3.2.10) in it, the following relation is obtained: 



16 
 

 ti

ao

ti ezu
t

e
z

zp 









)(

)(
  

Or, ti

ao

ti ezuie
z

zp  



)(

)(
  

Finally, eliminating the time variable, time, at boundary it is seen that  

)(
)(

zui
z

zp
ao




                                  (3.2.13) 

The three-dimensional Helmholtz equation is similarly derived and reads as follows 

  022  pk                        (3.2.14) 

where 
2
 is the Laplacian operator, given by 

2

2

2

2

2

2
2

zyx 












                                  (3.2.15) 

The Green’s fundamental solution is deduced from the inhomogeneous Helmholtz equation 

in Section 3.4. 

3.3 ASSUMPTIONS FOR THE ACOUSTIC PROCESS 

The assumptions made in the theoretical acoustic formulation are listed below: 

1. Only small-amplitude waves are taken under consideration in the present study.  Hence 

the variation in density is small. The numerical values of condensation and the spatial 

derivatives of fluid particle displacements are also very close to zero. 

2. The behaviour of the acoustic fluid has been assumed to be linear and inviscid.  

3. Since the fluid is inviscid, the fluid motion is irrotational and the existence of a velocity 

potential for the fluid particles may be assumed for mathematical simplicity. However, 

here the analysis uses a pressure-velocity formulation for better physical understanding. 

4. It is assumed that there is no flow in the acoustic medium. 

5. The amplitude of the displacements and velocities at the boundary are also assumed to be 

of small amplitude.  

6. The effect of gravity is neglected.  
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3.4 THE GREEN’S FUNCTION (FUNDAMENTAL SOLUTION) 

The pressure response for a steady state harmonic acoustic problem in an infinite acoustic 

medium due to a unit point source is known as the so-called fundamental solution or Green's 

function, p
*
. This is derived from the inhomogeneous Helmholtz equation where the 

inhomogeneous (source) term is a Dirac delta function that turns on only at the origin, P, of 

the reference frame that is being used. The equation reads: 

    022   rpk                           (3.4.1) 

Omitting the time dependence and following radial symmetry, ikrerAp   1

1
, should be the 

nature of solution for the Green’s function.  Here, 1i , r is the distance between the 

acoustic source point, P, and the point of observation, Q, and A1 is a constant, yet to be 

evaluated. This equation can be integrated over the entire infinite domain V as 

    122  
 dVrdVpk

VV

                         (3.4.2) 

For a function of radial symmetry, the volume integration of Eq. (3.4.2), over a spherical 

volume of radius a , simplifies to (Fig. 3.4.1) 

  drrrfdrddrrfdVrf

aa

rV

   
   0

2

0

2

0 0

2 )(4sin)( 








                      (3.4.3) 

 

 

 

 

 

It may be noted that 4 is the solid angle subtended by the sphere at its centre. Substituting 

the left-hand-side of Eq. (3.4.2) into Eq. (3.4.3), for the function f(r), it is found that 

       IIIdVerkerAdVpk
V

ikrikr

V

 
 1212

1

22
                     (3.4.4) 
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d 

r sin  

dr 

r sin  d 

r d 
Fig. 3.4.1: (a) The spherical co-

ordinate system, and (b) the 

conversion from Cartesian to 

spherical co-ordinates. 

(a) (b) 

 
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The second integral, II, is  

  1144 1

0

2

1  

 ikaeAdrrekAII ika

a

ikr                               (3.4.5a) 

To evaluate the first integral, I, the divergence theorem is applied as follows: 

    dSnerAdVerAI ikr

S

ikr

V

ˆ1

1

1

1  




 

   =   dSeeer
dr

d
A r

S

r

ikr ˆˆ1

1  
 

   =  ikaeA ika  14 1                                                                                          (3.4.5b)

                          

Combining Eqs. (3.4.5a) and (3.4.5b) 




4

1
;14 11  AAIII , 

or, 
r

e
p

ikr

4


                             (3.4.6) 

This is the desired Green’s function, or the fundamental solution, for the harmonic acoustic 

problems. The directional derivatives of the fundamental solution for pressure are also 

needed to derive the fundamental solution for velocity. This is found as follows: 

  ikr

jj

j

erikr
r

p
x

p 






,2, 1

4

1


                                    (3.4.7) 

and, 

  ikr

jjjjn enrikr
r

npp
n

p 






,2,, 1

4

1


                       (3.4.8) 

It may be noted that the functions in Eqs. (3.4.6)-(3.4.8) are singular, as r tends to zero, i.e, as 

the observation point tends to merge with the source point, the functions blow up infinitely. 

Now, that the Green’s solution is known, the formulation for the Kirchhoff-Helmholtz 

integral equation can be attempted for an acoustic domain, as provided in the next section. 
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3.5 ACOUSTIC BOUNDARY INTEGRAL FORMULATION 

The symmetric identity of Green, as given below, is considered to be the stepping stone to 

derive the boundary integral equation for the acoustic problems. 

      dSngffgdVfgdVgf
SVV

ˆ22                          (3.5.1) 

It is required in this expression that the functions f and g and their first and second partial 

derivatives with respect to the spatial co-ordinates be continuous. The vector n̂  is the unit 

outward normal to surface S containing a domain of interest, V.  Now, it is assumed that the 

function g denotes the unknown acoustic pressure at any point in V or on S, and f is the 

Green’s function. These functions satisfy the above identity at every point inside the domain 

and on the surface excepting the point of application of the acoustic source (since the Green’s 

function becomes infinite at r = 0, but remains regular elsewhere). To deal with this 

singularity at the source, a small spherical domain, V , of radius , centred at the source point 

P, and surrounded by surface S, is excluded from the domain of interest V (refer Fig. 3.5.1). 

Gradually, this radius  is forced to tend zero, to eliminate the singularity. In the process, Eq. 

(3.5.1) becomes 

  dS
n

p
p

n

p
pdVpppp

SSVV
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





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




















22  

Since within the domain V-V, pkp 22  and   pkp 22 , the left-hand-side of the 

above equation is identically zero. Thus, the above equation becomes 

 

 

 

 

 

 

 

Area of the ring element 

= 2 ( sin ) ( d). 
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X1  d 

Figure 3.5.1. Integration around 

source point in polar coordinates. 
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On S , rn  // . Hence, 
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Now  ikererprep ikrikr

r

ikr   12
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Substituting this result back into Eq. (3.5.2) it is found that 

dS
n

p
pdS

n

p
pPp

dS
n

p
pdS

n

p
pPp

SS

SS

































































)(

0)(

            (3.5.3) 

Thus the integral equation (3.5.3), valid for any point inside the acoustic domain has been 

achieved. In the boundary element method it is preferred for computational reasons to take 

the observation points to the boundary S.  This is done simply by taking the source point P to 

the boundary and augment the domain by a hemisphere of radius  (in three-dimensions at P) 

as shown in Fig. 3.5.2. The point P is in the centre of the hemisphere, and, in the limit, the 

radius of the hemisphere is forced to approach zero. 

 

 

 

Boundary point P 

Hemispherical 

surface S. 
r 

Figure 3.5.2. Taking the integral 

equation to the boundary. 
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Thus P becomes a point on the boundary and the resulting equation becomes a boundary 

integral equation (BIE). Presently, only a smooth boundary at P is considered. The cases of 

edges and corners are discussed at a later stage. 

It is important at this stage to differentiate between the two types of kernel that are present in 

Eq. (3.5.3) since the kernel containing the fundamental solution, p

 and that containing its 

derivative behave differently. The integrals are easy to deal with, as the order of singularity is 

O(1/r) [34]. For example: 
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In other words, the right-hand side integral in Eq. (3.5.3) is continuous when both the source 

and the field points are taken to the boundary. It may be noted that  is the solid angle that is 

subtended by the surface S at P.  The left-hand side integral, however, behaves in a separate 

manner. Here, around S one has the following results: 
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Thus Eq. (3.5.3) can be rewritten as a truly boundary integral equation 
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Equation (3.5.5) can be modified to replace the pressure derivative by the normal particle 

velocity, which is a more useful quantity. For the time harmonic cases, the momentum-

balance equation that relates the normal fluid particle velocity, uan, velocity and the normal 

pressure derivative on the boundary can be written in light of Eq. (3.2.13) as follows: 

n

p

i
u

o

an








1
                                                                                                              (3.5.6) 
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where, o is the density of the acoustic medium. Hence, Eq. (3.5.5) is rewritten as 
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The constant C(P) can be evaluated from the potential problem for the same fluid domain, 

when subjected to an equipotential condition throughout the domain, as follows: 

For a potential problem for the same domain, with governing equation 02  U  and Green’s 

function U
* 

=1/4 r, with reference to Figs. (3.5.1) and (3.5.2), the integral equation form 

equivalent to acoustic integral equation (3.5.2) may be written as 
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The first term in the right-hand side is again zero since the integrand is O(), and 0. Thus 

this equation reduces to: 
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The required value for C(P) can be obtained from Eq. (3.5.8) and used in Eq. (3.5.7), by 

imposing a special case where potential U = 1 throughout the domain V. This gives: 
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This value for C(P) can be used in Eq. (3.5.7), so that the equation becomes practically 

applicable for all acoustic cavities for interior problem. For exterior acoustic analysis  
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3.6 ISOPARAMETRIC BOUNDARY ELEMENT FORMULATION 

To solve the problems numerically, the boundary surface is divided into discrete elements 

and some nodal points define each element. In this case, it is assumed that the surface is 
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discretized into ne number of eight-noded surface elements, and there are nn nodes in all. 

Isoparametric serendipity shape functions, identical to those provided in Fig. 2.11.1(b) are 

used to interpolate the intra-element co-ordinates and acoustic variables from the nodal 

values of the corresponding elements as shown below:   
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                        (3.6.1) 

Here xi are the Cartesian co-ordinate terms, p is the acoustic pressure and uan is the fluid 

particle velocity at the surface along the normal to the surface. Here 1 and 2 are the intrinsic 

co-ordinates (refer Fig. 3.7.1), each having a limit of 1. This transformation is needed to 

implement Gauss quadrature for the numerical evaluation of the integration of the kernel 

functions. The discretized form of equation (3.5.7) is given below  
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           (3.6.3)  

Here |J| is the determinant of the Jacobian matrix of transformation from xi Cartesian co-

ordinates to (1, 2) local co-ordinates, and Nl are the shape functions for an eight-noded 

surface element. The normal direction n


 to the boundary at point Q is obtained by the cross 

product of the surface tangent vectors at the point Q, 
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Since the area vector of an infinitesimal area on an element is given as 
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so, the Jacobian of transformation, |J|, is given by the magnitude of the normal vector n

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In equation (3.6.3) the Gauss-Legendre quadrature is applied to integrate the kernel. Each 

node of the BE mesh is made to assume the role of point P and a boundary element equation 

is found from Eq. (3.6.3). The number of equations thus derived is nn. Upon assembly a set 

of linear algebraic equation results and may be expressed as 

 

     anuGpH                                                                                                       (3.6.7) 

 

This is the system equation for an acoustic enclosure. At a node connected to r number of 

elements, there are essentially r velocity terms whose magnitude and direction may be 

independent. The pressure terms are however scalar quantities. Hence, [H]nn x nn is a square 

matrix due to full assembly, while [G]nn x 8ne remains a rectangular one, being not fully 

assembled. These complications and the difficulty of evaluating the value of coefficient C(P), 

however, may be avoided by the use of constant elements .  

 

3.7 REGULAR AND SINGULAR KERNEL INTEGRALS 

When the field point Q and the source point P lie on separate elements, the distance between 

these points, r(P,Q), is nonzero and finite. Hence the Green’s functions are regular or non-

singular. Thus the integrand in Eq. (3.6.3) can be evaluated without difficulty.  

However, when P and Q lie on same element, for certain Gauss points, the quantity r(P,Q) 

tends to be zero and the Green’s functions, p
*
 and np   /  tend to become singular since they 

are of the order 1/r (The quantity p
*
 has a denominator involving distance r(P,Q), while its 

normal derivative has {r(P,Q)}
2
. However, the latter term involves a coefficient nr  /  

which is of the order r(P,Q) [34]. Hence a transformation equivalent to a polar transformation 

is used, where the elemental area term, dS, in the numerator is replaced by a “ ddrr ” -type 

term, which nullifies the 1/r singularity. This is done by subdividing the elements, as shown 

in Fig. 3.7.1, into triangular sub-elements (Fig. 3.7.2) with point P at the vertices of all sub-

elements. The triangular sub-elements are imagined as four noded linear elements, by 

clubbing nodes 1 and 2 of the linear quadrilateral element together at point P. 
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The first two nodes are assumed to be concentrated at the singular point P, whereas the other 

two nodes are at the remaining vertices of the concerned sub-element, as shown in Fig. 3.7.2. 

The linear shape functions used are as shown below: 
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This is a non-linear transformation. By this transformation the lines  = +1 and  = -1 

converge at point P making the Jacobian J(1 , 2) of the order r [34]. In the vicinity of P, the 

shape function is of the order r , while the Green’s functions p
* 

and p
*
/n are of the orders 

1/r . Hence the products of kernel, shape function and Jacobian tend to a finite limit as points 

P and Q approaches each other, and the integrands can be evaluated using the standard Gauss 

quadrature. By the application of this transformation the integrands are integrated as follows: 
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Figure 3.7.2 Singular integration over elements, done by 

subdividing them into sub-elements. 
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generic element. 
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3.8 INTERIOR ACOUSTIC ANALYSIS OF RIGID CAVITY 

For rigid cavity problem, the normal particle velocity at the boundary is zero. Absorbent 

layers may be added to the boundaries to reduce noise inside the acoustic cavity, V. To 

accommodate the velocity boundary condition, a reorientation of the system Eq. (3.6.3) has to 

be made before applying Gauss elimination.   

On boundary, let the measured amplitude of the fluid particle velocity normal to the boundary 

is specified along with the forcing frequency. Let us be the normal velocity of the structural 

boundary as illustrated in Figure 3.8.1. Due to the presence of the absorbent material, the 

magnitude of the fluid particle velocity, au , at the boundary is different from the structural 

velocity. The relative fluid particle velocity, ru , referenced to structural surface is given by 

 

 

 

 

 

sar uuu  ,                            (3.8.1) 

The relation between the relative velocity, ru , and the acoustic pressure, p, can be 

represented through the experimentally obtained acoustic admittance term, Y, as [29] 

Ypur  .                            (3.8.2) 

Hence, sa uYpu                             (3.8.3) 

The acoustic admittance is measured in an impedance tube [29]. The admittance is the 

inverse of the acoustic impedance, the latter being defined as the ratio between pressure and 

normal fluid velocity at a point over a surface. The value of the acoustic admittance is taken 

to be zero on surfaces without absorbent layer.  

 

Fluid velocity,  

Interior acoustic 

pressure, p 

Structural 

velocity, us 

Absorbent layer with 

admittance, Y 

Structural 
boundary 

Figure 3.8.1. Moving boundary with normal 

velocity us, with surface acoustic admittance Y 

specified. 



27 
 

In the present study only 30 mm thick polyurethane foam sheets will be applied as absorbent 

layers, and the values of the acoustic admittance has been obtained from Suzuki et a.l [29] 

and shown in Fig. 3.8.2. 

 

 

 

 

 

 

 

 

Since the value of the admittance is frequency-dependent, a subroutine has been developed to 

interpolate the intermediate values for different forcing frequencies. 

 

In this case no special effort is required to incorporate the velocity boundary condition. The 

system equation for BEM is given by 

     anuGpH                             (3.8.4) 

The coefficient matrix [H] is square while [G] is rectangular for reasons stated in Section 3.6. 

It may be recalled that the exact number of unknowns is equal to the number of equations 

available, i.e., equal to the order of matrix [H], or the number of nodes on the boundary, nn. 

Thus, the imminent objective is to get the unknown quantities to the left-hand side, inside 

vector {p}, and send the known quantities inside vector {uan}. Upon matrix multiplication of 

the known quantities on the right hand side, the right-hand side becomes a known vector, and 

the equation can be solved via complex Gauss elimination. Since the velocity terms are 

already in the right-hand side, they need not be transported.  However, it may be noted that 

the velocity terms in this equation are actually fluid particle velocity terms and not the 

Figure 3.8.2 Non-dimensionalized 

acoustic admittance (cY) measured 

with impedance tube (Suzuki [29]). 
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structural velocity terms. Thus they are remodelled before incorporating the boundary values 

if the structural surface is provided with absorbent layers. 

 

A specific equation may be taken to explain the methodology to incorporate the absorbent 

layer into the present computations. The j
th

 boundary element equation may be written as 

follows: 

Hj1p1+Hj2p2+Hj3p3+….+Hj(nn) pnn= Gj 1-1u
a
1-1+Gj 1-2 u

a
1-2+….+Gj 1-8 u

a
1-8 + 

                                             Gj 2-1u
a
2-1+ Gj 2-2 u

a
2-2+….+Gj 2-8 u

a
2-8+ ….+                     (3.8.5) 

                                             Gj ne-1u
a

ne-1+ Gj ne-2 u
a
 ne-2+….+Gj ne-8 u

a
ne-8 

 

In the above equation, it has been assumed that there are nn nodes and ne elements. Thus the 

system involves nn nodal pressure terms and 8*ne nodal velocity terms in nn equations. Hjk 

means the coefficient of pressure, pk, at global node number k in the j
th

 equation. Likewise, Gj 

k-l means the coefficient of normal fluid particle velocity, u
a

k-l, on the l 
th

 local node of k
th

 

global element, in equation number j.  

Now the incorporation of absorbent layer property at one typical node may be discussed. The 

other cases are only prototypical. Let the first element be mounted with some absorbent layer 

with admittance Y, and let the discussion be confined only to its first local node. Then, 

assuming that the global node number of the first local node of the first element to be 1, Eq. 

(3.8.5) may be rewritten as 

 

[Hj1 - Gj 1-1.Y].p1+Hj2p2+Hj3p3+...+Hj(nn) pnn= Gj 1-1(u
s
1-1)+Gj 1-2 u

a
1-2+….+Gj 1-8 u

a
1-8 + 

                                                               Gj 2-1u
a
2-1+ Gj 2-2 u

a
2-2+ ….+Gj 2-8 u

a
2-8+       

                                                 …+Gj ne-1u
a
ne-1+ Gj ne-2 u

a
ne-2+….+Gj ne-8 u

a
ne-8                        (3.8.6) 

 

A similar process may be applied for all local nodes of all elements with absorbent layers, to 

account for the difference between the fluid and structural velocities at the boundary with 
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absorbent layers. Now, since the structural velocities are measurable, the velocity boundary 

conditions can be easily introduced. 

3.9 EXTERIOR ACOUSTIC ANALYSIS   

Boundary element methods have been used in acoustic radiation and scattering for decades 

[11-16, 18–20, 22]. The major advantage of boundary element methods over other numerical 

techniques is that only the surface of the body needs to be modelled. The Sommerfield 

radiation condition at infinity is automatically satisfied. However, one potential shortcoming 

is that the exterior boundary integral formulation, either direct or indirect, fails to produce a 

correct solution at a set of irregular frequencies associated with the eigen frequencies of the 

corresponding interior domain. For the direct BEM formulation, the problem is referred to as 

“the non-uniqueness difficulty,” while for the indirect BEM formulation, the problem is often 

referred to as “the non-existence difficulty.” 

The non-uniqueness difficulty associated with the direct BEM is harder to explain from the 

physical ground because the integral equation used is for the exterior problem only, instead of 

a combined interior/exterior problem. Although the exterior domain and corresponding 

(imaginary) interior domain share the same boundary, the direct boundary integral equations 

for the exterior and the interior problems are still slightly different in two aspects (Fig. 3.9.1) 

I. Their normal directions are opposite to each other, and 

II. Their solid angles are different at corners and edges. 

 

 

 

 

 

 

 

It is hard to just directly compare the interior and exterior boundary integral equations to 

explain why the non-uniqueness difficulty would occur. Advanced mathematical explanations 

have been presented in papers more than half a century ago, cf. Kupradze [36] and Weyl [37]. 

B 

n’  

Q 

P 

r S 

B’ n  Figure 3.9.1 Graphical representation of 

acoustic problem, B is the domain and n is 

outward normal to the surface for interior 

acoustics, whereas B’ is the domain and n’ is 

outward normal to the surface for exterior 

acoustics, P and Q are source point and 

observation point respectively 
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A simple mathematical explanation of this phenomenon can be found in Wu and Seybert [38, 

39] and later in Wu [40] as well. It has been shown that regardless of the type of boundary 

conditions prescribed for the exterior problem (Neumann, Dirichlet, or impedance), the 

Kirchhoff-Helmholtz integral equation will always fail to yield a unique solution at the eigen 

frequencies of the corresponding interior Dirichlet problem. In real world applications, 

knowing the exact locations of the irregular frequencies is actually not that important because 

it is impractical to solve an interior Dirichlet problem first just to find the eigen frequencies. 

A more reasonable approach is to always apply some kind of treatment in the direct BEM at 

every frequency to prevent the non-uniqueness from happening. Actually, at high 

frequencies, the eigen frequencies are so closely spaced that it is impossible to distinguish the 

regular frequencies from the irregular frequencies. 

Over the last four or five decades, many different approaches were proposed to create a 

unique solution. Among them the two most popular categories are 

I. the Combined Helmholtz Integral Equation Formulation (CHIEF) method 

originally proposed by Schenck [41] and its variations, and 

II. The linear combination of the Kirchhoff-Helmholtz integral equation and its 

normal derivative originally proposed by Panic [42] and Brakhage and werner 

[43]. This approach was adopted to the Neumann problem by Burton and Miller 

[44]. 

From the above two methods the CHIEF method has been used in the case studies of the 

thesis.  

3.10 CHIEF METHOD PROPOSED BY SCHENCK 

The system of equations valid for BEM as derived previously can be written as (3.8.4) 

     anuGpH   

We need to choose m collocation points located in the enclosed cavity. These points usually 

referred to as CHIEF points. The system matrix H corresponding to the CHIEF method takes 

the form [45] 
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            c1+ ̅11           ̅12    …   ̅1n          

              ̅21            c2 + ̅22  …   ̅2n      

              :               :               :          

H =        ̅n1             ̅n2 …       cn+ ̅nn     

                                                    

             ̅n+11          ̅n+12         ̅n+1n         

                      :              :                :                   

              ̅n+m1          ̅n+m2      ̅n+mn 

      

The rectangular system reflects the fact that we now have an over-determined linear system 

of algebraic equations for the n-dimensional vector of unknowns, p. this system is solved in a 

least square sense, where the unknown solution is formally given by  

p = (H
H
 H)

-1
 H

H
 G anu   

with superscript 
H
 denoting hermitian, i.e. transposed conjugate complex matrix. There are a 

large number of publications on the use and variations of this popular method [18]. 
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CHAPTER 4                                                                NUMERICAL RESULT 

4. NUMERICAL RESULT 

A MATLAB programme has been developed using boundary element method to solve 

exterior and interior acoustic problem. Eight noded isoparametric element is used in the 

analysis. The numerical analysis is divided in two parts. First part contains exterior acoustic 

analysis using CHIEF and second part contains interior acoustic analysis using absorbent 

layer. 

4.1 EXTERIOR ACOUSTICS 

Three case studies are shown in this part as follows. 

a) Case study of a pulsating sphere 

b) Case study of a pulsating cube 

c) Case study of a pulsating cylinder 

 

4.1.1 CASE STUDY OF A PULSATING SPHERE 

The simplest source to deal with mathematically with a finite volume velocity is called a 

monopole, a point source or a simple source. The acoustic source simplest to analyse is a 

pulsating sphere-a sphere whose radius varies sinusoidally with time. While pulsating spheres 

are of little practical importance, their analysis is useful for they serve as the prototype for an 

important class of sources referred to as simple sources. 

The exact analytical solution for the acoustic pressure at a distance r from the center of a 

sphere (Fig. 4.1.1a) of radius a, pulsating with uniform radial velocity Ua is [46] 

p(r) = (a/r)Ua[izoka/(1+ika)]e
[-ik(r-a)]

                                                                          (4.1.1a) 

 

Fig.4.1.1a   Pulsating Sphere 
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Fig.4.1.1b Showing Top Surface of Pulsating Sphere 

The radius of the pulsating sphere is taken as 0.2m. It is divided into a total of 40 numbers of 

elements and of 122 total numbers of nodes. The normal velocity is taken as 0.001m/s 

throughout the surface. 

A MATLAB programme is developed to find out the surface pressure of the Pulsating Sphere 

and with the help of CHIEF method the non-uniqueness problem relating to certain 

wavenumber has been tried to eliminate. 

 

Fig.4.1.1c Real part of the pressure on the surface of a pulsating sphere 
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Fig.4.1.1d Imaginary part of the pressure on the surface of a pulsating sphere 

Figure 4.1.1c and 4.1.1d are the plots of the real and imaginary parts of dimensionless 

acoustic pressure on the surface (r = a) of the pulsating sphere as a function of ka. The data 

in the neighbourhood of ka = π (the first interior eigen frequency) have been improved by 

using a single CHIEF point located at the centre of the sphere. The plot shows well in 

agreement with the analytical results. Without CHIEF the results near the first interior eigen 

frequency contain a large error resulting from severe ill conditioning of over-determined 

system of equations available for solving in BEM. 

4.1.2 CASE STUDY OF A CUBE  

 

To show how well the boundary element method handles bodies with edges and corners a 

problem with cubical geometry is considered. The problem of a pulsating cube is formulated 

by prescribing the normal velocity on a cubical surface produced by a pulsating sphere of 

radius a circumscribed by the cube. The boundary condition on the cube is given by 

 

                   
    

    
                                                                                           (4.1.2a) 

Here p(r) is given by Eq. 4.1.1a and n is the outward normal to the surface of the cube. The 

side of cube is taken as 0.4m, since it is formed circumscribing the sphere as in the previous 

case. Each side of the cube is divided into 4 x 4 numbers of elements and a total of 290 

numbers of nodes. The CHIEF point is taken at the centre of the cube. 
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Fig.4.1.2a Geometry of Pulsating Cube  

 

 

Fig.4.1.2b Nodes on the pulsating cube 

 

The Normalized pressures on the nodes shown in the above figure are obtained using BEM 

with CHIEF with the help of MATLAB programming. The results obtained were shown in 

Table 4.1.2.The numerical values are compared with the theoretical value and it is seen that it 

very well matches with the analytical value. 
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Table 4.1.2. Normalized pressure magnitude ǀpǀ/zoUa on the surface of a radiating cube 

for ka = 1 

NODES THEORETICAL VALUE NUMERICAL RESULT 

FROM MATLAB 

1 0.40824 0.408747 

3,7 0.50000 0.497745 

2,8 0.47140 0.470938 

5 0.70711 0.688966 

4.6 0.63246 0.622434 

 

 

Fig.4.1.2c Farfield pressure magnitude patterns for a pulsating cube 

The above figure shows the pattern of farfield pressure value for ka = 2.7207 ( √ ᴨ/2) [15] 

which is characteristic frequency for this cube taken at polar angle from the centre of the cube 

at distance of 2m (10a = 10*0.2).  
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4.1.3 CASE STUDY OF A CYLINDER 

In this case we have done radiation from a finite circular cylinder. A uniform radial velocity 

of 0.001m/s is prescribed on the periphery of the cylinder. The ends of the cylinder are 

considered motionless. 

 

 

Fig.4.1.3a Showing Top Surface of Right Circular Cylinder 

 

Fig.4.1.3b Right Circular Cylinder  

The radius of the Right Circular Cylinder is taken as 0.2m and its length as 0.8m (4.1.3a). 

The top and face of the cylinder is divided into 5 numbers of elements whereas laterally it is 

divided into 16 numbers of elements. As a whole, it is divided into 16 numbers of elements 

and a total of 80 numbers of nodes. The CHIEF is taken in the mid-point of the cylinder. 
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Fig.4.1.3c Far field pressure of a Cylinder 

Figure (4.1.3c) shows the far field pressure pattern of a cylinder of radius a (=0.2m) and of 

length 4a (=0.8m), where the pressure is plotted against polar angle taken at distance of 2m 

(10a = 10*0.2) from the centre of the right circular cylinder for ka = 1, 2 and 3.8851[15, 46]. 

For ka=1, the farfield pressure is nearly uniform. But for ka=2 and 3.8851, it is showing huge 

change in sound pressure level in dB with change in angle.  
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4.2 INTERIOR ACOUSTICS 

Five case studies are shown in this part as follows. 

a) Case study of rigid rectangular cavity of two different sizes 

b) Case study of three rigid arbitrary shaped cavity  

4.2.1 CASE STUDY OF A RECTANGULAR CAVITY OF 1.8M LENGTH 

A rigid container of dimension 1.8m x 0.6m x 0.6m is taken in this problem (Fig. 4.2.1a). The 

air inside acts as an interior acoustic domain. The rectangular cavity had been divided into 

126 elements having a total of 274 numbers of nodes. The pulsating face (left face) as well as 

right face are divided into 9 elements. 

The speed of sound, c, is taken to be 340m/s and the density of air,, is 1.20 kg/m
3
. The 

medium is excited by a sinusoidal motion of the left wall, acting as a rigid piston, with 

velocity amplitude of 0.001m/s. The responses are calculated at a forcing frequency interval 

of 10 radian/s. Fig. 4.2.1c and 4.2.1d show the sound pressure level (SPL) in decibels (dB) 

(with a threshold pressure of 2x10
-5

 N/m
2
), computed analytically and by using boundary 

element method at the midpoint of the right wall, and also at the centre of the domain. The 

analytical solutions and numerical results show very close conformity. Analytically, the 

acoustic resonance at the right boundary is scheduled to occur when Lcn / , where L is 

the length of the duct, whereas, at the centre of the domain, the resonance takes place at

Lcn /2  . For the present purpose, analytically, the resonance at the right side boundary 

should occur at frequencies of 0, 593.412, 1186.824… radian/s while, that occurs at the 

centre of the domain at 0, 1186.824, 2373.648…radian/s by putting the value of n as 0,1,2 

like so on and length as 1.8m. This is evidently being observed in the BE solution. 

This cavity is analysed using absorbent layer also. 30 mm thick polyurethane foam sheets is 

applied as absorbent layers [29]. Comparison was shown for the following cases. 

Four cases are done under this case study. 

i. No absorbent layer at any face of the cavity 

ii. Absorbent layer provided at the top face of the cavity 

iii. Absorbent layer provided at the rightmost  wall 

iv. Absorbent layer provided at the front and back wall 

 

Fig.4.2.1a Showing left face (Pulsating face) of Rectangular cavity of 1.8m length 

Left face set to 

pulsate 
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Fig.4.2.1b Showing Right face of Rectangular cavity of 1.8m length 

 

 

Fig.4.2.1c Boundary SPL for different cases of absorbent layer  

The first peak can be observed at 593.001 radians/sec whereas other peaks can be observed at 

1187.001 radians/sec, 1781.001 radians/sec respectively. For the first peak SPL, for the four 

different cases are 136.21dB, 120.18dB, 122.26dB and 117.8Db respectively. At 1187.001 

radians/sec, the SPL for four different cases are 147.62dB, 136.89dB, 139.35dB and 

132.03dB respectively. For the above two peaks SPL for providing absorbent layer at the 

front and back face is least among all the cases. Last but not the least for third peak absorbent 

layer at the front and back face is least as well. The resonating frequencies i.e. the peaks 

matches with the analytical results. 
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Fig.4.2.1d Domain SPL for different cases of absorbent layer  

In case of Domain SPL the resonating frequency occur at 1187.001 radians/sec. The SPL 

values for the four cases are 141.32dB, 130.59dB, 133.05dB and 125.73dB respectively. It 

can be observed that the SPL for Boundary as well as Domain is least in case of having 

absorbent layer at front and back face of the cavity. 

 

4.2.2 CASE STUDY OF A RECTANGULAR CAVITY OF 1.2M LENGTH 

In this case the cavity size is reduced to 1.2m (Fig.4).  The cross-section is rectangular with 

each side 0.6m. The arbitrary cavity had been divided into 90 elements having a total of 272 

numbers of nodes. The pulsating face (left face) as well as the right face is divided into 9 

numbers of elements. 

The left hand wall is set to execute simple harmonic motion where the velocity amplitude is 

set at 0.001 m/s. The forcing frequency is limited to 1800 rad/s computed at an interval of 10 

rad/s. The sound pressure level at the mid-point of right vertical plane (0.4, 1.2, 0.3) and at 

the domain (0.3, 0.6, 0.3) was found out numerically. Absorbent layers are provided at the 

faces of the cavity and the result is compared in Fig. 4.2.2b and 4.2.2c. 

 

Four cases are done under this case study. 

i. No absorbent layer at any face of the cavity 

ii. Absorbent layer provided at the top face of the cavity 

iii. Absorbent layer provided at the rightmost  wall 

iv. Absorbent layer provided at the front and back wall 
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Fig.4.2.2a Rectangular cavity of 1.2m length 

 

 

 

Fig4.2.2b Boundary SPL for different cases of absorbent layer  

The first peak can be observed at 890.001 radians/sec whereas other peak can be observed at 

1780.001. For the first peak the SPL, for the four different cases are 150.17dB, 137.74dB, 

137.75dB and 132.81dB respectively. It can be said that at first resonating frequency the SPL 

is least when absorbent layer is provided at front and back face of the cavity. At the second 

peak benefit of using absorbent layer is not seen both at boundary and domain.  
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Fig4.2.2c Domain SPL for different cases of absorbent layer  

 

4.2.3 CASE STUDY OF ARBITRARY SHAPED RIGID CAVITY 1 

 

A rectangular cavity with one inclined plane as shown in Fig.4.2.3a and 4.2.3b had been 

used. The bottom length of the cavity is 1.8m and the top length is 1.6m. The cross-section is 

rectangular with each side 0.6m. The arbitrary cavity had been divided into 72 elements 

having a total of 218 number of nodes. The pulsating face (left face) as well as right face are 

divided into 4 number of elements. The left hand wall is set to execute simple harmonic 

motion where the velocity amplitude is set at 0.001 m/s. The forcing frequency is limited to 

1800 rad/s computed at an interval of 10 rad/s. The sound pressure level at the mid-point of 

inclined plane (0.3, 1.7, 0.3) and at the domain (0.3, 0.9, 0.3) was found out numerically. 

Absorbent layers are provided at the faces of the cavity and the SPL value is compared for 

the following cases.  

 

Four cases are done. 

i. No absorbent layer at any face of the cavity 

ii. Absorbent layer provided at the rightmost  wall 

iii. Absorbent layer provided at the top face of the cavity 

iv. Absorbent layer provided at the front and back wall 
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Fig.4.2.3a Showing left face (Pulsating face) of arbitrary cavity 

 

 

Fig.4.2.3b Showing Right face of arbitrary cavity 

 

 

Fig4.2.3c Boundary SPL for different cases of absorbent layer  
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It is observed that the peaks are visible at 628 radian/s and 1248 radian/s. At both peaks, it is 

clear that addition of absorbent layer reduces SPL to some extent. For example, at 628 rad/s 

the SPL in dB for case i, ii, iii and iv are 134.1, 127.2, 126.3 and 120.2 respectively. Whereas 

at 1248 radian/s, the SPL values are 136.2, 132.6, 132.8 and 129.2. The position of absorbent 

layer plays a very important role in reducing the SPL. In the present case when absorbent 

layer is provided at front and back of the cavity, the reduction in SPL is maximum. Also the 

effect of absorbent layer is prominent in the first peak region. It is also observed that the 

absorbent layer only plays its role at the resonant points.  

 

 
 

Fig4.2.3d Domain SPL for different cases of absorbent layer  

 

From Fig. 4.2.3d, the peak can be observed at 1248 radian/sec but this graph is different from 

the graph of Domain SPL in case of rectangular cavity. At 628 radians/sec there is abrupt 

change in SPL can be seen where the first peak for Boundary SPL has occurred. At 

1248radian/s the values are 129.0dB, 125.50dB, 125.36dB and 121.9dB respectively. It is 

observed that absorbent layer at the front and back face is more beneficial than other cases. 

4.2.4 CASE STUDY OF ARBITRARY SHAPED RIGID CAVITY 2 

In this study, an arbitrary shaped cavity as shown in Fig.4.2.4a and 4.2.4b had been used for 

interior acoustic problem for calculating sound pressure level (SPL) at the boundary as well 

as at the domain using boundary element analysis (BEA). The bottom length of the cavity is 

1.8m and the top length is 1.2m. The cross-section is rectangular with each side 0.8m 

maintained till 1.2m of its length. The arbitrary cavity had been divided into 88 elements 

having a total of 280 numbers of nodes. The pulsating face (Right vertical face) is divided 

into 4 numbers of elements. The right hand vertical wall is set to execute simple harmonic 
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motion where the velocity amplitude is set at 0.001 m/s. The forcing frequency is limited to 

1500 rad/s computed at an interval of 10 rad/s. The sound pressure level at the mid-point of 

left vertical plane (0.4,0,0.4) and at the domain (0.3,0.9,0.3) was found out numerically and 

compared for different cases in Fig. 4.2.4c and 4.2.4d.    

Four cases are done. 

i. No absorbent layer at any face of the cavity 

ii. Absorbent layer provided at the leftmost vertical wall 

iii. Absorbent layer provided at the top face of the cavity 

iv. Absorbent layer provided at the front and back wall 

 

 

 

Fig.4.2.4a Showing right face (Pulsating face) of arbitrary cavity 

 

 
Fig.4.2.4b Showing left face of Arbitary cavity 

 

Right Vertical 

wall set to pulsate 
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Fig4.2.4c Boundary SPL for different cases of absorbent layer 

It is seen that that use of absorbent layer reduces SPL to a great extent at resonant points i.e., 

630 rad/s and 1180 rad/s, when these are provided at front and back of the cavity. At 630rad/s 

the SPL values for the above four cases are140.1dB, 135.61dB, 141.45 dB and 126.68 dB. 

But surprisingly no benefit is seen when absorbent layer is provided at top of the cavity for 

630 rad/s. At 1180 radians/s the SPL are 125.01 dB, 123.85 dB, 123.63 dB and 122.13 dB 

respectively. The percentage reduction in SPL is very less at higher forcing frequency.  

 

 

Fig4.2.4d Domain SPL for different cases of absorbent layer  
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In domain SPL graph (Fig. 4.2.4d) at 630 radians/sec there is abrupt change in SPL can be 

seen where the first peak for Boundary SPL has occurred. At 1180 radian/s the values are 

114.65dB, 113.50dB, 113.26dB and 111.80dB respectively. It is observed that absorbent 

layer at the front and back face is more beneficial than other cases at the first resonant point. 

 

4.2.5 CASE STUDY OF ARBITRARY SHAPED RIGID CAVITY 3 

An arbitrary shaped cavity as shown in Fig.4.2.5a and 4.2.5b had been used for interior 

acoustic problem for calculating sound pressure level (SPL) at the boundary as well as at the 

domain using boundary element analysis (BEA). The bottom length of the cavity is 2m and 

the top length is 0.8m having two inclined faces coming down from its top face till its middle 

height in symmetrical manner. The cavity had been divided into 64 elements having a total of 

194 number of nodes. The pulsating face (right face) is divided into 4 number of elements. 

The right hand vertical wall is set to execute simple harmonic motion where the velocity 

amplitude is set at 0.001 m/s. The forcing frequency is limited to 1800 rad/s computed at an 

interval of 10 rad/s. The sound pressure level at the mid-point of left vertical plane (0.4,0,0.2)  

and at the domain (0.4,1.0,0.4) was found out numerically with and without using absorbent 

layers for the following cases and the result is compared in Fig 4.2.5c and 4.2.5d.  

 

i. No absorbent layer at any face of the cavity 

ii. Absorbent layer provided at the top face of the cavity 

iii. Absorbent layer provided at the leftmost vertical as well as the inclined wall 

iv. Absorbent layer provided at the front and back wall 

 

 

 
Fig.4.2.5a Showing right face (Pulsating face) of arbitrary cavity 

 

Fig.4.2.5b Showing left face of arbitrary cavity 

Right vertical wall 

set to pulsate 
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Fig4.2.5c Boundary SPL for different cases of absorbent layer  

The first peak can be observed at 600.001 radians/sec whereas other peaks can be observed at 

1080.001, 1510.001 respectively. For the first peak, sound pressure level four different cases 

are 138.37 dB, 136.76 dB, 122.11 dB and 118.08 dB respectively. At 1080.001 radians/sec  

the SPL, for four different cases are 120.03 dB, 120.43 dB, 120.46 dB and 120.31 dB 

respectively.  For 1510.001 radians/sec the SPL, for four different cases are 112.64 dB, 

112.58 dB, 120.53 dB and 112.44 dB respectively. It can be seen that for first resonating 

frequency the SPL is least when absorbent layer is provided in the front and back. For the 

second resonating frequency there is no such decrease in SPL by providing absorbent layer in 

any of the face of the arbitrary cavity. In case of third resonating frequency there is very less 

decrement in SPL when absorbent layer is provided in the front and back face. 
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Fig4.2.5d Domain SPL for different cases of absorbent layer  

In case of Domain SPL the resonating frequency occur at 1080.001 radians/sec. The SPL 

values for the four cases are 107.80 dB, 108.20 dB, 108.24 dB and 108.10 dB respectively. It 

can be observed that by providing absorbent layer in any face of the arbitrary cavity no 

decrease in SPL can be seen at this frequency.  
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CHAPTER 5                                                                               CONCLUSION             

5. CONCLUSION 

The noise produces irritation and causes various health problems. Reduction of excessive 

noise is only possible through proper prediction and control of excessive noise only. In this 

present thesis a numerical study has been performed to predict and regulate high sound 

pressure level.  Boundary element method has been adopted to solve the acoustic problem. 

The benefits of using boundary element method (BEM) over other domain methods are that 

only boundary of the problem domain need to be modelled, thus reducing computation time 

and storage. A MATLAB program has been developed. Both exterior and interior acoustic 

analysis have been done. 

 In the exterior analysis, the radiation of acoustic wave from arbitrary shaped body 

submerged in air has been analysed using BEM. The sound pressure level is evaluated on the 

surface and at a point far from the body has been found out. Though the domain is infinite in 

this case, only surface of the arbitrary shaped body has been discretized. But there is 

shortcoming of this method too. The major disadvantage of integral equation method is the 

well-known failure of certain integral equation when applied to exterior problem to yield 

unique solution at the characteristic values of wave number.  

To overcome this non-uniqueness problem the Combined Helmholtz Integral Equation 

Formulation (CHIEF) method originally proposed by Schenck [15] has been applied. One 

CHIEF point is applied at the centre of the body and it was shown to work well for the 

monopole problem. 

This program firstly finds the surface pressure on the arbitrary shaped body i.e., cube and 

cylinder and then the far field pressure at the domain has been found out. It was shown that 

with change in angle, the sound pressure level changes at a distance. 

In the interior analysis, the same boundary element code has been used. There are only two 

differences that need to be checked in the interior analysis. The normal directions are 

opposite to each other and the solid angles are different at corners and edges.  

Our BEM code is validated with the analytical solution for a duct problem. It was shown that 

the sound pressure level at the boundary and at the centre of the domain matches well with 

analytical solution. In this thesis the effect of using absorbent layer on the inner faces of the 

boundaries of the acoustic cavity is shown and compared. The shape of the cavity has been 

changed. Almost for all the cases, addition of the absorbent layer reduces the SPL at the first 

resonance point. The reduction effect almost nil at higher frequency. Also position of 

absorbent layer plays a very important role. When the absorbent layer is placed at front and 

back wall it works best.   

It is found that the absorbent inflicts an additional kink in the acoustic pressure curve for a 

point inside the domain in between two consecutive peaks. This kink is very much prominent 

in un-symmetrical cavity as in case 4.2.3 and 4.2.4.   
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Thus, proper investigation and finally a prototype testing are essential for effective noise and 

vibration control. At the same time the knowledge of the operating frequency band is also 

essential. With every possible available data at hand, trials could be undertaken to control the 

sound pressure levels to bring them within specified limits.  
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